
Stable Atlas-based Mapped Prior (STAMP) Machine-learning
Segmentation for Multicenter Large-scale MRI Data

Eun Young Kima, Vincent A. Magnottab,a, Dawei Liuc, and Hans J. Johnsonc,a

aDepartment of Biomedical Engineering, University of Iowa, Iowa, IA, 52242, USA

bDepartment of Radiology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242,
USA

cDepartment of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, 52242,
USA

Abstract

Machine learning (ML)-based segmentation methods are a common technique in the medical

image processing field. In spite of numerous research groups that have investigated ML-based

segmentation frameworks, there remains unanswered aspects of performance variability for the

choice of two key components: ML-algorithm and intensity normalization. This investigation

reveals that the choice of those elements plays a major part in determining segmentation accuracy

and generalizability. The approach we have used in this study aims to evaluate relative benefits of

the two elements within a subcortical MRI segmentation framework. Experiments were conducted

to contrast eight machine-learning algorithm configurations and 11 normalization strategies for

our brain MR segmentation framework. For the intensity normalization, a stable atlas-based

mapped prior (STAMP) was utilized to take better account of contrast along boundaries of

structures. Comparing eight machine learning algorithms on down-sampled segmentation MR

data, it was obvious that a significant improvement was obtained using ensemble-based ML

algorithms (i.e., random forest) or ANN algorithms. Further investigation between these two

algorithms also revealed that the random forest results provided exceptionally good agreement

with manual delineations by experts. Additional experiments showed that the effect of STAMP-

based intensity normalization also improved the robustness of segmentation for multicenter data

sets. The constructed framework obtained good multicenter reliability and was successfully

applied on a large multicenter MR data set (n > 3000). Less than 10% of automated segmentations

were recommended for minimal expert intervention. These results demonstrate the feasibility of

using the ML-based segmentation tools for processing large amount of multicenter MR images.

We demonstrated dramatically different result profiles in segmentation accuracy according to the

choice of ML algorithm and intensity normalization chosen.
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1. Introduction

The precise delineation of subcortical structures from brain structural magnetic resonance

images (MRIs) can advance our understanding of the disease process for many neurological

and psychological diseases. The rich set of soft tissue information from an MRI [1] allows

for sensitive quantitative studies that can detect subtle morphological changes associated

with neurological disease progression. It is known that morphological trajectories of

neuroanatomy in normal aging differs from those affected by disorders such as

schizophrenia [2, 3], Alzheimer’s disease [4, 5], autism [6], Huntington’s disease [7, 8, 9,

10, 11, 12, 13, 14, 15, 16, 17], and others [18]. The desire to accelerate our understanding of

these disease progressions has recently lead to several studies that collect extremely large

data sets from multiple collection sites [10, 19, 20].

Although manual delineation remains a common practice for smaller studies, analysis of

large longitudinal MRI data sets is impractical due to its high labor costs and low intra- and

inter-rater consistency. A robust automated segmentation tool can overcome these hurdles

and provide efficient and reliable segmentations in very large longitudinal multicenter data

collections. Several approaches have been investigated to provide an automated

segmentation procedure [21, 22, 17, 23, 24, 25, 26, 27, 28, 29, 30]. Among the various

available methodologies, a popular approach is machine learning (ML)-based segmentation.

Different ML algorithms have appeared in segmentation frameworks: support vector

machine (SVM) [31, 32, 33, 34, 35], AdaBoost [35], k-nearest neighbor (k-NN) [36, 37],

and artificial neural network (ANN) [38, 39] to name a few.

Two fundamental elements for providing consistent segmentation for multi-site data are

considered in this paper: 1) choice of ML algorithms and 2) intensity normalization

strategies. This study systematically compares and contrasts several of these elements to

explore which characteristics are most important for providing consistent segmentation

results across sites.

A few pair-wise studies have contrasted ML algorithms with each other for brain MRI

segmentation: k-NN and semi-supervised fuzzy c-means [40], SVM and AdaBoost [41],

FMRIB automated segmentation tool (FAST), statistical parametric mapping (SPM5), and

two different k-NNs [42]. These studies have focused on tissue or lesion segmentation, the

following two studies focus specifically on volumetric segmentation: SVM and ANN

showing compatible results [38], and preferred AdaBoost and Ada-SVM to manual and

FreeSurfer in [35].

We explore the performance of various intensity normalization strategies with regards to the

performance of ML-algorithms for large-scale MRI processing. A better understanding of

the ML and intensity normalization provides insights into performing robust and consistent

segmentations for MRI data sets collected across different sites and scanning hardware.
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To understand the contributions of each algorithmic component choice in providing

generalizable robust segmentation results, we have contrasted eight ML algorithms and 11

normalization strategies. We found that the choice of both ML algorithm and normalization

can vastly affect the accuracy and generalizability of volumetric segmentation results. This

paper aims to provide a better understanding of the ML algorithm characteristics and

normalization choices that affect the overall segmentation quality, and may guide future

designs. Additionally, we conducted a multicenter reliability study to determine an estimated

sample size needed to detect 5% to 10% volume changes from data collected in multicenter

study setting. This empirical and theoretical comparison of eight ML algorithms and 11

normalization strategies results in a robust segmentation framework offering reliable

quantitative measurements from large-scale multicenter data. Finally, we apply the best

performing combination of choices from the testing framework to a 32 site 3000 scan

session MR data set.

2. Material and Method

We aim to investigate the performance of several ML algorithms and normalization

approaches for brain MRI subcortical segmentation. First we describe the experimental data

sets to be used and then describe the segmentation framework used for comparisons. Brief

overviews of ML algorithms and normalization strategies used in this comparative study are

presented.

2.1. Data

Three groups of experimental data are utilized in this report: (1) a complete large-scale

multicenter data set, (2) a representative sub-sample of the large-scale multicenter data, and

(3) a traveling human phantom (THP) data set where the same individuals were scanned at

eight different centers. For all three in-vivo data sets, the framework generates feature

vectors as described in [38, 39], where each feature vector F being given as:

(1)

where ρs, ϕs, and θs constitute the symmetrical spherical coordinate information, Gi,img is a

uniform neighborhood sampling of image intensity along the gradient-descent direction of a

deformed prior at the given image location i as described in [38, 39] for img ∈ {ℐT1, ℐT2,

ℐSG} where SG is the sum of gradient magnitude images, which are T1- and T2-weighted

MRI scans. The target segmentations were six subcortical structures (caudate, putamen,

globus, accumben, thalamus, hippocampus) for both left and right hemispheres of the brain.

1. Large-Scale Multicenter MRI Data. Two large MRI data sets (n = 3010) from

PREDICT-HD1 and TRACK-HD2 were obtained. Both studies are multicenter

longitudinal studies and were employed as our primary target application.

1PREDICT-HD Study official site: https://www.predict-hd.net/
2TRACK-HD official site: http://www.track-hd.net

Kim et al. Page 3

Magn Reson Imaging. Author manuscript; available in PMC 2015 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

https://www.predict-hd.net/
http://www.track-hd.net


2. Sub-Sample Data. From the PREDICT-HD data set, 32 subjects are randomly

chosen to construct a smaller sample to test the automated segmentation model at

the early stage of development.

3. Traveling Human Phantom Data. The THP data consists of a set of subjects

scanned repeatedly at different sites over a short time period. Eight sites

participated in this multicenter image collection and represented both Siemens and

Philips vendors with various software and hardware configurations common to

multi-site studies. Five healthy control subjects were recruited and they were

imaged at the eight sites within a 30-day period [43]. Collected data includes T1-

and T2-weighted multi-modal MR images acquired using three-dimensional (3D)

T1-weighted (MP-RAGE) and T2 (SPACE) sequences at each center. The THP

data is used to assess multicenter reliability at a later stages of development.

2.2. Overview of Segmentation Framework

The segmentation framework (Fig. 1) is an adaption from our previous work [38, 39] with

the following enhancements: A) landmark-based initial space normalization [44], B) high-

deformable registration from the Advanced Normalization Toolkit (ANTS) [45], and C)

bias-correction [46]. Each of these enhancements promotes more robust subsequent

operations by reducing variations in initial patient placement and varying field of view

settings, inter-subject morphometric differences, and different scanner intensity profiles

inherent in multi-site data collection.

In our investigation, all performance is reported based on a 10-fold cross-validation against

expert manual traces. For the screening study, cross-validation is conducted so that

individual voxels are included or excluded. For the full-scale image processing, we designed

a custom cross-validation scheme, where an entire subject’s voxel data are included/

excluded. For that reason, 32 subjects are roughly subdivided into 10 subsets and cross-

validation is conducted to estimate more accurate segmentation performance. This subject-

based cross-validation provides more meaningful performance measures by allowing direct

volumetric comparison.

The framework is implemented using the on Insight Toolkit [47] (ITK) libraries and

conforms to the coding style, testing, and software license guidelines specified by the

National Alliance for Medical Image Computing (NAMIC). The implementation is publicly

available at github via the BRAINSTools package (git@github.com:BRAINSia/

BRAINSTools.git/).

2.3. ML Algorithms

Twelve ML variations from eight algorithms3 are contrasted to construct a reliable and

efficient segmentation tool for the multicenter large-scale MR data. We describe and discuss

the eight ML algorithms used in this study in terms of theoretical and empirical advantages

and disadvantages for large-scale in-vivo MR image processing.

3There are numerous references for each method, but we we have summarized and used notation primarily from [48].
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Majority Classifier—A majority classifier simply classifies all the population instances x

∈ as the majority of the training data. If there is no obvious majority, it can be chosen

arbitrarily. A majority classifier often serves as a moderate lower bound baseline from

which other classifiers can be contrasted against.

Naïve Bayes—Naïve Bayes infers output by estimating posterior probabilities based on

Bayes’ Theorem:

(2)

Bayes’ Theorem replaces the often-difficult calculation of a ‘posterior’ to the easier

computation of two ‘priors’ and one conditional probability. The strength of Naïve Bayes in

practice is to isolate noise and irrelevant features F because such data are averaged out when

estimating conditional probabilities from the data [48]. As we see from equation (2),

however, joint probability calculation assumes statistical independence between all

predictors F.

(3)

This is often not the case as common input features (e.g., fa and fb, fi ∈ F) often contain

partially redundant information. The independent assumption is often not valid in practice

and is considered to be violated in the construction of our data because of the redundancy in

the feature set chosen to compensate for noise inherent in MRIs.

k-Nearest Neighbor (k-NN)—A k-nearest neighbor (k-NN) classifier predicts a new

object using a majority vote of its neighbors. The neighborhood size k determines the

number of neighbors participating the majority vote. If k = 1, then the prediction is simply

taken from the single closest neighbor, whereas in the case of k = n, where n is a total

number of data, the output is induced by taking votes from all data n. The distance to a

neighbor from a new object is estimated in feature space; a commonly used distance metric

is Euclidean distance [48]. Even though a small k, a fewer neighborhood, generally lowers

the training error, it could result in over-fitting of k-NN model to the training data. k-NN

usually exhibits good performance without a training phase, but is vulnerable to a bad choice

of predictors [48] without proper feature selection strategies.

Support Vector Machine (SVM)—SVM operates by treating each s ∈ as a point in a

multi-dimensional hyperspace and then computes the hyperplanes that optimally separate

the feature space into regions that are used to assign labels. The distance between

hyperplanes is called the “margin,” and the larger the margin the more generalizable the

model is. A tradeoff, however, exists between the margin and the error ea: the larger the

resulting inter-plane distance (i.e., margin), the better SVM generalizes to data outside the

training data set. However, the training error ea also increases because there is a greater

chance of data residing in between the separating hyperplanes as the margin grows larger.
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Artificial Neural Network (ANN)—ANN is a mathematical model simulating the

structural and functional aspects of the human brain [20]. For non-linear problems, a multi-

layer perceptron (MLP) can be constructed by connecting multiple artificial neurons,

perceptrons, in a layered structure. It is common practice to have one hidden layer = 1

between the input and the output layer, and thus the number of hidden nodes ℍ is only

determining factor of model complexity. It has been shown that that an ANN with one

hidden layer and with the sigmoid activation function is a universal approximator [49, 50].

There are a few design issues in ANN learning as mentioned in [48], but the most

problematic one is based on the fact that ANN is a universal approximator, that can

theoretically learn any pattern, but may not be generalizable beyond the training set [48].

Despite these concerns, our previous studies [38, 39] produced very robust results for brain

MR subcortical segmentation for single-site data.

Ensemble Methods: Three Ensemble-type methods, Bagging, AdaBoost, and Random

forest, are employed in this paper. An ensemble of classifiers is a set of classifiers whose

individual decisions are combined in some way (typically by weighted or unweighted

voting) to classify new examples [51]. It is based on the intuitive concept that opinions

gathered from multiple experts (classifiers) are better than one [52].

Bootstrap Aggregating (Bagging)—Bagging works through voting from base

classifiers of choice. Once the base classifier is chosen by an investigator, each base

classifier Ci is constructed on the subset Si ⊂  randomly resampled with replacement and

bootstrapped from  Bagging is known to be most beneficial with methods of high variance

in their estimation, such as ANN or a tree structure classifier. A general choice of base

classifier is decision stump [53], a tree structure classifier with one root that is immediately

connected to the terminal node.

Adaptive Boosting (AdaBoost)—AdaBoost [54] works very similar to Bagging but is

distinguished from it in that it builds each classifier in serial. On the serial construction of

base classifiers, apparent error ea at the current classifier Ci is used to weigh the data point

for the later classifier Ci+1. For the training data that misclassified at run i with Ci, their

importance is adaptively increased so that successive classifier Ci+1 can be improved.

Theoretically, AdaBoost is particularly sensitive if the training sample includes many

misclassified points, (e.g., imperfect manual traces), since latter classifiers become more

specialized for the misclassification example.

Random Forest—Random forest combines decisions from multiple tree structure

classifiers. One of the appealing properties of random forest is its generalizability. The

upper bound for a generalization error of random forests converges when the number of

trees is sufficiently large [48]:

(4)

where ρ̄ is average correlation among the trees and t is a quantity that measures the strength

of the tree classifiers. As the trees become more correlated or the strength of the ensemble
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decreases, the generalization error bound tends to increase [48]. The random forest model is

generally configured with a maximum depth of tree  a number of trees  and a number of

features for split 

2.4. Intensity Normalization

For the rigorous evaluation and modeling of a segmentation framework, 11 normalization

strategies are compared with segmentation data from six subcortical structures. Stable Atlas-

based Mapped Prior (STAMP)-driven robust statistics are developed for robust intensity

normalization. STAMP aims to maximize information consistency across scans that

originate from different sites and hardware configurations while enhancing image contrast

for better separation of neuroanatomy. We describe our idea of normalization with regard to

STAMP-driven robust statistics (Sec. 2.4.1) and review several robust statistics and

normalization methods investigated in this study (Sec. 2.4.2).

2.4.1. STAMP-driven Robust Statistics—STAMP-driven robust statistics are region-

specific statistics that are employed to enhance structural details of an MR image ℐ for a

focused region ℛ ⊂ ℐ. For each label l ∈  the focused region is identified by the subject-

specific prior pl that is located (‘stamped’) for a subject scan by deforming the template

spatial prior with a high-deformable registration  into subject space pl( (x)). The method

takes into account all the locally computed, STAMP-driven, statistics according to the

spatially bounded region ℛl

(5)

In general, normalization techniques in MRI processing utilize statistics computed globally

to deal with intrascan intensity variations. This global normalization method, however, is

often less sensitive to specific regions of interest. In this study, we hypothesized that

normalization methods with STAMP-driven statistics would enhance the robustness of the

segmentation framework in multi-site longitudinal data processing where large intensity

variations are expected for each subcortical structure region.

2.4.2. Normalization with STAMP-driven Robust Statistics—Seven normalizations

with parameter variations are investigated and evaluated in terms of the segmentation

accuracy of intraclass correlation (ICCs) to manual segmentations. For each normalization

function , the STAMP-driven robust statistics aim to provide accurate data description in

the presence of gross error. In statistics, robustness can be quantified by the breakdown

point [55] describing the largest fraction of arbitrary gross errors tolerated before the statistic

‘breaks down’ and becomes completely unreliable. Detailed discussions of robust statistics

of data are well documented in [56, 55, 57]. We have evaluated 11 normalization variations

involving six different transform functions and two independent parameters where

applicable. The normalization functions with parameter set that we tested are summarized in

Table 1.
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3. Results

First, the ML selection experimental results are reported in two sections: 1) two sets of

comparative studies of ML algorithms in Section 3.1 and 2) a STAMP-based normalization

comparative study in Section 3.2. The relative superiority of the random forest algorithm

compared to the competing ML algorithms are shown using two comparative studies. Next,

the benefits of the STAMP-driven normalization approach are presented in Section 3.3.

Finally, the best performing ML and normalization techniques were incorporated into a final

product, BRAINSCut, and evaluated in terms of both reliability and validity. The multicenter

reliability result is presented in Section 3.4, while the sample-size estimation and the validity

investigation of the application on a large-scale multicenter data are summarized in Section

3.5.

3.1. Screening Study with WEKA

We contrast 12 variations of eight unique ML algorithms on the  down-sampled from

the data described in Section 2.1. We use the a publicly available Waikato Environment for

Knowledge Analysis (WEKA) [58] ML software package, for a consistent and efficient

exploration of the 12 ML approaches. The quality of the 12 ML algorithm variations is

thoroughly compared using five metrics: Sensitivity (Recall), Specificity, Precision, F-

Measure, and area under the curve (AUC).

The screening study demonstrated that four methods – Bagging, k-NN, ANN, and random

forest (Table 2) were the top performers with respect to the specified metrics. Results from

caudate segmentation4 are presented in Table 2. Initial WEKA testing used default

parameters, then we extended the parameter experiments for k-NN, ANN, Bagging, and

random forest.5 Note that three of the four best performing methods belong to the Ensemble

type classifier.

Exploration continued by focusing on two of the top performing methods, ANN and the

random forest, in terms of full-scale data comparison within the segmentation framework.

ANN and random forest were chosen for several reasons. First, both ANN and random

forest displayed excellent performance compared to other competitor algorithms for a wide

range of parameter variations (Table 2). Second, ANN has already successfully been applied

to clinical subcortical volumetric studies [39, 15, 26, 29, 59]. Third, the excellent

generalizability [60] of the random forest algorithm is very attractive for addressing the

inherent challenges of multicenter large-scale data processing.

Despite their similar performance in the initial screening study, we did not investigate

bagging and k-NN. k-NN is excluded primarily because of its known susceptibility to noise,

or data variation, that we felt would limit its generalizability to multicenter data. Bagging

was discarded due to its conceptual similarities to random forest, and that random forest is a

specialized version of bagging that we felt was emerging as a preferred technique in the field

[61].

4For brevity only the results for the caudate are presented here. Results for other structures are available as supplemental materials.
5Each of the extended experiments choose parameters based on either theoretical or previous [39] empirical studies.
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3.2. Full-scale ANN and Random Forest Comparative Study with OpenCV

A subject-based cross-validation is conducted for the full-scale sample data from Section

2.1. The choice of a single hidden layer ANN explored is based on previous work [39] with

the number of hidden nodes tested for ℍ = [20, 60]. For the random forest algorithm, we

fixed the number of features per tree  and tested for three different number

of trees = [10, 25, 100]. The number of trees for full testing of random forest is decided

using an exhaustive parameter space investigation.6

We present here four regions of interest (ROIs) in left hemisphere, five performance metrics

comparing the automated results to the manual segmentations in Table 2. The performance

metrics include two intraclass correlations (ICC), relative overlap (RO), dice similarity

coefficient (DSC, or DI for dice index), Hausdorff distance (HD),

where | · | denotes volume of the region for automated (A) and manual (M) segmentation.

Definitions for intraclass correlation of agreement (ICC(A)) and consistency (ICC(C))

follows ICC(2, 1) and ICC(3, 1) as described in [62]. In addition to those five metrics, an

asymmetry index between left and right hemispheres is also reported to highlight

performance consistency between the hemispheres.

We focused on the ICC metrics because they are more sensitive to segmentation accuracy

differences between the various ML algorithm configurations tested than other metrics (RO,

DSC, and HD). The two ICC values showed excellent subcortical segmentation accuracy

with the random forest algorithm with tree depths of 25 or greater.

3.3. Normalization Selection for STAMP-based Approach

All 11 intensity normalization schemes tested substantially increased the subcortical

segmentation accuracy of BRAINSCut in terms of ICCs (Fig. 3). Even though trm(α) and

l(m,M) seem to have under-performed compared to others (01~09) from Fig. 3), note that

all f(·)s showed statistically significant improvement in segmentation accuracy. The

application to the in-vivo multicenter data, however, revealed that improper choice of the

STAMP-driven normalization approach may result in failure as shown in Figure 3.

3.4. Multicenter Reliability Results

Multicenter reliability is assessed through the THP results for six subcortical structures. The

volume difference across eight sites was formally tested by the analysis of variance

(ANOVA) as shown in Table 4. We tested if measured means across subjects are different

among eight sites:

H0 : Volume means of five subjects are same across eight different sites.

6Please see supplemental material for details on the search space explored.
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To employ ANOVA, we first confirmed that our data meets a required assumption of

homoscedasticity, and then tested the measure differences across the sites. Our statistical test

demonstrate that the BRAINSCut tool does not have significant measurement differences

across the eight sites for measuring the subcortical volumes (Table 4).

Sample size is also determined based on the mean volume and standard deviation of

subjects across sites reported in Table Amp.B2 in the last column. This measurement is

important for designing efficient clinical and research trials. The required sample sizes to

detect 5% and 10% mean volume difference between two groups are shown in Figure 5. We

varied the range of power from 0.5 to 1.0 on each computation. The two-sample t-test

formula is used to calculate required sample sizes along the power levels assuming balanced

but unpaired with equal variance design.7 To detect 5% and 10% mean volume difference

with a power level of 0.8, the appropriate respective sample sizes would be 120 and 30 for

nucleus accumben.

3.5. Large-scale Multicenter MRI Application Results

We also evaluated the ability of BRAINSCut to process a wide range of data by applying two

large-scale multicenter data, PREDICT-HD (32 sites) and TRACK-HD (4 sites), to derive

six subcortical structures. The software’s robustness and segmentation quality were

quantified with a success ratio through manual visual inspection. The proportion of scans

that completed without error was very high for both the PREDICT-HD and TRACK-HD

data. The quality of derived subcortical structures was visually rated according to the

provided guideline8 and the results, in terms of three-level grading, are shown in Table 3.

The segmentation quality results rated at a poor level were substantially small in number (<

6%) for evaluating 3000 scan sessions. Examples of each grading level are shown in Figure

6.

4. Discussion

This paper focused on two essential elements for achieving accurate and consistent

segmentation for multicenter MR data: the choice of ML algorithm and the choice of

intensity normalization strategy. The comparative experiments were conducted between

eight ML algorithms and 11 normalization strategies.

We found that in virtually all cases, the choice of these two elements has significant impact

on the quality of out-comes for the segmentation framework. The segmentation accuracy

and generalizability were significantly increased by employing a random forest algorithm

and the STAMP-based normalization strategies. Our study provides insight into the

mechanisms underlying ML-based segmentation frameworks, and shows that the selection

ML algorithm and the intensity normalization strategy can have profound impact on the

7A free software programming language and a software environment for statistical computing R package ‘samplesize’ is employed
for the computation. The package is available at http://www.inside-r.org/packages/cran/samplesize/docs/n.ttest.
8Derived six subcortical structures from BRAINSCut are rated by three independent experts for their accuracy. The rating is based on
three levels: 0 = poor, 1 = reasonable, and 2 = good. (0) Poor indicates that manual tracing is required to use this measurement, (1)
Reasonable indicates sufficient quality to use the measures, but would benefit from small edit, and (2) Perfect indicates that the
segmentation would not benefit from manual tracing.
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performance characteristics of the resulting measurements. The results from the

BRAINSCut framework applied to the large-scale multicenter MR data set are encouraging

for using a ML-based segmentation tool as a cost- and time-efficient means to investigate

volumetric changes in both neurodegenerative and healthy subjects. The reduction in

operator time (6–10 hours for segmentation, vs 5–10 minutes for review and cleanup) makes

the integration of computerized segmentation into a large-scale clinical data analysis very

attractive. The result of this paper suggests that the automated segmentation framework,

based on machine-learning techniques, operates robustly on large-scale multicenter MR

data. Moreover, our study provides the straightforward comparative analysis framework for

future studies to assess the performance characteristics of alternative approaches.

Our results are encouraging and should be explored with other available segmentation tools

in the field, such as a label-fusion/propagation-based segmentation methods emerging

approach in recent years [63, 64, 65, 66, 67, 68, 69, 70, 71, 72]. An extensive study of the

available and promising techniques will guide us in further segmentation improvement.

Future work will focus on the possibility of ML-based segmentation of the entire brain [73,

63]. The whole brain segmentation can benefit from accuracy by explicitly penalizing the

possibility of mismatch between structures of interest and background tissues.

We have shown that our framework can be successfully applied to a wide range of brain

MRI data to examine changes in subcortical volumes. In addition, this analytical approach

could eventually lead to the identification of the complex mechanism of the ML-based

segmentation framework for large amount of multicenter data processing. The the software

implementation, including the trained model, is publicly available at github via the

BRAINSTools package (https://github.com/BRAINSia/BRAINSTools).

5. Conclusion

This paper describes a segmentation framework, BRAINSCut, to delineate the brain

subcortical structures consistently and effectively from large-scale multicenter MR data sets.

Carefully designed comparative experiments reveal the relative benefits and failures of

various ML-based segmentation framework choices. The excellent robustness and

confirmed validity of BRAINSCut are achieved by employing 1) random forest, 2) a

STAMP-based normalization, and 3) a series of validation studies that occurred repeatedly

together with the software development to validate its robustness and reliability. Our study

showed that judicious choice of ML and normalization methods can significantly enhance a

ML-based segmentation framework in terms of accuracy and generalizability.
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Appendix

Amp.A. Normalization Functions

Amp.B. Multicenter Reliability Assessment through Traveling Human Phantom Data

To assess multicenter reliability, the automated segmentation tool is applied on eight

independent subcortical structure segmentations of five subjects taken from eight sites.

Data: We have utilized traveling human phantom (THP) data for validation of our proposed

tool. THP data consists of five subject scanned at eight sites repeatedly over a month period.

Note that THP data was originally planned and collected to evaluate diffusion tensor

imaging (DTI) process as reported in [43]. Eight sites participated in this multicenter image

collection consists of two MR vendors of distinguished imaging histories: Siemens and

Philips. The sites involved in this study had either a Siemens 3T TIM Trio scanner (gradient

strength =45mT/m, slew rate = 200 T/m/sec) or Philips 3T Achieva scanner (gradient

strength = 80mT/m, slew rate =200T/m/sec). Five healthy control subjects were recruited

into this multicenter imaging study after informed consent was obtained in accordance with

the Institutional Review Board at each of the imaging sites. All five subjects were imaged at

the eight sites within a 30-day period. Collected data includes T1- and T2-weighted multi-

modal MR images, acquired using using three-dimensional (3D) T1-weighted (MP-RAGE)

and T2 (SPACE) sequences at each center.

Each MRI anatomical volume was processed with the standard BAW procedure 2.2. After

visual inspection stage based on our standard protocol, seven scan sessions are removed

from further analysis due to the low quality of T1 images (Marked as (X) in Table Amp.B1).

The common reason of low score was a insufficient coverage of whole brain region as

shown in Figure Amp.B3, which, in turn, results in failure of spatial normalization of BAW

process.
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Figure 1. Segmentation Framework Overview
Followed by the preprocessing steps: 1. initial space normalization [44], 2. bias field

correction [46], and 3. BRAINSCut segmentation [38, 39], which effectively processes MR

input in steps 3-1~3-4. This paper aims to determine robust ML and STAMP-based

normalization techniques (gray boxes) for robust multicenter scalable data processing.
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Figure 2.
Five correspondence measures between automated and manual delineations for thalamus in

left hemisphere with asymmetry index between left and right structures in the far right side.

The five measures include relative overlap (RO), dice index (DSC), Hausdorff distance

(HD), and ICC of agreement (ICC(A)) and consistency (ICC(C)). The two left measures

(light blue) in each graph are ANN trials with ℍ = 20 (ANN20) and ℍ = 60 (ANN60), and

the right most three measures (light red) are random forest trial with = 10 (RF10), = 20

(RF25), and = 100 (RF100). The dashed red line at 0.75 in both ICC plots represents a

bottom line suggested by Shrout et al. [62], where two independent traces, manual and

automated, can be regarded as identical. The solid blue line with a star (⋆) mark shows the

result of our previous study [39], which was highly optimized for single-sited study. It is

hard to differentiate performance by RO, DSC, or HD (three measures from the left); but

ICC measures generally suggest that random forest is superior. While ANN displayed over-

fitting behavior as ℍ increases, the random forest model nicely converges as increases.

Consistent asymmetry index for both structures could also be highlighted in that the result of

right-side structure segmentation corresponds well to the left, which is shown here.
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Figure 3.
ICC(A) (solid circle) and ICC(C) (empty circle) is plotted for 11 normalization strategies as

well as raw data without normalization (None). Higher ICC means better correspondence of

BRAINSCut to manual traces, and thus the greater segmentation accuracy. All six structures

are tested and plotted with different colors. The red line is a ICC’s lower bound suggested

by Shrout [62]. Experiments are ranked by its average performance over six structures from

the top to bottom. One should note that all 11 f(·)s improved segmentation accuracy of

BRAINSCut with statistical significance.
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Figure 4.
This figure shows two results of caudate nucleus segmentation (left) with corresponding

STAMP-driven caudate nucleus region statistics (right). Two segmentation results were

produced using linear (min/max) l(m,M) and linear (IQR) l(IQR) normalization for

outlined blue and filled blue, respectively. Comparing filled and outline segmentations of

caudate nucleus shows that segmentation is considerably improved choosing an adequate

STAMP-based normalization technique. Underestimated segmentation (filled blue) is due to

the instability (wide blue box in the box plot) of STAMP-driven statistics of q25.
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Figure 5.
The estimated required sample size to detect 5% (left) and 10% (right) volume changes for

the corresponding subcortical structures: 1) Nucleus accumben (accumben), 2) Caudate, 3)

Globus Pallidum (globus), 4) Hippocampus, 5) Putamen, and 6) Thalamus. Solid line and

dashed line represents structures located in left and right hemisphere, respectively.
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Figure 6.
Subcortical segmentation examples from BRAINSCut. From top to bottom, images of each

row corresponds to be rated as ‘poor’, ‘reasonable’, and ‘good’ via the visual inspection. As

the figure shows, all the segmentations even at poor quality (< 10%) can be utilized for the

further analysis with manual editing.
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Figure Amp.A1.
Contrasting shape of two sigmoidal shape normalization functions: 1) sigmoid (upper) and

2) double sigmoid (bottom). Double sigmoid function can deal with skewed data more

effectively by taking account of two ranges from median, denoted as r1 and r2 in the graph,

instead of one range r for entire data.
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Figure Amp.A2.
Contrasting segmentation failure (filled blue) and success (outlined blue) according to the

choice of STAMP-based normalization for left caudate nucleus (a) and right putamen (b).

Two normalization methods are utilized on this example: 1) linear (min/max) l(m,M) and

2) IQR-based normalization l(IQR). When linear (min/max) normalization is employed in

the segmentation framework, the segmentation algorithm failed for the caudate nucleus but

succeeded for the putamen. On the other hand, the segmentation framework with the IQR-

based normalization showed an excellent segmentation accuracy for the putamen, but

underestimated the caudate nucleus. From these cases, we clearly see that different
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normalization method have a substantial effect on the segmentation results visually and

quantitatively. This visually unpleasant segmentation results did not observed in our 32

training data set, even with 10-fold cross validation study. This scan has randomly been tried

and identified as a failure by visual inspection process.
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Figure Amp.B3.
Traveling Human Phantom Low Quality Scored MR Image Example: A Scan have an

insufficient head region coverage to the posterior of brain. This insufficiency leads to the

failure at the pre-processing stage while taking the scan into common AC-PC aligned space.
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Table 1

Seven STAMP-driven normalization functions  : ℝ → ℝ given by (x) = x′ for robust normalization based

on STAMP-driven statistics. α = 0.1 and α = 0.05 are used where applicable.

Transform f Notation f(·)  : ℝ → ℝ, (x) = x′, where ⋯

Linear Min/Max l(m,M) x ′ = m ′ +
x − m ′
M − m

(M ′ − m ′ )
m =minimum and M =maximum.

Linear Z-Score l(z) x ′ =
x − x̅

s
x̅ =

1
n
Σx

Linear IQR l(IQR)
x ′ =

x − q1/2
IQR

qj = jth quantile and IQR = q3/4 − q1/4

Sigmoid α sg(α) x ′ =
1

1 + exp( − 8 ·
x − q1/2

r
)

,
r = (qα − q(1−α))/2

Double Sigmoid α sg2(α) x ′ =
1

1 + exp( − 8 ·
x − q1/2

r
)

,
r = {

r1 = (q1/2 − qα), ifx < q1/2

r2 = (q(1−α) − q1/2), otherwise

Trimming α trm(α)
x ′ =

x − x̅t(α)
st(α)

,
x ̄t(α) and st(α) are trimmed mean and standard
deviation at α level.

Winsorizing α wz(α)
x ′ =

x − x̅w(α)
sw(α)

,
xw̄(α) and sw(α) are winsorized mean and
standard deviation at α level.
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Table 4

Statistical test showed no significant measurement differences between sites for six subcortical regions by

using BRAINSCut. Statistical test results for the following hypothesis test: ‘H0: Six subcortical volume means

are all the same between eight centers’. To test the hypothesis with ANOVA, we first tested homoscedasticity,

a homogeneity of variance between groups, for left and right (s = l, r) ROIs with Fligner-Killeen test as their

p-values are given Prvar,s. All the tests were not significant, meaning that variances can be regarded as

homogeneity. Next, we tested the H0 with ANOVA there were no significant differences at the significant

level of α = 0.1 in subcortical measures between sites as shown in p-values Prvar,s > α in all cases.

ROI Prvar,l Prvar,r Prsite,l Prsite,r

accumben 0.83 0.12 0.32 0.15

caudate 0.82 0.8 0.88 0.73

globus 0.41 0.46 0.7 0.5

thalamus 0.89 0.63 0.3 0.67

putamen 0.93 0.92 0.99 0.67

hippocampus 0.83 0.8 0.99 1
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