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Individuals use both passive and active defensive responses to environmental threats. Much is known about the neural circuits of passive
defensive responses (e.g., freezing), but less is known about the substrates of active defensive responses (e.g., avoidance). We developed
an active avoidance task in which rats learn to avoid a tone-signaled footshock by stepping onto a nearby platform. An advantage of this
task is that freezing, which can interfere with avoidance, is reduced, thereby facilitating comparison of the effects of manipulations on
avoidance versus freezing. After 10 d of avoidance training, rats were infused with muscimol to pharmacologically inactivate the prelim-
bic cortex (PL), infralimbic cortex (IL), ventral striatum (VS), or basolateral amygdala (BLA). Inactivating PL, VS, or BLA all impaired
avoidance expression, but these areas differed with respect to freezing. Inactivating BLA decreased freezing consistent with loss of the tone–
shock association, whereas inactivation of VS increased freezing consistent with loss of avoidance memory. Inactivation of PL had no effect on
freezing. Inactivation of IL did not impair avoidance expression but did impair avoidance extinction. Our findings suggest that active avoidance
is mediated by prefrontal–striatal circuits, which may be overactive in individuals suffering from trauma-related disorders.
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Introduction
To ensure survival, individuals must express both passive and
active defensive responses to environmental threats (Darwin,
1872; LeDoux, 2012). Passive responses such as freezing are re-
flexive (Blanchard and Blanchard, 1969), whereas active re-
sponses involve deciding to execute a specific action to avoid a
threat (Mowrer and Lamoreaux, 1946). The neural circuits un-
derlying freezing have been studied extensively in rodents using
auditory fear conditioning. In this type of conditioning, tone and
shock inputs converge and the association is stored in the baso-
lateral nucleus of the amygdala (BLA; Fanselow and LeDoux,
1999; LeDoux, 2000; Blair et al., 2001; Maren and Quirk, 2004;
Pelletier et al., 2005). BLA drives conditioned freezing through its
projections to the central nucleus of the amygdala (LeDoux et al.,
1988; Muller et al., 1997). Expression of amygdala-dependent
fear memories is regulated by prelimbic (PL) and infralimbic (IL)
prefrontal cortices, which increase and decrease freezing, respec-
tively, through projections to the amygdala (Vidal-Gonzalez et

al., 2006; Sotres-Bayon and Quirk, 2010; Amir et al., 2011; Cho et
al., 2013).

Much less is known about neural circuits mediating active
avoidance. As with fear responses, avoidance is excessive in
individuals suffering from trauma-related disorders such as
post-traumatic stress disorder (PTSD; American Psychiatric As-
sociation, 2013), emphasizing the need for understanding the
substrates of avoidance. Active avoidance has been most studied
using shuttle avoidance tasks, in which rats alternate between ad-
jacent compartments to prevent the occurrence of a tone-signaled
shock (Lubar, 1964; Theios and Dunaway, 1964; Wahlsten and
Sharp, 1969; Vazdarjanova et al., 2001; Choi et al., 2010; Moscarello
and LeDoux, 2013). Because shocks occur in both compartments,
there is no “safe” place in the shuttle task: rats must enter a compart-
ment in which they were previously shocked (Lubar, 1964). This
positional conflict generates freezing that can oppose shuttling
(Theios and Dunaway, 1964; Theios et al., 1966; Savonenko et al.,
1999b; Lázaro-Muñoz et al., 2010; Moscarello and LeDoux, 2013).
Recent lesion/inactivation studies have implicated the BLA (Choi et
al., 2010; Lázaro-Muñoz et al., 2010), striatum (Darvas et al., 2011),
and IL in shuttle avoidance (Moscarello and LeDoux, 2013). How-
ever, the use of this task makes it difficult to distinguish the effects of
lesions on avoidance circuits from effects on freezing circuits.

We, therefore, developed an active avoidance task in which
rats can avoid a signaled footshock by stepping onto a nearby
platform that was never associated with shock, thereby eliminat-
ing the positional conflict of shuttle avoidance. Freezing levels are
further reduced by bar pressing for sucrose pellets. We pharma-
cologically inactivated four structures [PL, IL, BLA, or ventral
striatum (VS)] and measured tone-induced avoidance as well as
tone-induced freezing and suppression of bar pressing. Our goal
was to distinguish structures mediating avoidance from those
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mediating passive fear responses by comparing the effects of in-
activation across behaviors.

Materials and Methods
Bar-press training. A total of 156 male Sprague Dawley rats (Harlan Lab-
oratories) weighing 300 –360 g were housed and handled as described
previously (Quirk et al., 2000). Rats were restricted to 18 g/d standard
laboratory rat biscuits, followed by 7 d of training to press a bar for
sucrose pellets on a variable interval schedule of reinforcement averaging
30 s (VI–30 s). Rats were trained until they reached a criterion of 10
presses per minute. All procedures were approved by the Institutional
Animal Care and Use Committee of the University of Puerto Rico School
of Medicine, in compliance with the National Institutes of Health Guide
for the Care and Use of Laboratory Animals (eighth edition).

Cannula implantation. After bar-press training, rats were anesthetized
with isofluorane inhalant gas (5%) in an induction chamber and posi-
tioned in a stereotaxic frame. Isofluorane (2–3%) was delivered through
a face mask for anesthesia maintenance. Rats were implanted bilaterally
with 26 gauge guide cannulas (Plastics One) targeting PL (AP, �3.0 mm;
ML, �0.60 mm; DV, �2.5 mm), IL (AP, 2.8 mm; ML, �0.60 mm; DV,
�4.2 mm), BLA (AP, �2.8 mm; ML, �5.0 mm; DV, �7.6 mm), or VS
(AP, �2.0 mm; ML, �2.0 mm; DV, �6.4 mm; Paxinos and Watson
1998). For IL, an angled placement (30°) was used to avoid backflow into
PL (Sierra-Mercado et al., 2011). Cannulas were fixed to the skull with
dental cement and three stainless steel screws. After surgery, a triple
antibiotic (Neosporin) was applied around the wound margin, and an
NSAID analgesic (Ketofen; 2 mg/kg) was injected intramuscularly. Stain-
less steel obturators (33 gauge) were inserted into the guide cannulas to
prevent cannula blockage until infusions were made. After surgery, ani-
mals were allowed to recover for 7 d before the experiments.

Drug infusions. Rats were infused as described previously (Sierra-
Mercado et al., 2011). The day before infusions, injectors were briefly
inserted into the cannulas without infusing, and rats were acclimated for
infusion handling. Injector tips extended 1.0 mm beyond the guide can-
nula. Muscimol (MUS; Sigma-Aldrich) was used to enhance GABAA

receptor activity, thereby inactivating target structures, and was infused
45 min before behavioral testing. MUS or saline vehicle (SAL) was in-
fused at a rate of 0.2 �l/min for PL or IL (0.11 nmol/0.2 �l per side) and
0.25 �l/min for BLA (0.11 nmol/0.5 �l per side) and VS (0.11 nmol/0.3
�l per side). Dosages of MUS were selected to match our previous study
of PL, IL, and BLA in fear conditioning (Sierra-Mercado et al., 2011), in
which these dosages did not affect locomotion. After infusion, injectors
were left in place for 1 min to allow the drug to diffuse.

Platform-mediated avoidance training. Rats were conditioned and
tested in standard operant chambers (26.7 cm long, 27.9 cm wide, 27.9
cm tall; Coulbourn Instruments) located in sound-attenuating cubicles
(MED Associates). The floor of the chambers consisted of stainless steel
bars delivering a scrambled electric footshock. Between experiments,
shock grids and floor trays were cleaned with soap and water, and cham-
ber walls were cleaned with wet paper towels. Sucrose pellets were avail-
able on a VI–30 s schedule throughout all phases of training, testing, and
extinction. Availability of reward motivated rats to leave the platform
during the intertrial interval, enabling trial-by-trial assessment of avoid-
ance. Rats were conditioned with a pure tone (30 s, 4 kHz, 75 dB) co-
terminating with a shock delivered through the floor grids (2 s, 0.4 mA).
The intertrial interval was variable, averaging 3 min. Compared with our
fear conditioning task, we used a longer shock duration (2 s vs 0.5 s) to
mobilize rats onto the platform and a slightly lower shock intensity (0.4
mA vs 0.5 mA) to prevent overconditioning. An acrylic square platform
(14.0 cm each side, 0.33 cm tall) located in the opposite corner of the
sucrose-delivering bar protected rats from the shock. The platform was
fixed to the floor and was present in all stages of training (including
bar-press training) to reduce novelty.

Rats were conditioned for 10 d to reduce tone-induced freezing and
allow spontaneous press rates to return to preconditioning levels. Each
day, rats received three sessions consisting of three tone–shock trials each
(nine tone–shock pairings per day). Rats were left in the training cham-
ber between sessions for 5 min to reinforce bar-press training and to
reduce contextual fear. Rats failing to avoid during the first two trials of

day 10 of conditioning were excluded from the experiment (5 of 156
rats). On day 11, rats were infused with either muscimol or saline and
presented with a two-tone test with the shocker off. For the avoidance
extinction experiment, rats were presented daily with 15 tones without
shocks in the same conditioning chamber with the platform present.
After two extinction training days, rats were presented with an extinction
test (two tones) the following day.

Histology. After completion of experiments, rats were transcardially
perfused with 0.9% saline followed by 10% buffered formalin. Brains
were extracted and stored in a 30% sucrose/10% formalin solution for
3 d. Coronal sections were cut (40 �m thick) on a cryostat, mounted on
slides, and stained for Nissl bodies for cannula placement histology. Be-
cause of misplacement of cannulas on one or both sides of the brain, 20 of
151 rats were excluded from this study, leaving a total of 131 rats.

Data analysis. Behavior was recorded with digital video cameras (Mi-
cro Video Products), and freezing was detected using software (Freez-
escan; Clever Systems). Trials of experimental groups (SAL and MUS)
were compared with unpaired Student’s two-tailed t tests for avoidance
expression experiments or repeated-measures ANOVA, followed by
Tukey’s post hoc comparisons (STATISTICA; StatSoft) for the avoidance
extinction experiment. The amount of time freezing to the tone was
expressed as a percentage of the tone duration. We also measured time
spent freezing 1 min before tone onset (pretone freezing). Successful
avoidance was defined as the rat having at least two paws on the platform
between seconds 28 and 30 of the tone (shock period). Avoidance was
scored from video recordings of the sessions by a trained observer. We
also measured time spent on the platform 1 min before tone onset (pr-
etone avoidance) as well as during the tone. We measured percent sup-
pression of bar pressing to the tone (Quirk et al., 2000), calculated as
follows: (pretone rate � tone rate)/(pretone rate � tone rate) � (100). A
value of 0 indicates no suppression, whereas a value of 100 indicates
complete suppression.

Results
Acquisition of platform-mediated avoidance
For conditioning of platform-mediated avoidance, rats were pre-
sented with nine tone–shock trials per day. Because the platform
was located far from the sucrose-delivering bar, mounting pre-
vented rats from bar pressing, thereby constituting a “cost” of
avoidance. We used a cohort of unimplanted rats to characterize
several behaviors across acquisition of avoidance training. After
10 d of conditioning, rats learned to step onto the platform at the

Figure 1. Expression of platform-mediated avoidance. A, Rats press a bar for sucrose
pellets (green quadrant). At tone onset, they gradually step onto the platform to avoid
shock (blue quadrant). At tone offset, they gradually return to the bar. B, The position of
the rat was defined as the quadrant in which both front paws were located and was scored
every 3 s from videos by a trained observer. Position data were scored for days 9 and 10 of
conditioning (Trials 1–3, n � 12 rats). The black bar indicates shock. In this and subse-
quent figures, error bars depict SEM.
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start of the tone, returning to the bar at the end of the tone (30 s;
Fig. 1). After the first day of conditioning, freezing and suppres-
sion increased, intertrial interval pressing decreased, but avoid-
ance was still minimal. With additional days of training,
avoidance increased, freezing decreased, and ITI pressing re-
turned to preconditioning levels (Fig. 2). This is consistent with
earlier (Mowrer and Lamoreaux, 1946; Miller, 1948; Mowrer,
1960) as well as more recent (Choi et al., 2010; Lázaro-Muñoz et
al., 2010; Martinez et al., 2013; Moscarello and LeDoux, 2013)
studies showing that acquisition of avoidance reduces freezing,
reflecting the adaptive nature of avoidance. We next used phar-
macological inactivation to determine the structures mediating
expression of platform-mediated avoidance.

Inactivation of prelimbic cortex blocks avoidance
In our auditory fear-conditioning task, in which rats also bar
press for sucrose, inactivation of PL impairs both conditioned
freezing and tone-induced suppression of bar pressing (Corcoran
and Quirk, 2007; Sierra-Mercado et al., 2011). Moreover, PL neu-
rons exhibit sustained tone responses correlating with freezing
across the 30 s tone (Burgos-Robles et al., 2009; Sotres-Bayon et
al., 2012). Inactivation of IL in fear conditioning does not block
expression of conditioned freezing but impairs its extinction
(Laurent and Westbrook, 2009b; Sierra-Mercado et al., 2011).
Given that PL and IL are capable of modulating tone-triggered
freezing (Sotres-Bayon and Quirk, 2010), we reasoned that these
structures might also modulate tone-triggered avoidance. We,
therefore, inactivated either PL or IL after 10 d of conditioning
(on day 11), using the same dose of muscimol that we used pre-
viously (Sierra-Mercado et al., 2011). There was little contextual
fear across all experiments (SAL and MUS groups), as evidenced
by low levels of pretone freezing (all group averages �13.4%) and
low levels of pretone time on platform (all group averages
�13.9%).

As shown in Figure 3A, inactivation of PL reduced avoidance
(SAL, 85.7%; MUS, 26.7%; t(34) � 3.73; p � 0.001) but did not
reduce freezing (SAL, 60.0%; MUS, 68.4%; t(34) � 0.69; p � 0.49),

spontaneous bar pressing (SAL, 17.8 presses/min; MUS, 18.6
presses/min; t(34) � 0.25; p � 0.80), or suppression of bar press-
ing (SAL, 83.9%; MUS, 90.0%; t(34) � 0.62; p � 0.54). PL inacti-
vation also reduced time on platform during the tone (SAL,
65.7%; MUS, 29.6%; t(34) � 2.54; p � 0.016). This contrasts with
auditory fear conditioning, in which PL inactivation reduced
both freezing and suppression of bar pressing (Sierra-Mercado et
al., 2011). In contrast to PL, as shown in Figure 3B, inactivation of
IL had no effect on avoidance (SAL, 81.3%; MUS, 80.0%; t(26) �
0.08; p � 0.94) or time on platform during tone (SAL, 96.7%; MUS,
61.0%; t(26) � 0.70; p � 0.49). Furthermore, passive fear was in-
creased, as indicated by freezing (SAL, 27.3%; MUS, 49.5%;
t(26) � 2.30; p � 0.030), suppression of bar pressing (SAL, 88.0%;
MUS, 99.1%; t(26) � 2.15; p � 0.048), and spontaneous press
rates (SAL, 22.7 presses/min; MUS, 13.1 presses/min; t(26) � 2.68;
p � 0.017). This increase in passive fear suggests that IL reduces
freezing during avoidance as previously shown (Moscarello and
LeDoux, 2013), but is not necessary for expression of platform-
mediated avoidance.

Inactivation of VS blocks avoidance and increases passive fear
PL projects robustly to VS (Sesack et al., 1989; Gabbott et al., 2005),
an area implicated in locomotor control (Kelly and Moore, 1976)
and shuttle avoidance (Darvas et al., 2011). A recent study reported
delayed acquisition of avoidance after pretraining VS lesions (Wen-
dler et al., 2014), but no prior study examined the role of VS in the
expression of previously acquired avoidance.

We, therefore, tested whether VS was critical for platform-
mediated avoidance by inactivating the VS region receiving the
most input from PL (covering both the core and shell of accum-
bens; Sesack et al., 1989). Similar to PL, inactivation of VS im-
paired avoidance (SAL, 88.9%; MUS, 16.4%; t(19) � 3.18; p �
0.005), as shown in Figure 3C. Additionally, VS inactivation also
decreased time on platform during tone (SAL, 76.3%; MUS,
4.2%; t(19) � 8.10; p � 0.001). Inactivation of VS also increased
freezing (SAL, 37.0%; MUS, 68.3%; t(19) � 2.16; p � 0.043) but
had no effect on suppression of bar pressing (SAL, 89.9%; MUS,

Figure 2. Acquisition of platform-mediated avoidance. A, Rats were trained for 10 d, receiving nine avoidance trials per day. As rats learn to avoid, freezing to the tone gradually decreases, and
bar pressing during the intertrial interval (ITI) returns to preconditioning levels. Data shown are from unimplanted rats (n � 31). % Avoidance refers to the percentage of rats that successfully
avoided in a given trial. % Freezing refers to the percentage of 30 s tone spent freezing in each trial. B, Behavioral data are shown for the first trial of day 1 (D1), day 2 (D2), and day 10 (D10). On day
2, rats showed little avoidance, but high levels of freezing and suppression of bar pressing. By day 10, rats showed high avoidance, low freezing, and high suppression.
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90.1%; t(19) � 1.07; p � 0.30) or on spontaneous pressing (SAL,
12.6 presses/min; MUS, 10.3 presses/min; t(19) � 0.72; p � 0.48).
Thus, both VS and PL are necessary for avoidance. To address
possible effects on locomotion, we performed an open field test.
We corroborated that inactivation of VS does not alter locomo-
tion (t(12) � 0.97; p � 0.35) similar to a previous study (Atallah et
al., 2007). Additionally, to test for a possible interaction between
freezing and avoidance, we performed a regression analysis com-
paring freezing with time on platform across all four experiments
(n � 97) and found no significant correlation (r � 0.12; F(1,96) �
1.51; p � 0.22), suggesting that freezing does not compete with
avoidance in this task.

Inactivation of BLA blocks both avoidance and passive fear
Another PL target is the BLA (Chiba et al., 2001; Vertes, 2004;
Gabbott et al., 2005), which is necessary for acquisition, expres-
sion, and extinction of conditioned fear (LeDoux, 2000; Anglada-
Figueroa and Quirk, 2005; Blair et al., 2005; Davis, 2006;
Ponnusamy et al., 2007; Laurent and Westbrook, 2009a; Sotres-
Bayon et al., 2012). Lesions or inactivation of BLA impair expres-
sion of shuttle avoidance (Choi et al., 2010) as well as “escape
from fear” (Amorapanth et al., 2000). In agreement with these
findings, we found that inactivation of BLA virtually eliminated
expression of platform-mediated avoidance (SAL, 80.0; MUS,
18.8%; t(17) � 3.29; p � 0.0045; Fig. 3D) and reduced time on
platform during the tone (SAL, 76.3; MUS, 20.7%; t(17) � 3.58;
p � 0.002). However, in contrast to PL, IL, and VS, inactivation of
BLA significantly reduced both freezing (SAL, 66.3%; MUS,

23.0%; t(17) � 3.30; p � 0.004) and bar-
press suppression (SAL, 96.9%; MUS,
52.2%; t(17) � 2.19; p � 0.043; Fig. 3D)
but had no effect on spontaneous pressing
(SAL, 16.3 presses/min; MUS, 20.0 press-
es/min; t(17) � 0.66; p � 0.51). The reduc-
tion in passive fear to the tone (freezing
and suppression) is consistent with the
role of BLA in storage of the tone–shock
association (Quirk et al., 1995; LeDoux,
2000; Blair et al., 2001).

Inactivation of IL impairs extinction
of avoidance
Previous studies have linked IL to fear ex-
tinction (Mueller et al., 2010; Peters et al.,
2010; Santini and Porter, 2010; Thomp-
son et al., 2010; Fontanez-Nuin et al.,
2011; Holmes et al., 2012), proposing that
IL inhibits freezing via feed-forward inhi-
bition of the amygdala (Quirk et al., 2003;
Amano et al., 2010; Amir et al., 2011). In
particular, inactivating IL immediately
before fear extinction training leaves ex-
tinction intact but impairs retrieval of
extinction the next day (Laurent and
Westbrook, 2009b; Sierra-Mercado et
al., 2011; Holmes et al., 2012). We,
therefore, hypothesized that IL may also
be important for extinction of avoidance.

Inactivation of IL had no effect on
within-session extinction of avoidance on
day 11 (Fig. 4). ANOVA on this day re-
vealed no effect of group (F(1,28) � 0.84;
p � 0.37) or interaction of group with trial

block (F(6,150) � 0.85; p � 0.53). The following day (day 12),
retrieval of avoidance extinction was impaired (group: F(1,28) � 7.97,
p � 0.009; trial block: F(6,150) � 30.40, p � 0.001; interaction:
F(6,150) � 7.39, p � 0.001). Post hoc comparisons confirmed that
MUS-infused rats avoided more than controls in trial blocks 1
and 2 (p � 0.05), and showed elevated suppression in block 1
(p � 0.030). Surprisingly, MUS-infused rats continued to show
impaired retrieval of avoidance extinction 1 d later (day 13; SAL,
25.0%; MUS, 86.4%; t(28) � 3.90; p � 0.001) despite receiving
extinction drug free the previous day. Inactivation of IL also re-
duced spontaneous bar pressing on day 11 (SAL, 22.7 presses/
min; MUS, 13.1 presses/min; t(28) � 2.68; p � 0.017) and
increased tone-induced suppression on day 12 (SAL, 29.4%;
MUS, 74.9%; t(28) � 4.22; p � 0.001). Freezing was elevated only
during the first block of extinction on day 11 (SAL, 23.2%; MUS,
56.7%; t(28) � 4.07; p � 0.001), but not during subsequent drug-
free days. Thus, inactivating IL during the first day of extinction
prevented rats from subsequently learning extinction.

Discussion
We developed a signaled active avoidance task that facilitates
comparison of passive fear responses (freezing and suppression)
with avoidance responses. Pharmacological inactivation of PL,
VS, or BLA all blocked avoidance. Unlike inactivation of PL and
VS, inactivation of BLA decreased passive fear responses. Inacti-
vation of IL left avoidance intact but impaired subsequent extinc-
tion of avoidance.

Figure 3. Effects of inactivation of PL, IL, VS, or BLA on avoidance and passive fear responses. A, Inactivation of PL with
muscimol impaired avoidance but did not alter freezing or suppression (MUS, n � 17; SAL, n � 18). B, Inactivation of IL did not
impair avoidance but increased freezing and suppression (MUS, n �13; SAL, n �16). C, Inactivation of VS impaired avoidance and
increased freezing (MUS, n � 8; SAL, n � 12). D, Inactivation of BLA impaired avoidance and decreased both freezing and
suppression, consistent with loss of the tone–shock association (MUS, n � 8; SAL, n � 10). Data are presented for the first trial of
Day 11. *p � 0.05; **p � 0.01, Student’s t test (unpaired, two-tailed). The inset graphs indicate the time (in seconds) spent on the
platform during the tone. Atlas figures indicate placements of injector tips.
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Ventral striatum is necessary for platform-mediated avoidance
VS represents a limbic–motor interface (Mogenson et al., 1980)
and is critical for instrumental conditioning (Cardinal et al.,
2002); however, there are few studies directly assessing its role in
active avoidance. Acquisition of shuttle avoidance was impaired
by pretraining lesions of the VS (Wendler et al., 2014). Addition-
ally, restoring dopamine in the striatum of dopamine-depleted
mice rescued shuttle avoidance learning (Darvas et al., 2011).
Rather than acquisition of avoidance, we focused on expression
of previously learned avoidance. Inactivation of VS blocked the
expression of platform-mediated avoidance but also increased
passive fear to the tone, indicating that rats maintained the tone–
shock association in the absence of avoidance memory.

BLA signals the tone–shock association in
platform-mediated avoidance
In auditory fear conditioning, there is extensive evidence that the
BLA stores the tone–shock association (Fanselow and LeDoux,
1999; LeDoux, 2000; Blair et al., 2001; Maren and Quirk, 2004;
Pelletier et al., 2005; Davis, 2006). This is consistent with our
observation that both avoidance and fear responses to the tone
were lost after BLA inactivation. Thus, rats would not be expected
to express either passive fear or avoidance to tones no longer
associated with shocks. This is consistent with reduced expres-
sion of tone-signaled shuttle avoidance after lesions of the basal
or lateral nuclei of the amygdala (Choi et al., 2010), as well as the
lack of effect of amygdala lesions on expression of Sidman shuttle
avoidance, in which there is no tone (Lázaro-Muñoz et al., 2010).

Prelimbic cortex is necessary for platform-mediated avoidance
We found that inactivation of PL impaired avoidance expression
but had no effect on freezing or suppression. Previous studies
have not examined the effect of post-training lesions or inactiva-
tion of PL on the expression of active avoidance. Pretraining
lesions of PL were shown to have no effect on shuttle avoidance
(Moscarello and LeDoux, 2013), suggesting the possibility of
post-lesion recovery of function. The lack of effect on freezing
contrasts with our previous fear-conditioning studies, in which
PL inactivation reduced both freezing and suppression of bar
pressing to a conditioned tone (Sierra-Mercado et al., 2011).
Platform-mediated avoidance requires many more days of train-

ing than fear conditioning (10 d vs 1 d), which may recruit addi-
tional regions into the freezing circuit (Poulos et al., 2010;
Zelikowsky et al., 2013). Unit recording data will be needed to
further understand the role of PL in avoidance.

PL projects densely to the VS (Sesack et al., 1989; Vertes, 2004)
and could drive avoidance through these projections (Fig. 5).
Alternatively, PL could modulate VS indirectly through BLA
(Sesack et al., 1989; Vertes, 2004), which then projects to the VS
(Kita and Kitai, 1990; Stuber et al., 2011), or through other struc-
tures. Projections from BLA to VS have been previously proposed
for active avoidance (Killcross et al., 1997; LeDoux and Gorman,
2001), but additional techniques (e.g., optogenetics) are needed
to identify the specific circuits of active avoidance.

Infralimbic cortex is necessary for avoidance extinction but
not expression
In contrast to PL, inactivation of IL did not impair platform-
mediated avoidance, even though it increased freezing and sup-
pression. The increase in passive fear replicates a recent finding
from a shuttle avoidance task, in which IL inactivation increased
freezing; however, the expression of avoidance was also impaired
in that study (Moscarello and LeDoux, 2013). Because freezing
more readily competes with avoidance in the shuttle task
(Savonenko et al., 1999a; Choi et al., 2010; Martinez et al., 2013),
IL may mediate inhibition of freezing but may not mediate ex-
pression of avoidance. In platform-mediated avoidance, freezing
is somewhat reduced because of a lower level of shock (0.4 vs 0.7
mA) as well as the motivation to press for sucrose. Under these
conditions, IL is not necessary for avoidance even though it in-
hibits freezing.

Importantly, we found that IL is necessary for forming a mem-
ory of extinction of avoidance, consistent with its role in extinc-
tion of fear conditioning (Burgos-Robles et al., 2007; Laurent and
Westbrook, 2009b; Amir et al., 2011; Fontanez-Nuin et al., 2011;
Sierra-Mercado et al., 2011). Previous studies have linked extinc-
tion of active avoidance with the amygdala (Jiao et al., 2011),
medial septum (Pang et al., 2011), and anterior thalamus (Ga-
briel et al., 1983), but not to IL. This adds to a growing number of
tasks for which IL is essential for extinction, including appetitive
conditioning (Rhodes and Killcross, 2004; Rhodes and Killcross,
2007; Peters and De Vries, 2013), conditioned taste aversion
(Mickley et al., 2005), and cocaine seeking (Peters et al., 2008). IL
could mediate extinction of avoidance via projections to VS and/or
to the amygdala. Interestingly, inactivation of IL impeded subse-
quent extinction learning, even under drug-free conditions. A simi-
lar finding has been reported for extinction of step-down inhibitory

Figure 4. Inactivation of infralimbic cortex impairs extinction of platform-mediated avoid-
ance. Inactivating IL with muscimol had no effect on within-session extinction of avoidance
(D11), but impaired retrieval of extinction on day 12 (D12) and day 13 (D13; both drug free).
Increased avoidance on these days was not accompanied by an increase in freezing. Data are
shown in blocks of two trials (MUS, n � 11; SAL, n � 16). Arrows indicates infusion. *p � 0.05,
Tukey’s post hoc test.

Figure 5. Possible circuits of platform-mediated avoidance. Left, Table summarizing inacti-
vation data. Right, Circuit that could mediate avoidance and freezing to a conditioned tone. PL
receives conditioned tone response from the BLA and could drive avoidance through direct or
indirect projections to VS.
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avoidance (Cammarota et al., 2005), suggesting the existence of a
critical time window for the learning of avoidance extinction.

Avoidance in anxiety disorders
Excessive avoidance is now a required symptom for the diagnosis
of PTSD (American Psychiatric Association, 2013). Emerging
findings from human functional imaging studies implicate the
PL–VS circuit in avoidance: (1) the dorsal anterior cingulate cor-
tex (dACC), which is a functional homolog of PL (Milad et al.,
2007), has been linked to avoidance of snakes (Nili et al., 2010)
and shocks (Straube et al., 2009); and (2) VS has also been linked
to avoidance of shocks (Delgado et al., 2009). PTSD patients
show excessive activity in dACC as well as decreased activity in
the ventromedial prefrontal cortex (vmPFC; a functional ho-
molog of IL; Milad et al., 2009; Linnman et al., 2012). Excessive
avoidance in PTSD, therefore, may reflect excessive activity in
cingulate–striatal circuits mediating avoidance expression
and/or deficient activity in vmPFC circuits mediating avoidance
extinction.

Notes
Supplemental material for this article is available at http://media.md.rcm.upr.
edu/Mediasite/Play/07ed951d40254bc5889a25ac71e945761d. It is a video ex-
ample of platform-mediated avoidance. This material has not been peer
reviewed.
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