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Abstract

Arginine methylation is a common posttranslational modification (PTM) that alters roughly 0.5%

of all arginine residues in the cells. There are three types of arginine methylation:

monomethylarginine (MMA), asymmetric dimethylarginine (ADMA), and symmetric

dimethylarginine (SDMA). These three PTMs are enriched on RNA-binding proteins and on

histones, and also impact signal transduction cascades. To date, over thirty arginine methylation

sites have been catalogued on the different core histones. These modifications alter protein

structure, impact interactions with DNA, and also generate docking sites for effector molecules.

The primary “readers” of methylarginine marks are Tudor domain-containing proteins. The

complete family of thirty-six Tudor domain-containing proteins has yet to be fully characterized,

but at least ten bind methyllysine motifs and eight bind methylarginine motifs. In this review, we

will highlight the biological roles of the Tudor domains that interact with arginine methylated

motifs, and also address other types of interactions that are regulated by these particular PTMs.

1. Introduction

Arginine has the longest side chain of the 20 naturally occurring amino acids, and the end of

the side chain bears a positive charge – properties that make it a good anchor for potential

protein-protein interactions. Its guanidine group contains five potential hydrogen bond

donors that can be used to stabilize interactions with DNA, RNA and proteins [1]. The

methylation of arginine changes its shape, does not alter the charge, but removes potential

hydrogen bond donors, which would potentially inhibit certain interactions [2]. Importantly,

the methylation of arginine residues can also increase their affinity to aromatic rings in

cation-pi interactions, thus promoting other interactions [3]. So, protein arginine methylation

can both positively and negatively regulate protein-protein interactions, examples of which

will be highlighted here.

Three distinct types of methylated arginine residues occur in mammalian cells (Figure 1A).

The most abundant type is omega-NG,NG-dimethylarginine [4]. In this case, two methyl

groups are placed on one of the terminal nitrogen atoms of the guanidino group, and this
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derivative is commonly referred to as asymmetric dimethylarginine (ADMA). Two other

derivatives occur at levels less than 50% that of ADMA. These include the symmetric

dimethylated derivative, where one methyl group is placed on each of the terminal

guanidino nitrogens (omega-NG,N′G-dimethylarginine; commonly referred to as SDMA)

and the monomethylated derivative with a single methyl group on the terminal nitrogen

atom (omega-NG-monomethylarginine; commonly referred to as MMA). The three types of

arginine methylation are catalyzed by a family of nine AdoMet-dependent enzymes called

the protein arginine methyltransferases (PRMTs). Arginine demethylation activity has been

reported for the JmjC-domain-containing protein JMJD6 [5, 6].

The PRMTs are classified according to the type of methylation they are able to catalyze.

Type I, II and III are able to generate a MMA. Type I enzymes (PRMT1, PRMT2, PRMT3,

PRMT4/CARM1, PRMT6, and PRMT8) perform a second methylation step to generate the

ADMA mark, and the Type II enzyme (PRMT5) generates the SDMA mark. The Type III

enzyme (PRMT7) only generates a MMA mark. Most MMA marks are presumed to serve as

precursors for the subsequent methylation by Types I and II PRMTs, but certain proteins

exist in a heavily monomethylated state [7]. Sequence analysis of all PRMTs shows a highly

conserved catalytic core region, containing the signature methyltransferase motifs I, post-I,

II and III, which are characteristic of the super-family of seven-beta strand

methyltransferases. They also harbor additional “double E” (two glutamate residues) and

“THW” (threonine-histidine-tryptophan) sequence motifs, which are particular to the PRMT

subfamily of methyltransferases [1]. The catalytic core is highly conserved at the structural

level, as revealed by the crystal structure of PRMT1, PRMT3, PRMT4 and PRMT5 [8–14].

It should be noted that the metabolic cost of arginine methylation is high, requiring the use

of 12 ATP molecules per methylation event [15]. The fact that such an “expensive” PTM is

abundant and has not been lost to evolutionary pressure underscores the biological

importance of the methylated motifs that have survived.

2. Sites of Arginine Methylation on Histones

Arginine methylation is an abundant posttranslational modification (PTM), with about 0.5%

of arginine residues methylated in mammalian tissues [4, 16], and roughly 2% of arginine

residues methylated in rat liver nuclei [17]. The large majority of this type of protein

methylation occurs on non-histone proteins and most of these substrates are methylated on

Glycine/Arginine-Rich (GAR) motifs. Many of these substrates have recently been

catalogued by mass spectrometric analysis [18–20]. Importantly, a number of sites on

histone tails are methylated [21], and there is emerging evidence for the existence of

arginine-methylated sites within the histone core region [22] (Figure 1B). We have complied

a list of the arginine methylation sites that are found on histone, along with the reference that

reported each particular PTM (Table 1). We must emphasize that many of these sites are not

very well characterized, and often their existence has not been confirmed by alternative

approaches, like methyl-specific antibodies or in vitro methylation assays. Furthermore, the

enzymes that methylate many of these sites have yet to be elucidated. Finally, modulation of

the levels of one type of arginine modification can alter the levels of the other two

methylarginine types [7]. This is important, because manipulation of one type of arginine
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methylation reaction by PRMT knockout, small molecule inhibition or overexpression, may

impact the occurrence of other types of arginine methylation.

3. Tudor Domains

The seminal discovery, made by Tony Pawson over twenty years ago, that SRC homology 2

(SH2) domains bind to short protein motifs that are tyrosine phosphorylated [23], led to the

realization that different modular domains bind distinct types of PTMs [24]. For example,

lysine methylated motifs are bounds by at least eight different domain types – Chromo,

PHD, MBT, Tudor, PWWP, Ank, BAH and WD40 domains. Currently, the only protein

domain family known to bind methylated arginine motifs is the Tudor family (although

individual PHD and WD40 domains also harbor this ability). Tudor domains were identified

simultaneously by two research groups, which both realized that the Drosophila

melanogaster Tudor protein contains previously unrecognized repeating domains, which

were found in a number of other proteins in many different species [25, 26]. Interestingly,

the fly Tudor gene was discovered in a genetic screen for maternally expressed genes that

result in lethality or sterility of the progeny [27]. The Tudor gene was named after the

English Tudor dynasty because of the fertility issues that plagued Henry VIII, who was

desperate for a male heir to continue the Tudor line, and whose many wives had repeated

stillbirths and miscarriages. Tudor domains are roughly 60 amino acids in size and fold into

four antiparallel β-strands. The Tudor domain is the founding member of the ‘Royal Family’

of domains, which also includes Chromo, MBT and PWWP domains [28]. All ‘Royal

Family’ domains with methyl-binding properties have an aromatic cage to facilitate the

methyl-dependent protein-protein interaction.

4. Tudor Domains Bind Methyllysine and Methylarginine Motifs

The pioneering work on Tudor domain biochemistry and structure involved studies using the

human survival motor neuron (SMN) protein [29, 30], which is mutated in spinal muscular

atrophy syndrome [31]. SMN harbors a single Tudor domain and was one of the first

proteins identified to interact with a methylated motif [29, 32], along with the chromo

domain-containing protein, HP1 [33, 34]. It soon became clear that Tudor domains not only

bind methylarginine motifs, but also methyl-lysine marks [35–37]. In humans, there are at

least thirty-six proteins that harbor Tudor domains, but there are over 60 Tudor domains in

humans, because many proteins have multiple copies of this domain. Recently, the structures

of a number of different Tudor domains, in complex with their methylarginine motif ligands,

have been solved [38–43]. Based on their primary amino acid sequence, it is not possible to

predict the binding specificity of Tudor domains. However, structural studies suggest that

the aromatic cage of the methylarginine binders is narrower than that of methyllysine

binders. This favors the docking of the planar methyl-guanidinium group of arginine [41]. In

the next section, we will discuss only those Tudor domain-containing proteins that have

been clearly shown to participate in methylarginine driven protein-protein interactions

(Figure 2). These include tudor domain-containing proteins that are implicated in the

regulation of splicing (SMN and SPF30), in the regulation of gene expression (TDRD3 and

SND1), and in a gonad-specific small RNA silencing pathway (TDRD1, 6 & 9, and

TDRKH).
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5. The Tudor Domains That Bind Methylarginine Motifs

5.1. SMN

Spinal muscular atrophy (SMA) is an autosomal recessive disease resulting from the loss of

SMN1 gene function. SMA is among the leading genetic causes of infant death, with a

prevalence of ~1 in 6000 live births [44]. SMN regulates the assembly of RNA-protein

complexes called small nuclear ribonucleoproteins (snRNPs), and binds the spliceosomal

core proteins SmD1, SmD3 and SmB/B′ through its Tudor domain. This binding is driven

by symmetric methylation of arginine residues in the C-terminal regions of these splicing

factors [29, 32]. SMN is proposed to assemble RNPs along motor neuron axon, but why

motor neurons are ultra-sensitive to SMN changes in comparison to other cell types is

unknown. Point mutations within the SMN Tudor domain have been identified in SMA

patients, establishing a clear link between the methyl-binding requirements of SMN and

SMA pathogenesis [45]. The SMN Tudor domain can bind both ADMA and SDMA motifs,

and interacts with a number of PRMT5 and CARM1 substrates [46, 47]. These findings are

supported by structural studies, which confirm that the Tudor domain of SMN binds both

SDMA and ADMA motifs, with a slightly lower affinity for ADMA motifs [41, 43]. It was

recently reported that the SMN Tudor domain also has the ability to bind methyllysine

marks, in particular the DOT1L-generated H3K27me1 and me2 motifs [48]. If confirmed,

this would be the first example of a Tudor domain that can bind both methylarginine and

methyllysine motifs.

5.2. SPF30

SPF30, also referred to as SMNrp or SMNDC1, is the Tudor domain most closely related to

SMN, displaying almost 50% identity [49]. It was identified in a proteomic screen of the

human spliceosome [50], and subsequent functional analysis revealed that it is an essential

splicing factor required for spliceosome maturation [51, 52]. Peptide pull-down experiments

revealed that the SPF30 Tudor domain binds symmetrically dimethylated arginine motifs

[53]. Structural studies have shown that, like the Tudor domain of SMN, SPF30 binds both

SDMA and ADMA motifs, with generally a slightly lower affinity for ADMA [41, 43].

Also, when the Tudor domains of SMN, SPF30 and TDRD3 were tested against a panel of

methylated peptides, SPF30 displayed the weakest methylarginine binding of the three

domains [41].

5.3. TDRD3

The methylarginine binding properties of the TDRD3 Tudor domain were first discovered

using a peptide pull-down experiment [53]. A protein microarray approach reaffirmed the

ability of Tudor domain of TDRD3 to read methylarginine modified peptides [37]. TDRD3

harbors a functional UBA domain, between its Tudor domain and OB fold [54]. Thus, it

could also be directed to specific genomic loci or subcellular sites where particular ubiquitin

and arginine methylation signals are enriched.

PRMT1 and CARM1 are the primary transcriptional coactivators in the PRMT enzyme

family, and they deposit the H4R3me2a and H3R17me2a marks respectively [55]. Both of

these marks are recognized by the Tudor domain of TDRD3 [56]. The Tudor domain of
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TDRD3 also “reads” a methylarginine mark (R1810) imbedded in the C-terminal domain

(CTD) of RNA Polymerase II (RNAP II) [57]. ChIP-seq analysis has revealed that TDRD3

is enriched at the promoters of highly-transcribed genes. TDRD3 has no enzymatic activity

of its own, but it is tightly complexed with DNA topoisomerase IIIβ (TOP3B), and

TDRD3’s coactivator activity is bestowed on it, in part, by this interaction. TOP3B is a

member of the 1A subfamily of DNA topoisomerases, and as such, targets underwound or

negatively supercoiled DNA [58]. This subfamily of topoisomerases has been implicated in

the resolution of R-loops [59], which are nucleic acid structures formed by a RNA/DNA

hybrid and the displacement of the DNA strand. Thus, the TDRD3/TOP3B relaxes negative

supercoiled DNA, reduces transcription-generated R-loops, and promotes transcription [60].

Recently, two research groups identified the TDRD3/TOP3B heterodimer as a binding

partner for fragile X mental retardation protein (FMRP) [61, 62], thus expanding on the

finding that FMRP and its homologs (FXR1 & 2) are complexed with TDRD3 [54]. FMRP

is a RNA-binding protein that associates with polyribosomes, and can function as a regulator

of translation [63]. Indeed, the TDRD3/TOP3B/FMRP complex is associated with the

mRNA pool that is actively undergoing translation [62]. Importantly, TOP3B possesses not

only DNA- but also RNA-directed topoisomerase activity [61, 62]. Although, it is not yet

clear how this RNA-directed activity is implicated in FMRP function at the ribosomes, it has

been proposed to reduce mRNA topological stress, thereby promoting translation [61]. Thus,

the TDRD3/TOP3B heterodimer takes on two forms, one nuclear and the other cytoplasmic,

and regulates both transcription and translation.

The Tudor domain of TDRD3 preferentially recognizes ADMA marks over SDMA and

MMA marks. This was first shown using peptide pull-down approaches with histone H3 tail

[56] and the CTD of RNAP II [57], and more recently by Isothermal Titration Calorimetry

(ITC) [41]. The crystal structure of the TDRD3 Tudor domain with a methylarginine mimic

has facilitated the modeling of methyl-dependent interaction with this particular aromatic

cage [41]. An elegant structural analysis of TDRD3 bound to the CTD R1810me2a mark

shows that a tyrosine residue in the Tudor domain is critical for the ADMA specificity

displayed by this domain. Indeed, when this tyrosine (Y566) is altered to a tryptophan

residue, the mutant TDRD3 Tudor domain now binds both the ADMA and SDMA mark

[42].

5.4. SND1

SND1, also referred to as TSN-p100 or TDRD11, harbors a single Tudor domain, as well as

four tandem repeats of staphylococcal nuclease (SN)-like domains. It was first identified in a

protein complex with the Epstein-Bar virus nuclear antigen 2 (EBNA2) [64]. In this context,

SND1 functions as a transcriptional coactivator. It has since been found to interact with a

number of transcription factors, including STAT6 and E2F1 [65–67]. At least with regards

to the E2F1-SND1 interaction, the binding is arginine methylation dependent [65]. SND1 is

also able to interact with RNA polymerase II [66], where it associates with the heavily

arginine methylated protein SAM68 and regulates alternative splicing [68].

SND1 likely functions as a transcriptional coactivator by also facilitating the acetylation of

histone. Studies have shown that the SN domain of SND1 associates with the histone
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acetyltransferase (HAT), CBP, and recruits it to STAT6 response elements, resulting in an

increased histone H4 acetylation [67]. Interestingly, the H4K5ac mark promotes the

symmetric methylation of H4R3 [69], and an in vitro study has shown that the extended

Tudor domain of SND1 is able to bind methylated H4R3 [40]. Thus, the Tudor domain of

SND1 may bind arginine methylation sites on histone tails, then recruit HAT activity, which

will acetylate the tails and prime them for arginine methylation by PRMTs. This, in turn,

will provide more SND1 docking sites, and promote spreading of the open chromatin state

to facilitate transcription.

Apart from transcriptional regulation, SND1 also 1) interacts with the RISC complex and

plays a role in miRNA processing [70, 71]; 2) interacts with methylated Sm proteins and

facilitates pre-mRNA splicing [72, 73]; and 3) associates with PIWIL1/Miwi in germ cells

in a methylarginine-dependent manner [40]. SND1 is thus implicated in many RNA

processing steps. It is overexpressed in a number of different cancers, and is a candidate

gene for autism susceptibility [68, 74–76].

5.5. TDRD1

Piwi proteins interact with a class of small noncoding RNAs, piwi-interacting RNAs

(piRNAs), in germ cells. The piRNA pathway is responsible for repressing transposable

elements to prevent genomic instability in germ cells. The mouse Piwi proteins (Mili, Miwi

& Miwi2) are all heavily arginine methylated, and can interact with a number of Tudor

domain-containing proteins [77, 78]. In the case of TDRD1, its four Tudor domains interact

with the N-terminal end of Mili. A SDMA peptide from this region can pull-down TDRD1

from cell lysates [77], and an R/K mutant of Mili is unable to interact with TDRD1 [78].

Furthermore, small molecule inhibitors of arginine methylation block the TDRD1-Mili

interaction [78]. Although TDRD1 expression is usually restricted to germline stem cells, it

is often overexpressed in human prostate cancer [79, 80]. This inappropriate expression of

TDRD1 may impact epigenetic signatures in prostate cancer because of its ability to “read”

methylarginine marks. Indeed, it is becoming apparent that the PIWI proteins and PIWI-

interacting RNAs have emerging functions in somatic tissues [81].

5.6. TDRKH

TDRKH, also referred to as TDRD2, is the only Tudor domain-containing protein to also

harbor KH domains, which bind RNA [82]. Initial RNA-based expression studies showed

that TDRKH is present in a number of different tissues (high in brain and heart) [82], and

Western analysis identified expression in the testis and brain [38]. The mouse knockout

model of TDRKH revealed that it is essential for spermatogenesis and piRNA biogenesis in

the germline [83]. However, because of its broad expression pattern, which is supported by

data in The Human Protein Atlas, it may have additional non-germ cell functions.

Mutational analysis mapped the Tudor domain of TDRKH as the module that interacts with

the arginine-rich N-terminal region of Miwi, which represses transposition, regulates

translation, and guides epigenetic programming in the germline [38]. PRMT5 knock-down

experiments show that the TDRKH-Miwi interaction is arginine methylation dependent [83].

Importantly, for optimal binding to a symmetrically methylarginine peptide a region larger
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than the Tudor domain is required, which encompasses the Tudor domain and the C-

terminal tail of TDRKH [39].

5.7. TDRD6

TDRD6 is composed solely of Tudor domains, and harbors eight of them. It also interacts

with Miwi; and SDMA peptides, but not ADMA peptides, are able to pull-down TDRD6

from mouse testis extracts [84]. It is not clear which of the eight Tudor domains harbors the

methylarginine-binding properties. Mice null for TDRD6 display defective spermatogenesis

[85].

5.8. TDRD9

TDRD9, like TDRD1, is unable to interact with a R/K mutant of Mili [78]. This is

supportive of a methyl-dependent TDRD9-Mili interaction, but not direct evidence of such.

Although other Tudor domain-containing proteins (TDRD4 & TDRD7) have been shown to

interact with Mili, using a co-immunoprecipitation approach, these interactions have yet to

be shown to be methyl-dependent [78].

6. Cross Talk and Regulatory Circuits on the Tips of Histone Tails

6.1. The H3R2 Site as a Node of Transcriptional Regulation – PHD and WD40 Domains

The H3K4 site is a major epigenetic mark, which when tri-methylated defines active

promoters. H3K4 methylation and effector molecule recognition can be impacted by

methylation of H3R2. H3R2me2a is a major mark deposited by PRMT6 [86–88].

Methylation of the H3R2 site essentially prevents the MLL1 complex from methylating

H3K4 [87]. However, PRMT6 can strongly methylate H3K4me1 and H3K4me2 peptides,

and weakly methylate a H3K4me3 peptide, so dually modified H3R2me2aK4me3 histone

tails likely exist [88].

Many effectors that bind H3K4me3 are blocked from docking if H3R2 is also

asymmetrically methylated [88]. Thus, PRMT6 functions as a transcriptional repressor by

blocking the recruitment of transcriptional activators to the methylated H3K4 mark. ChIP

analysis at 185 human promoters supports this hypothesis, demonstrating a counter-

correlation between H3K4me3 and H3R2me2a levels [86]. Further ChIP analysis has

revealed PRMT6 activity at the promoters of the HoxA2 gene [87] and the TSP-1 gene [89],

which correlate with transcriptional repression. Although most H3K4me3 effector molecules

are sensitive to H3R2 methylation [88, 90, 91], some are not impacted, either positively or

negatively, by this modification [92].

The opposite is true when H3R2 is symmetrically methylated in conjunction with the

H3K4me3 mark; certain effector recognition is enhanced. There are two examples of this: 1)

the RAG2 PHD domain preferentially binds the H3R2me2sK4me3 dual mark with a 20-fold

increase in binding affinity over the H3K4me3 mark alone [93]; and 2) the WDR5 WD40

domain preferentially binds the H3R2me2s mark at least 10-fold better than the unmodified

H3 peptide, although it is still unclear how the H3K4me3 mark will impact this interaction

[94].
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The RAG2 PHD domain was identified as a “reader” of the H3K4me3 mark [95], and

structural analysis of this interaction revealed that an additional binding pocket could

accommodate a methylated H3R2 residue [96]. At this point, it was unclear if this dual mark

could actually exist. To address this issue, antibodies were developed that specifically

recognize the dual H3R2me2sK4me3 mark. Strikingly, ChIP-seq analysis reveals that this

dual modification tightly correlates with H3K4me3 [93]. Thus, the dual H3R2me2sK4me3

mark is not only present at high levels at recombinationally active antigen receptor loci in

pro-B cells (which recruit RAG2), but also found to mark active promoters. PRMT

knockdown experiments in mammalian cells have not been able to identify the enzyme

responsible for depositing the H3R2me2s mark [93]. Although, in vitro methylation assays

suggest that PRMT5 & 7 may be able to deposit this mark [94]. This dual mark is

evolutionarily conserved, and in yeast, prior methylation of the H3K4 site is required for

H3R2me2s deposition [93].

In an independent study, the Guccione group developed antibodies that recognize the

H3R2me2s mark, and ChIP-seq experiments using these antibodies also revealed significant

overlap of this mark with H3K4me3 at active promoters [94]. They found that WDR5 is

recruited to the H3R2me2s mark and structural analysis reveals that the symmetric

methylation of the R2 residue facilitates the formation of tighter hydrophobic interactions

with a phenylalanine residue (F219) present in the WD40 domain of WDR5.

It has been proposed that apart from providing high-affinity docking sites for certain

domains (the WDR5 WD40 domain and the RAG2 PHD domain), the H3R2me2sK4me3

dual mark may prevent the demethylation of H3K4me3, thus fixing this activation mark in

place for long periods [93].

6.2. The H4R3me2s Mark as a Potential Gateway to DNA Methylation – the ADD Domain

PRMT5 symmetrically methylates both H3R8 and the H4R3 motif [97], but the specificity

of the enzyme is directed towards the H4R3 motif by one of its regulatory binding proteins,

COPR5 [98]. PRMT5 is generally regarded as a transcriptional repressor. Thus, an effector

of the H4R3me2s mark should possess repressor functions that can link PRMT5 to its

clearly defined role as an attenuator of transcription. One such link was discovered with the

identification of the PHD domain of the de novo DNA methyltransferase DNMT3A as a

binder of the H4R3me2s mark [99]. A repressive mechanism can now be envisioned where

PRMT5 is recruited to a promoter, generating a patch of H4R3me2s that in turn will

facilitate the binding of DNMT3A, thereby stimulating DNA methylation and transcriptional

lock-down. This sequence of events has been challenged by Otani et al., who confirmed

previous reports that the PHD domain (also called the ADD domain) of DNMT3A binds

H3K4me0 [100], but were not able to reproduce the interaction between this PHD and a

H4R3me2s peptide [101]. A recent ChIP-seq analysis of H4R3me2s peaks found that they

are enriched at CpG-rich promoters [102]. However, this promoter marking is independent

of transcriptional activity, and furthermore, PRMT5-depletion resulted in loss of H4R3me2s,

but not DNA methylation or other repressive marks. Thus, the link between PRMT5 and

DNA methylation remains elusive.
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6.3 Trans-tail Cross Talk between H4R3me2s and H3K3me3 Marks – PHD Domains

Mixed-lineage leukemia 4 (MLL4) is a transcriptional coactivator that functions by

depositing the H3K4me3 mark. Three of the seven PHD domains (PHD4-6) of MLL4 are

prevented from binding the N-terminal tail of histone H4 by symmetrical methylation at the

R3 position [103]. Peptides carrying the H4R3me2a mark (and unmethylated peptides)

interact robustly with these three PHD domains. This raised the possibility that MLL4

interacts with the histone H4 N-terminal tail when it does not contain a repressive mark, and

methylated the histone H3 N-terminal tail on the same nucleosome, or on an adjacent

nucleosome. This indeed seems be the case, because MLL4-mediated methylation of

nucleosomal H3 tails requires the binding of PHD4-6 to H4 tails. These findings nicely link

the known transcriptional repressive role of the H4R3me2s mark with reduced MLL4

chromatin recruitment and decreased promoter-specific levels of H3K4me3.

7. Other Domains and Complexes that Bind Methylarginine Marks

7.1. The PAF1 Complex

The transcriptional coactivator, CARM1, deposits the H3R17me2a mark. Peptides bearing

this mark were used to pull-down interacting proteins from HeLa nuclear extract [104]. The

methyl-dependent interacting proteins were identified by mass spectrometry, and they turned

out to be members of the transcription elongation-associated PAF1 complex. Consistent

with this finding, loss of CARM1 results in a reduction of the PAF complex at estrogen-

response elements. Unfortunately, it is not clear which component of the PAF complex

directly interacts with the H3R17me2a mark, or if a protein domain is involved in this

interaction. Interestingly, using a similar peptide pull-down approach, the Wong group

found that H3R17me2a mark inhibits the binding of corepressors and protects chromatin

from deacetylation [105].

7.2. BRCT Domains

The histone acetyltransferase, p300, is methylated by CARM1 at a number of sites,

including R754 in the KIX region [106]. Pull-down experiments using R754 MMA and

ADMA peptides revealed that the BRCT domains of BRCA1 interact with the ADMA form

of this peptide. BRCT domains are well characterized as phospho-binding modules [107],

and in this particular case a few of these domains may have evolved the ability to also

interact with a methyl-motifs. This interaction between p300R754me2a and the BRCA1

BRCT domain seems fairly unique, because an expanded screen with a number of

methylarginine motifs did not identify additional BRCT domains with methylarginine-

binding properties.

7.3. Long Non-Coding RNA (lncRNA) Regulated Protein Interaction

Nuclear lncRNAs have been shown to function as transcriptional regulators that can bind to

chromatin-associated proteins [108]. The Chromo domain of the Polycomb 2 protein (Pc2/

Cbx4) binds the H3K9me3 mark [109]. Recently, Pc2 was found to bind the lncRNAs

TUG1 and MALAT1/NEAT2 [110]. Using a modified histone peptide array, the Rosenfeld

group was able to show that the recombinant Pc2 Chromo domain bound H3K9me3, as

expected. However, when the Pc2 Chromo domain was used to probe the arrays in the
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presence of TUG1, then it switched specificity to the H4R3me2s mark. This is a very

exciting observation that has yet to be followed up on, and it implies that a Chromo domain

can switch from a methyllysine to methylarginine binder in the presence of a lncRNA.

7.4. Small Nuclear RNA (snRNA) as a Direct Effector for Methylarginine Marks

7SK is an abundant snRNA that binds and regulates P-TEFb, a factor that regulates the

elongation phase of transcription. Again, the Rosenfeld group found, using a modified

histone peptide array, that 7SK snRNA binds lysine acetylated and arginine methylated

histone tail peptides [6]. In vitro RNA pull-down assays show that 7SK snRNA interacts

with H4R3me2a/s marks but not H3R2me2a/s marks. Thus, 7SK snRNA can bind

preferentially to some arginine methylated motifs, but also strongly to the acetylated histone

H4 tail.

7.5. PELP1

Proline glutamic acid and leucine-rich protein 1 (PELP1) is as estrogen receptor coactivator,

which recruits LSD1 to demethylate the H3K9me2 mark [111]. PELP1 also interacts with

CARM1 [112]. Interestingly, PELP1 has the ability to bind both H3K4me2 and H3K9me2

peptides, although it does not harbor a classic methyl-reading domain. The interaction with

these methyl-peptides was mapped to a glutamic acid-rich region of PELP1. Histone peptide

array experiments revealed that PELP1 also interacts with methylarginine peptides that are

asymmetrically dimethylated [112]. Thus, PELP1 seems to be a methyl-dependent histone

tail binder, but it is unable to distinguish between dimethylated arginine and lysine motifs.

8. Small Molecule Tools to Investigate Methyl-dependent Protein-Protein

interactions

8.1. Chemical Compounds That Mimic an Aromatic Cage

Structural analysis has made it abundantly clear that most the domains that “read”

methylarginine marks, do so by using a “cage” in which four faces consist of aromatic

residues. An exciting new avenue of research is the synthesis of artificial aromatic cages that

function as receptors and recognize methylarginine marks. The Waters group has

synthesized these small chemical probes that mimic the aromatic cages observed in protein

structure [113]. One of these synthetic receptors (A2D) exhibits a binding affinity of 5 μM

for H3R8me2a, with a greater than 7-fold selectivity over H3R8me2s and the unmodified

peptide, thus displaying tighter binding than most Tudor domains. Once tagged, these

compounds could be used as a probe that could detect and enrich for PRMT substrates.

8.2. Chemical Compounds That Bind an Aromatic Cage

With the first well-characterized inhibitors of Bromo domains (JQ1 and I-BET) already in

clinical trials [114], the targeting of protein–protein interactions triggered by PTMs has been

validated as tractable, proving that other families of “reader” proteins may be amenable to

selective small-molecule intervention as well. Indeed, small molecules that bind MBT and

Tudor domains have recently been identified by the Frye group [115–117]. One of the lead

compounds, UNC1215, can bind the MBT domains of L3MBTL3 and L3MBTL1, and also
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the Tudor domains of 53BP1 and PHF20. All four of the domains bound by UNC1215 are

methyllysine binding aromatic cages, but it is conceivable that analogs of this compound

could bind Tudor domains that interact with methylarginine motifs. Thus, inhibitors of

methylarginine-dependent protein-protein interactions may one day be developed into

epigenetic drugs.

8.3. Chemical Conjugation of Methylarginine Mimics on Recombinant Proteins

Methyllysine mimics have been successfully engineered into recombinant proteins for a

number of years, and these methyllysine analogs (MLAs) are functionally similar to their

natural counterparts [118]. Recently, a similar approach was developed by the Fujimori

group to install methylarginine analogs into specific sites in a recombinant protein [119].

When introduced into the H4R3 site, these methylarginine analogs are specifically

recognized, just like their natural counterparts, by methyl-specific antibodies and the

TDRD3 effector molecule. This approach allows for the production of large quantities of

recombinant protein with a specified site and type of arginine methylation, and will greatly

facilitate the functional analysis of arginine methylation.

9. Perspectives

It is probable that we have identified all the arginine methyltransferases within the “classic”

PRMT family. It is possible that convergent evolution has generated other classes of

arginine methyltransferases, as it has for lysine methyltransferases and demethylases. Also,

the search for additional “readers” of arginine methylated motifs will be important to help us

understand the mechanisms of action of this PTM. Because of the abundance of this

modification, it is likely that there will be “readers” other than Tudor domains. Mass

spectrometric analysis has become extremely sensitive, and as a result a large number of

arginine methylation sites have been identified on histones and their tails. It is unclear which

are these methylation sites play significant biological functions. Comprehensive ChIP-seq

analysis of all the arginine methylated histone code marks has yet to be performed, due to

the lack of high-quality antibodies, and this information will obviously be of great value in

the future.
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Highlights

• 0.5% of all arginine residues in the cell are methylated.

• There are three types of arginine methylation: mono, asymmetric & symmetric.

• The primary “readers” of methylarginine marks are Tudor domain-containing

proteins.
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Figure 1. Types and sites of arginine methylation on histones
(A) Arginine residues in the tails of histones can be monomethylarginines (MMA - ●),

asymmetric dimethylarginines (ADMA - ), or symmetric dimethylarginines (SDMA - ).

Methyl groups are marked in red. (B) Positioning of the unstructured histone tail relative to

the structure C-terminal core region. The reported sites of histone H3, H4, H2A, and H2B

arginine methylation are shown. The references that first reported these methylated sites are

listed in Table 1. A number of arginine methylated sites have been identified by mass

spectrometric methods, but it has yet to be established which PRMTs modify them, and

these sites are thus assigned question marks.
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Figure 2. Domain architecture of methylarginine-binding Tudor domain-containing proteins
Alternative names are given in brackets. The proteins are not drawn to scale. The size of the

human Tudor domain-containing protein in given in amino acid number at the end of each

stick diagram. The references are given to the original manuscripts that present the

methylarginine-binding properties of each particular tudor domain-containing protein. ZnF

MYND, MYND-type zinc-finger domain; KH, K homology domain; OB-fold,

oligonucleotide/oligosaccharide-binding fold; UBA, ubiquitin-associated domain; DEXD,

DEAD-like helicase domain; HELIC, helicase superfamily; SN-like, staphylococcal

nuclease-like domain.
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