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Chromatin-regulating proteins represent a large class of novel targets for cancer therapy. In the context of
radiotherapy, acetylation and deacetylation of histones by histone acetyltransferases (HATs) and histone dea-
cetylases (HDACs) play important roles in the repair of DNA double-strand breaks generated by ionizing
irradiation, and are therefore attractive targets for radiosensitization. Small-molecule inhibitors of HATs (gar-
cinol, anacardic acid and curcumin) and HDACs (vorinostat, sodium butyrate and valproic acid) have been
shown to sensitize cancer cells to ionizing irradiation in preclinical models, and some of these molecules are
being tested in clinical trials, either alone or in combination with radiotherapy. Meanwhile, recent large-scale
genome analyses have identified frequent mutations in genes encoding chromatin-regulating proteins, espe-
cially in those encoding subunits of the SWI/SNF chromatin-remodeling complex, in various human cancers.
These observations have driven researchers toward development of targeted therapies against cancers carrying
these mutations. DOT1L inhibition in MLL-rearranged leukemia, EZH2 inhibition in EZH2-mutant or MLL-
rearranged hematologic malignancies and SNF5-deficient tumors, BRD4 inhibition in various hematologic
malignancies, and BRM inhibition in BRG1-deficient tumors have demonstrated promising anti-tumor effects
in preclinical models, and these strategies are currently awaiting clinical application. Overall, the data collected
so far suggest that targeting chromatin-regulating proteins is a promising strategy for tomorrow’s cancer
therapy, including radiotherapy and molecularly targeted chemotherapy.
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INTRODUCTION

Nucleosomes, which consist of chromosomal DNA and
histone proteins, form a highly condensed structure known
as chromatin. Recently, proteins involved in the regulation of
nucleosome structure (i.e. chromatin-regulating proteins)
have emerged as novel targets for cancer therapy. Recent
studies have revealed that several chromatin-regulating pro-
teins play pivotal roles in the repair of DNA double-strand
breaks (DSBs) generated by ionizing irradiation (IR), and
that inhibition of their activities leads to radiosensitization
of cancer cells in preclinical models. Furthermore, recent

large-scale genome analyses have identified frequent mutations
in genes encoding chromatin-regulating proteins, especially
those encoding subunits of the SWI/SNF chromatin-
remodeling complex, in various human cancers. These find-
ings have driven development of personalized treatment
strategies based on the gene-mutation status of individual
tumors. To date, several attractive treatment strategies target-
ing chromatin-regulating proteins have been proposed, and
some of them are being tested in the clinic. In this article, we
discuss the emerging strategies for targeting chromatin-
regulating proteins in cancer therapy, including radiotherapy
and molecularly targeted chemotherapy.
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CHROMATIN STRUCTURE AND ITS
ALTERATION BY CHROMATIN-REGULATING

PROTEINS

Chromosomal DNA and histone proteins form a highly con-
densed structure known as chromatin (Fig. 1a). The basic
unit of chromatin is the nucleosome, which consists of DNA
wound around an octamer of histones H2A, H2B, H3 and
H4. In human cells, many activities essential for cell sur-
vival, such as DNA transcription, synthesis and repair, are
mediated by dynamic changes in nucleosome structure that
facilitate access of DNA-binding proteins to double-stranded
DNA [1]. Proteins that regulate the change in nucleosome
structure are called chromatin-regulating proteins. These pro-
teins can be classified into two groups that take part in
distinct mechanisms: histone modification (Fig. 1b) and
chromatin remodeling (Fig. 1c). Some histone modifiers
attach substrates, such as phosphate, poly-ADP-ribosyl,
acetyl, methyl, SUMOyl and ubiquityl groups to histone tails
by covalent interaction, whereas other histone modifiers
detach these groups from previously modified histones.
Chromatin remodelers usually function as complexes that
change nucleosome structure (e.g. by forming a DNA-loop
or sliding a nucleosome) in an ATP-dependent manner. At
present, several chromatin-remodeling complexes have been
identified, including SWI/SNF, ISWI, INO80, SWR1,
NURD/Mi2/CHD and NURF [1].

CHROMATIN-REGULATING PROTEINS AS
TARGETS FOR RADIOSENSITIZATION

IR kills cancer cells by generating DNA damage. Among the
types of DNA damage, DNA DSBs are considered to be
most lethal. Repair of IR-generated DSBs requires alteration
of chromatin structure at DSB sites by chromatin-regulating
proteins [2]. Therefore, chromatin-regulating proteins in-
volved in DSB repair are potential targets for radiosensitiza-
tion. Recent findings regarding radiosensitization of cancer
cells by targeting chromatin-regulating proteins are summar-
ized below.

Histone acetyltransferases
Histone acetyltransferases (HATs) are a class of histone
modifiers that attach acetyl units to specific lysine residues of
nucleosomal histones. To date, several distinct families of
HATs have been identified: the homologs CBP and p300,
PCAF, GCN5, and the MYST family (which includes
TIP60) [3]. Recent studies have demonstrated that histone
acetylation by HATs at DSB sites facilitates alteration of chro-
matin structure to an ‘open’ state, allowing repair proteins to
access the DNA ends [2]. We and others have revealed that
CBP, p300 and TIP60 promote non-homologous end joining
(NHEJ) and homologous recombination (HR), two major
pathways for DSB repair, through histone acetylation at DSB

Fig. 1. Chromatin structure and its alteration by two distinct mechanisms: histone modification and chromatin
remodeling. (a) Structure of chromatin and nucleosome. (b) Examples of histone modification. Ac = acetylation,
PAR = poly-ADP-ribosylation, P = phosphorylation, SUMO= SUMOylation, Ub = ubiquitination. (c) Chromatin
remodeling: DNA-loop formation (left) and nucleosome sliding (right).
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sites in human cells [4–7]. Furthermore, we showed that
acetylation of histone H3 and H4 by CBP and p300 at DSB
sites is essential for the recruitment of KU70 and KU80, two
key proteins involved in NHEJ [4]. Murr et al. demonstrated
that acetylation of histone H4 by TIP60 is required for the ac-
cumulation of proteins involved in HR at DSB sites [5]. Bird
et al. reported that ESA1, a HAT responsible for acetylation of
histone H4 in budding yeast, is required for NHEJ and
replication-coupled repair [6]. CBP and p300 also function in
HR by regulating transcriptional activity of the BRCA1 and
RAD51 genes [7]. These findings predict that inhibition of
such HATs leads to radiosensitization.
Several known compounds derived from natural ingredi-

ents exhibit HAT-inhibitory activity (Table 1). Curcumin, a
major curcuminoid found in the spice turmeric, is a specific
inhibitor of CBP and p300 [8]. Anacardic acid, derived from
the shell of Anacardium occidentale (cashew nut), inhibits
p300, PCAF and TIP60 [9–11], whereas garcinol, found in
the rind of Garcinia indica (mangosteen), inhibits p300 and
PCAF [12]. Recently, curcumin, anacardic acid and garcinol
were shown to suppress NHEJ in an assay system in which
NHEJ activity against DSBs on chromosomal DNA gener-
ated by I-SceI restriction enzyme can be evaluated in living
human cancer cells by detecting expression of green fluores-
cent protein [4, 13]. Curcumin also suppresses HR in two
ways: (i) by reducing expression of the BRCA1 gene, which
regulates HR, by impairing histone acetylation at the BRCA1
promoter; and (ii) by inhibiting ataxia telangiectasia and
Rad3-related protein (ATR) kinase, resulting in impaired ac-
tivation of ATR-CHK1 signaling, which is necessary for HR
and the DNA damage checkpoint pathway [14].
As predicted, curcumin, anacardic acid and garcinol sensi-

tize cancer cells to IR (Table 2) [4, 9, 13, 15–19]. In our
study, the radiosensitizing effect of garcinol was strongest,
comparable with the effects of well-known radiosensitizers
that target DNA repair proteins, e.g. olaparib, a poly (ADP-
ribose) polymerase (PARP) inhibitor, and NU7026, a DNA-
dependent protein kinase catalytic subunit (DNA-PKcs)
inhibitor (Table 3) [13, 20, 21]. However, because curcumin,
anacardic acid and garcinol may also affect many other pro-
teins or pathways associated with cancer cell survival, it is
not clear that the observed radiosensitizing effects of these
compounds are entirely due to their HAT-inhibitory activity
(Table 1) [10, 22–26].

Histone deacetylases
Histone deacetylases (HDACs) are another class of histone
modifiers that remove acetyl units from lysine residues on
histones. To date, 18 HDACs have been identified and classi-
fied into four groups (HDAC I, II, III and IV) according to
their similarity, with reference to their analogues in yeast
[27]. Several known compounds exhibit HDAC-inhibitory
activity, and these compounds can be classified according to
their structures and their inhibitory specificities relative to
the HDAC classes. Hydroxamic acids, including suberoyla-
nilide hydroxamic acid (SAHA or vorinostat) and panobino-
stat (LB589), inhibit class I and II HDACs. Short-chain fatty
acids, such as sodium butyrate (NaB) and valproic acid
(VPA), are active against class I and IIa HDACs. Cyclic pep-
tides such as romidepsin mainly act against class I HDACs,
but can also inhibit class II HDACs at higher concentrations.
Benzamides, including entinostat and mocetinostat, inhibit
class I HDACs.
Recent studies have implicated direct and indirect involve-

ment of HDACs in both NHEJ and HR. Miller et al. showed
that HDAC1 and HDAC2 are recruited to DNA DSB sites,
where they reduce H3K56 acetylation and regulate recruit-
ment of KU70 and Artemis, which are involved in NHEJ
[28]. Meanwhile, several studies have shown that HDAC
inhibitors suppress expression of DNA repair-related

Table 1. HAT inhibitors that suppress NHEJ in human cancer cells

Compound MW Target HATs Other target proteins/pathways References

Curcumin 368.38 CBP, p300 NF-kB pathway, AP-1, PI3K/Akt pathway [22–24]

Anacardic acid 342.47 p300, PCAF, TIP60 NF-kB pathway, LOX-1, Xanthine oxidase [10]

Garcinol 602.80 p300, PCAF NF-kB pathway, Src, MAPK/ERK, PI3K/Akt pathways [25, 26]

HAT = histone acetyltransferase, NHEJ = non-homologous end joining, MW=molecular weight.

Table 2. Radiosensitization by HAT inhibitors

Compound Cells/mice Cell lines References

Curcumin Cells, mice SCC1 [15]

Cells H1299 [4]

Cells HCT116 [16]

Cells PC-3 [17]

Cells PC-3 [18]

Anacardic
acid

Cells H1299 [4]

Cells SQ20B, SCC35,
HeLa

[9]

Cells U2OS [19]

Garcinol Cells A549, HeLa [13]

HAT = histone acetyltransferase.
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proteins such as KU70, KU80, KU86, DNA-PKcs and
RAD51 (Table 4) [29–33]. These observations predict that
HDAC inhibitors have a radiosensitizing effect. Accordingly,
several recent studies support this idea (Table 4). Vorinostat
radiosensitizes prostate cancer, glioma, multiple myeloma,
osteosarcoma and rhabdomyosarcoma cell lines [29–31];
NaB radiosensitizes melanoma cells [32]; and VPA radiosen-
sitizes colon cancer cells [33].
Even though HATs and HDACs seemingly act in an op-

posing manner, both HAT and HDAC inhibitors exert radio-
sensitizing effects, at least in vitro. A clue toward resolving
this apparent paradox has emerged from recent studies sug-
gesting that HATs and HDACs act coordinately before DSB
repair [4, 5, 28]. Further investigation will elucidate the
detailed mechanisms of the coordination of HATs and
HDACs in DSB repair following IR, and this knowledge will
facilitate development of methods for radiosensitization.

Chromatin remodelers
Several studies have demonstrated the involvement of chro-
matin remodelers in DSB repair after IR, and the radiosensi-
tizing effects of inhibiting the activities of these proteins.
Lan et al. demonstrated in osteosarcoma cells that ACF1 and
SNF2H, subunits of the CHRAC chromatin-remodeling
complex, engage in an interaction with KU70, which is
required for repair of DSBs generated by IR, and that

knockdown of ACF1 or SHF2H results in radiosensitization
[34]. Meanwhile, we showed that ablation of BRM, a catalytic
subunit of the SWI/SNF chromatin-remodeling complex,
leads to suppression of recruitment of KU70 to DSB sites
after laser micro-irradiation in lung cancer cells [4], suggesting
BRM as a target for radiosensitizing agents. Furthermore,
our preliminary results indicate that heterozygous knockout
of BRG1, another catalytic subunit of the SWI/SNF complex,
leads to radiosensitization in lymphoma cells (unpublished
data). These data indicate that not only histone modifiers, but
also chromatin remodelers, are candidate targets for radio-
sensitization.

Toward clinical applications
Historically, extensive research has been carried out to
develop radiosensitizers. Even though a large number of
known compounds exert radiosensitizing effects in preclinic-
al models, most of them have been judged inadequate for
clinical application due to their toxicity in normal human
tissues [35]. Therefore, it is essential to develop radiosensiti-
zers with satisfactory therapeutic windows, i.e. sufficient
anti-tumor effects coupled with limited toxicity to normal
tissues. It is considered that cancer cells have defects in the
DNA damage response (DDR), including DNA repair and
cell-cycle arrest, that makes them more vulnerable to IR than
normal cells [36, 37]. In this regard, targeting chromatin-
regulating proteins involved in DDR after IR may be a rea-
sonable strategy for radiosensitization of cancer cells, which
may result in a large therapeutic window. Several results
from basic research support this speculation: neither garcinol
nor NaB exert radiosensitizing effects on fibroblasts at
concentrations that sensitize cancer cells to IR [13, 32].
However, because the mechanisms underlying their relatively
stronger radiosensitizing effect in cancer cells have not been
elucidated, further studies are warranted.
Several clinical studies have administered HAT- or

HDAC-inhibitory compounds to humans. The HAT inhibi-
tors include curcumin, used either alone or combined with
radiotherapy and chemotherapy to treat cancer patients, and
garcinol, used for weight-loss therapy [38]. In both of those
cases, the side effects of these compounds were tolerable, at
least when the drugs were used alone. Regarding HDAC

Table 3. Radiosensitizing effect of HAT, PARP and
DNA-PKcs inhibitors

Compound DER

Curcumin 1.23

Anacardic acid 1.51

Garcinol 1.61

Olaparib (PARP inhibitor) 1.67

NU7026 (DNA-PKcs inhibitor) 1.77

HAT = histone acetyltransferase, PARP = poly (ADP-ribose)
polymerase, DNA-PKcs = DNA-dependent protein kinase
catalytic subunit, DER = dose enhancement ratio. DER was
evaluated using the Celltiter-Glo assay [13].

Table 4. Radiosensitization by HDAC inhibitors in vitro

Compound Cell lines Target DNA repair proteins References

Vorinostat DU145, U373 DNA-PKcs, RAD51 [29]

RPMI8226, U266B1, KMS-1, MM1.s RAD51 [30]

KHOS-242OS, SAOS2, A-204, RD, hFOB1.19 KU80, RAD51 [31]

NaB A375, MeWo KU70, KU80, DNA-PKcs [32]

VPA LS174T, HCT116 [33]

DNA-PKcs = DNA-dependent protein kinase catalytic subunit.
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inhibitors, several retrospective studies have shown that ad-
ministration of VPA, alone or with chemotherapeutic agents,
to patients with thyroid or brain tumors caused no increase in
adverse effects [39, 40]. Moreover, in the first published pro-
spective clinical trial using an HDAC inhibitor and radiation,
combined therapy with vorinostat (100–400 mg daily) and
palliative X-ray irradiation (a total of 30 Gy in 10 fractions)
was well tolerated in 16 gastrointestinal carcinoma patients
[41]. Future clinical trials should explore the optimal way to
improve the efficacy of radiation therapy by targeting HATs
and HDACs.

MUTATIONS IN CHROMATIN-REGULATING
GENES IN HUMAN CANCERS

Recent large-scale genome analyses have identified frequent
mutations in genes encoding chromatin-regulating proteins
in human cancers. Thus, aberrations in histone modification
and chromatin remodeling play important roles in the genesis
and development of malignant tumors. In this review, we
summarize known mutations in chromatin-regulating genes
(Table 5). We focus in particular on mutations in genes
encoding the SWI/SNF chromatin-remodeling complex
because the mutation rates in these genes are extremely high
in human cancers.

SWI/SNF chromatin-remodeling complex
The SWI/SNF complex is a chromatin remodeler that utilizes
the energy of ATP to disrupt contact between nucleosomal
DNA and histones, leading to sliding, ejection and/or inser-
tion of histone proteins [42, 43]. Although the mechanisms
by which the SWI/SNF complex elicits biological effects are
still not fully understood, previous studies have shown that
the SWI/SNF complex regulates the expression of numerous
genes. For example, Medina et al. showed that exogenous
expression of BRG1, a catalytic subunit of the SWI/SNF
complex, resulted in altered gene expression of ~1% of the
entire genome in a BRG1-null cancer cell line [44]. Recent
studies identified several transcriptional target genes of the
SWI/SNF complex, including RB, MYC and RHOA, all of
which are involved in carcinogenesis and tumor progression.
The SWI/SNF complex directly interacts with RB, a tumor
suppressor, to repress RB target genes including E2F and
CCND, leading to cell-cycle arrest at the G1/S transition
[45]. The expression of E2F target genes in mouse embryon-
ic fibroblasts is upregulated following inactivation of Snf5
[46]. These data suggest that the SWI/SNF complex nega-
tively regulates cell-cycle progression. The SWI/SNF
complex also interacts with MYC, an oncogenic transcrip-
tion factor that regulates gene expression during cell-cycle
progression, apoptosis and differentiation. The SWI/SNF
complex mediates the transcription activity of MYC through
a direct interaction between SNF5 and MYC [47].
Meanwhile, RHOA regulates cell migration by stimulating

stress-fiber formation and contractility. Knockdown of SNF5
increases RHOA enzyme activity and stimulates cell migra-
tion, suggesting that the SWI/SNF complex suppresses the
migration and metastasis of cancer cells [48].
There are two distinct SWI/SNF complexes, BAF and

PBAF, both of which consist of various subunits categorized
as catalytic ATPase subunits, core subunits, or variant subu-
nits (Fig. 2) [49–51]. The catalytic ATPase subunits include
BRG1 and BRM, whose presence in a given SWI/SNF
complex is mutually exclusive. Core subunits include SNF5,
BAF155 and BAF170. Variant subunits include ARID1A
and ARID1B, mutually exclusive components of the BAF
complex, and BAF180, BAF200 and BRD7, which are spe-
cific to the PBAF complex. In mammals, different types of
the SWI/SNF complex with distinct subunit compositions
contribute to the regulation of gene expression in a tissue-
specific manner [52].
Accumulating evidence suggests that the SWI/SNF genes

are frequently mutated and inactivated in various human
cancers. Shain et al. analyzed whole-exome sequencing data
from 24 published studies encompassing 669 cases with 18
neoplastic diagnoses; their results demonstrated that muta-
tions in the SWI/SNF genes are widespread across various
cancers, with an overall frequency approaching that of TP53
mutations (19% in the SWI/SNF complex, 26% in TP53)
[53]. Mutations in the SWI/SNF genes were significantly
skewed toward deleterious forms (e.g. frameshift, nonsense
or splice-site mutations), consistent with the inactivated
nature of mutated SWI/SNF subunits. Together, these data
suggest that the SWI/SNF complex is a bona fide tumor sup-
pressor and may have a significant impact on the properties
of cancer cells, as in the case of TP53. Below, mutations
identified in the SWI/SNF genes are summarized with
respect to each subunit.

BRG1/SMARCA4
BRG1 encodes a catalytic ATPase subunit of the SWI/SNF
complex. Sequencing of the BRG1 gene from various cancer
cell lines has demonstrated that BRG1 is mutated in a variety
of human cancers, including >30% of non-small-cell lung
carcinoma (NSCLC) [54]. Notably, most of the mutations
identified are homozygous mutations and deletions, indicat-
ing that BRG1 plays a role as a tumor suppressor. A recent
large-scale genome analysis confirmed that BRG1 mutations
play a prominent role in aberrant chromatin remodeling in
lung adenocarcinoma [55].BRG1 mutations were also identi-
fied recently in Burkitt lymphoma [56], medulloblastoma
[57–59], and esophageal cancer [60]. Furthermore, loss of
BRG1 protein expression is observed in 10–50% of surgical
lung cancer specimens [61–63]. A recent report showed that
both genetic and epigenetic alterations are involved in the
loss of BRG1 expression [55].
Patients with rhabdoid tumor (RT) predisposition syn-

drome, in which RTs occur on a familial basis, harbor a
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Table 5. Mutation in chromatin-modifying genes in human cancers

Gene Function of gene product Cancer type
Frequency

(%)
References

Inactivating mutation

BRG1/SMARCA4 SWI/SNF catalytic subunit Non-small-cell lung carcinoma 35 [54]

Lung adenocarcinoma 10 [55]

Burkitt lymphoma 15 [56]

Medulloblastoma 4–13 [57–59]

Esophageal cancer 6 [60]

Lung cancer (reduced expression) 15–50 [61–63]

BRM/SMARCA2 SWI/SNF catalytic subunit Lung cancer (reduced expression) 38–75 [61–63]

Gastric cancer (reduced expression) 42 [66]

Prostate cancer (reduced expression) [67]

SNF5/SMARCB1/
BAF47/INI1

SWI/SNF core regulatory
subunit

Rhabdoid tumor 98 [68, 69]

Meningioma [70, 71]

Shwannoma [70, 72]

ARID1A/BAF250A SWI/SNF variant
regulatory subunit

Ovarian clear cell carcinoma 46–57 [75, 76]

Endometriosis-associated ovarian carcinoma 30 [75, 76]

Renal clear cell carcinoma 34 [77]

Burkitt lymphoma 15 [56]

Hepatocellular carcinoma 13 [78]

Transitional cell carcinoma of the bladder 13 [79]

Gastric cancer 10 [80]

Esophageal cancer 8 [60]

Serous endometrial cancer of uterine 6 [81]

Neuroblastoma 6 [82]

Pancreatic cancer 4 [83]

Malignant melanoma 3 [84]

Medulloblastoma [85]

Lung adenocarcinoma [55]

ARID1B/BAF250B SWI/SNF variant
regulatory subunit

Hepatocellular carcinoma 11 [78]

Neuroblastoma 7 [82]

Breast cancer 4 [86]

Malignant melanoma 2 [84]

ARID2/BAF200 SWI/SNF variant
regulatory subunit

Hepatocellular carcinoma 6–11 [78, 87]

Malignant melanoma 7 [84]

Esophageal cancer 5 [60]

Continued
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heterozygous germline BRG1 mutation that truncates the
encoded protein, and their RTs are homozygous for this
mutation [64]. Mutations in SNF5, which are present in the
germline of most cases of RT predisposition syndrome, were
not detected in the patients analyzed in that study. These
results suggest that deficiencies of the SWI/SNF complex
may play a role in the predisposition of RT, and support the
idea that BRG1 is a tumor suppressor.

BRM/SMARCA2
BRM encodes another catalytic ATPase subunit of the SWI/
SNF complex. In contrast to BRG1, somatic mutations in
BRM are rarely identified in human cancers. However, in a
mouse model in which lung tumors are induced by exposure
to carbamate ethyl, inactivation of one or both Brm alleles

led to a significant increase in the number of tumors, indicat-
ing that Brm plays a role as a tumor suppressor [65]. In fact,
BRM protein expression is absent in human lung, gastric and
prostate cancers [61–63, 66, 67]. Furthermore, low BRM
expression in NSCLC correlates with a worse prognosis
[62, 63]. These findings suggest that epigenetic silencing of
BRMmay be critical for the development of a subset of cancers.

SNF5/SMARCB1/BAF47/INI1
The SNF5 gene encodes a core regulatory subunit of the
SWI/SNF complex and is inactivated via biallelic genetic
alterations, including deletions and nonsense, missense and
frameshift mutations, in nearly all RTs [68]. Thus, SNF5 is
considered a major driver gene of RTs. Consistent with this,
a significant proportion of RT predisposition syndrome

Table 5. Continued

Gene Function of gene product Cancer type
Frequency

(%)
References

PBRM1/BAF180 SWI/SNF variant
regulatory subunit

Renal clear cell carcinoma 41 [77]

Esophageal cancer 3 [60]

Breast cancer [88]

CPB/CREBBP H3H4 acetyltransferase B-cell lymphoma 40 [89]

Acute lymphoblastic leukemia 18 [90]

Small-cell lung carcinoma 17 [91]

Transitional cell carcinoma of the bladder 13 [79]

Lung cancer 10 [92]

p300 H3H4 acetyltransferase Transitional cell carcinoma of the bladder 13 [79]

Small-cell lung carcinoma 10 [91]

Colorectal, breast and pancreatic cancer [93]

MLL H3K4 methyltransferase Acute leukemia 5–10 [94]

Small-cell lung carcinoma 10 [91]

Transitional cell carcinoma of the bladder 7 [79]

SETD2 H3K36 methyltransferase Lung adenocarcinoma 5 [55]

UTX/KDM6A H3K27 demethylase Transitional cell carcinoma of the bladder 21 [79]

Various types of cancer 3 [99]

JARID1C/KDM5C H3K4 demethylase Renal carcinoma 3 [98]

Activating mutation

EZH2 H3K27 methyltransferase Diffuse large B-cell lymphoma (germinal
center type)

22 [95]

Diffuse large B-cell lymphoma, other
lymphomas

15 [96]

Follicular lymphoma 7 [95]

Myelodysplastic syndrome 12 [97]

Esophageal cancer 3 [60]
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patients harbor heterozygous SNF5 deleterious germline
mutations, and RTs arise via loss of the remaining wild-type
SNF5 allele [68, 69]. Germline SNF5 mutations also result in
predisposition to meningioma and schwannoma [70–72].
Genetically engineered Snf5-heterozygous mice develop sar-

comas that closely resemble human RTs [73]. Furthermore,
biallelic inactivation of Snf5 results in the development of
sarcoma and lymphoma with a median onset of only 11 weeks,
which is a remarkably rapid rate considering that the median
onset of tumors induced by biallelic inactivation of p53 and Rb
is 16 weeks in the same experimental model. These data strong-
ly suggest that SNF5 acts as a tumor suppressor. However,
somatic mutation of SNF5 is rarely detected in common
cancers [49, 51, 74], indicating that, in contrast to mutations in
other SWI/SNF genes detected in wide range of cancers,
the SNF5 mutation is specific to a subset of non-epithelial
malignancies.

ARID1A/BAF250A and ARID1B/BAF250B
Recent genome-wide sequencing studies identified ARID1A,
which encodes a subunit of the SWI/SNF complex, as one of
the most frequently mutated genes in a variety of cancers
(Table 5). ARID1A is mutated in 46–57% of ovarian clear
cell carcinomas, one of the most lethal subtypes of ovarian
cancer, and in 30% of endometriosis-associated ovarian car-
cinomas [75, 76].ARID1A mutations have also been detected
in a variety of cancers including renal clear cell carcinoma
[77], Burkitt lymphoma [56], hepatocellular carcinoma [78],
transient cell carcinoma of the bladder [79], gastric adenocar-
cinoma [80], esophageal cancer [60], uterine serous endo-
metrial cancer [81], neuroblastoma [82], pancreatic cancer
[83], malignant melanoma [84], and medulloblastoma [85].
ARID1A is also mutated in a subset of lung adenocarcin-
omas, although at a lower frequency than BRG1 [55]. Most

ARID1A mutations detected in cancer cells to date are inacti-
vating mutations, indicating that ARID1A has a tumor-
suppressive function.
ARID1B is mutated in a small subset of patients with hepa-

tocellular carcinoma [78], neuroblastoma [82], breast cancer
[86], and malignant melanoma [84].

ARID2/BAF200
Genome sequencing studies conducted by Li et al. and
Fujimoto et al. found that ARID2, which encodes a SWI/
SNF regulatory subunit, was mutated in ~10% of surgical
specimens of hepatocellular carcinoma [78, 87]. Large-scale
exome sequencing in malignant melanoma also revealed that
7.4% of the cases harbored mutations in ARID2, most of
which were inactivating mutations. In that study, ARID2
mutation was identified as one of the driver mutations result-
ing from C-to-T transitions caused by exposure to UV light;
this is in contrast to other driver mutations in malignant
melanoma, such as those in BRAF and NRAS, that are only
weakly associated with UV-induced damage [84]. ARID2 is
also mutated in a small subset of esophageal cancers [60].

PBRM1/BAF180
Most recently, mutations in the PBRM1 gene, which encodes
a regulatory subunit protein, were identified in 41% of renal
clear cell carcinomas [77], making PBRM1 the second most
frequently mutated gene in renal cell carcinoma after VHL.
PBRM1 mutations have also been detected in esophageal
cancer patients [60] and in several breast cancer cell lines [88].

Mutations in histone modifier genes
Recently, mutations in several histone modifier genes have
been identified. The gene encoding CBP HAT is mutated in
B-cell lymphoma, acute lymphoblastic leukemia, and

Fig. 2. Composition of the SWI/SNF chromatin remodeling complex.
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carcinomas of the lung and bladder [79, 89–92]. Meanwhile,
the gene encoding p300 HAT is mutated in bladder carcin-
oma, small-cell lung carcinoma, colorectal cancer, breast
cancer and pancreas cancer [79, 91, 93], although at a lower
frequency than CBP.
Histone methytransferases (HMTs) are a class of enzymes

that catalyze methylation of histones at lysine and arginine
residues. In acute leukemia, MLL, an HMT specific for
lysine 4 of histone H3 (H3K4), is rearranged to generate
fusion proteins with diverse partners. In most cases, the
rearrangement results in the loss of the H3K4 HMT enzymatic
activity [94]. MLL is also mutated in small-cell lung carcin-
oma and bladder carcinoma [79, 91]. SETD2, another HMT
specific for H3K36, is mutated in a small fraction of lung
adenocarcinomas [55].On the other hand, activating mutations
in the gene encoding EZH2, an HMT directed against H3K27
that is the catalytic subunit of the polycomb repressive
complex 2 (PRC2), have been identified in diffuse large B-cell
lymphoma (DLBCL), follicular lymphoma, myelodysplastic
syndrome, and esophageal cancer [60, 95–97].
In contrast to HMTs, histone demethylases (HDMs) are

enzymes that remove methyl units from histones. Some
tumors contain alterations in HDM-encoding genes. The
gene encoding JARID1C, a HDM specific for H3K4, is
mutated in renal carcinoma [98], and the gene encoding
UTX, a HDM specific for H3K27, is mutated in multiple
cancers [79, 99].
To date, the mechanisms by which mutations in histone

modifiers are involved in carcinogenesis and tumor growth
have not been fully elucidated. Nevertheless, in several
cases, recent research has uncovered new leads for the devel-
opment of treatment strategies targeting these mutations.
These investigations will be discussed in the next chapter.

PERSONALIZED TREATMENT STRATEGIES
THAT TARGETMUTATIONS IN

CHROMATIN-REGULATING GENES

In parallel with the elucidation of the genetic landscape of
various human cancers by genome-wide sequencing ana-
lyses, large numbers of chemotherapeutic agents targeting
gene mutations (i.e. molecularly targeted drugs) have been
developed, driving the advancement and spread of persona-
lized cancer therapy based on gene-mutation profiles.
Cancers harboring activating gene mutations can be treated
with specific inhibitors of the mutated gene products, thereby
suppressing their abnormally high activity. For example, se-
lective cell killing by the tyrosine kinase inhibitors gefitinib,
crizotinib, and vandetanib in cancer cells harboring EGFR
mutation, ALK fusion, and RET fusion, respectively, has
been demonstrated by our group and others, and these treat-
ment strategies have been applied in the clinic [100–104].
Meanwhile, for the treatment of cancers in which certain pro-
teins or pathways are inactivated by genetic and/or epigenetic

causes, strategies based on synthetic lethality have attracted a
great deal of attention [105]. Furthermore, chromatin-regulating
proteins involved in the transcriptional regulation of genes
essential for cancer cell survival can be also targeted. The
emerging strategies for personalized cancer therapy targeting
chromatin-regulating proteins are summarized below.

Drugs targeting activating mutations
in chromatin-regulating genes
MLL-rearranged leukemia is a subset of acute myeloid leu-
kemia (AML) with poor prognosis. Recently, inhibition of
DOT1L, a HMT specific for H3K79, has emerged as a prom-
ising strategy for the treatment of MLL-rearranged leukemia.
MLL regulates the transcription of various genes involved in
cellular development. The carboxyl-terminal portion of the
MLL protein contains a domain with HMT activity specific
for H3K4 [94]. Rearrangement of MLL results in the loss of
the H3K4 HMT domain and in-frame fusion of the amino-
terminal region of MLL to diverse partner proteins. In most
cases, these fusions lead to more efficient recruitment of
DOT1L to MLL target genes. The resulting hypermethyla-
tion at H3K79 by DOT1L leads to aberrant expression of a
characteristic set of genes, including HOXA9 and MEIS1,
which drive leukemogenesis. In MLL-rearranged leukemia,
DOT1L is also required for the development and mainten-
ance of leukemia cells. Daigle et al. developed a compound,
EPZ00477, which selectively inhibits DOT1L HMT [106].
They reported that EPZ00477 selectively killed MLL-
rearranged leukemia cells in culture and prolonged survival
in a mouse xenograft model. Moreover, they further identi-
fied another selective inhibitor of DOT1L HMT, EPZ-5676,
which possesses superior pharmacokinetic properties [107].
Continuous intravenous infusion of EPZ-5676 in a rat xeno-
graft model of MLL-rearranged leukemia caused complete
tumor regressions. The state of complete tumor response was
sustained beyond the period of compound infusion with no
significant toxicity. EPZ-5676 is now the subject of a clinical
trial for MLL-rearranged leukemia patients, as the first in-
hibitor of an HMT to be tested in humans.
Activating mutations of EZH2 in non-Hodgkin lymphoma

have provoked interest in this protein as a therapeutic target.
Y641 and A677 are hot spots for lymphoma-associated
EZH2 mutations [95, 96]. These mutations increase the activ-
ity of the encoded proteins, leading to elevated levels of
trimethylated H3K27, thereby promoting proliferation of
lymphoma cells [96, 108, 109]. Several groups have devel-
oped selective small-molecule inhibitors of EZH2 HMT and
demonstrated promising preclinical results. McCabe et al.
showed that the compound GSK126 decreased global methy-
lation at H3K27 and reactivated silenced PRC2 target genes
in EZH2-mutant DLBCL cell lines [110]. Furthermore, this
compound effectively inhibited the proliferation of the
EZH2-mutant DLBCL cells, and suppressed tumor growth
in a mouse xenograft model. Qi et al. developed another
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compound, El1 [111], which when administered to DLBCL
cells carrying the Y641 mutation also decreased the H3K27
methylation level genome-wide, activated PRC2 target
genes, and decreased cell proliferation. Knutson et al.
reported that the compound EPZ005687 induced apoptotic
cell death in lymphoma cells with heterozygous mutations in
Y641 or A677, with minimal effect on the proliferation of
wild-type cells [112]. On the other hand, several studies have
demonstrated that AML cells harboring MLL-AF9 fusion
require EZH2 for survival, suggesting that EZH2 inhibition
is also a candidate strategy to treat this disease [113, 114].
Most recently, Kim et al. developed a peptide called stabi-
lized α-helix of EZH2 (SAH-EZH2), which inhibits EZH2
inhibition by a different mechanism from GSK126, El1, and
EPZ005687 [115]. SAH-EZH2 selectively disrupts the
contact between EZH2 and EED, another subunit in the
PRC2 complex, whereas the other EZH2 inhibitors target
the HMT catalytic domain. As in the case of GSK126,
SAH-EZH2 decreases the H3K27 trimethylation level,
resulting in growth arrest of PRC2-dependent MLL-AF9
leukemia cells. Together, these studies provide hope for
the establishment of novel treatment strategies against
EZH2-mutant hematologic malignancies. Moreover, recent
studies have revealed the overexpression of various HMTs in
human cancers [116]. It is speculated that the resulting
histone hypermethylation patterns are associated with the
malignant features of cancer cells in a cancer-type specific
manner. Further studies of these cancer-specific patterns and
the roles of histone hypermethylation should lead to the de-
velopment of novel targeted therapies.

Synthetic lethality therapy targeting inactivation
of chromatin-regulating proteins
As discussed, cancers with gain-of-function gene mutations
can be treated by inhibition of the mutated gene products.
However, in many cases, tumor growth is also driven by
loss-of-function mutations in tumor-suppressor genes.
Previous studies have demonstrated that the restoration of the
lost function of tumor-suppressor proteins is not a simple
process [117–119]. Therefore, it is necessary to develop al-
ternative strategies to treat cancers harboring inactivating
mutations in tumor-suppressor genes. Synthetic lethality
holds great promise as a strategy for specific killing of cancer
cells possessing inactivating mutations that are not present in
normal cells [105]. Synthetic lethality is based on genetic
interactions between two mutations in which the presence of
either mutation alone has little or no effect on cell viability,
but the combination of mutations in both genes becomes
lethal. The presence of one of these mutations in cancer
cells, but not in normal cells, presents opportunities to select-
ively kill cancer cells by mimicking the effect of the second
genetic mutation with targeted therapy. The synthetic-lethal
relationship between PARP1 and BRCA1 or BRCA2, genes
involved in DNA repair, was demonstrated in preclinical

models in 2005 [120, 121] and translated to the clinic in
2009 through the application of PARP inhibitors to BRCA1/
BRCA2-deficient tumors [122]. These advances have driven
researchers to explore novel combinations of genes to iden-
tify additional synthetic-lethal relationships [123–125].
Most recently, synthetic-lethal relationships in chromatin-

regulating genes have been identified, e.g. between BRG1
and BRM [61] and between SNF5 and EZH2 [126]. BRG1
or BRM are present in a mutually exclusive manner as cata-
lytic subunits in the SWI/SNF chromatin-remodeling
complex. Previous studies of the embryos of genetically
engineered mice have indicated that BRG1 and BRM play
complementary roles in development [127]. Together, these
data suggest that BRG1 and BRM have a synthetic-lethal
relationship. Accordingly, silencing of BRM suppresses the
growth of BRG1-deficient cancer cells relative to BRG1-
proficient cancer cells (Fig. 3), by inducing senescence via
activation of p21/CDKN1A. Moreover, in a conditional
RNAi experiment using a mouse xenograft model, BRM
depletion suppressed the growth of BRG1-deficient
tumors [61]. These results offer a rationale for treating
BRG1-deficient cancers, including subsets of NSCLCs,

Fig. 3. Specific cell killing of BRG1-deficient H1299 cells, but
not BRG-proficient HeLa cells, by BRM knockdown based on
synthetic lethality. Cells were treated with BRM-siRNA (BRM
knockdown) or non-targeting siRNA (control) (Dharmacon). After
48 h, the cells were subjected to clonogenic survival assays.
Colonies fixed and stained after incubation for an additional 10 d
are shown.
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medulloblastoma, and Burkitt lymphoma, by inhibition of
the BRM ATPase. To this end, screening for small-molecule
compounds with selective BRM ATPase inhibitory activity
is currently underway.
SNF5 is a core subunit in the SWI/SNF complex.

SNF5-heterozygous mice develop sarcomas that closely re-
semble human malignant RTs in which the second allele of
SNF5 is spontaneously lost. The genesis of the sarcoma in
SNF5-heterozygous mice can be completely suppressed by
deletion of EZH2. These data suggest a synthetic-lethal rela-
tionship between SNF5 and EZH2. In line with this concept,
Alimova et al. showed that disruption of EZH2 by RNAi
and/or 3-deazaneplanocin A, an indirect and general inhibi-
tor of methyltransferases, impaired growth of SNF5-mutant
atypical teratoid RT cells [128]. Furthermore, Knutson et al.
developed EPZ-6438, a selective small-molecule inhibitor of
EZH2, and demonstrated that EPZ-6438 specifically killed
SNF5-mutant malignant RT cells both in vitro and in vivo
[126]. EPZ-6438 decreased cellular H3K27 methylation
levels and activated the PRC2 target gene CDKN2A in
SNF5-mutant malignant RT cells, but not in wild-type cells.
Because the PRC2 complex regulates gene expression in
several cancer-associated pathways such as RB, Cyclin D1,
MYC [129] and Hedgehog [130] in a manner that antago-
nizes the function of the SWI/SNF complex, EZH2 inhib-
ition by EPZ-6438 might contribute to restoration of the
balance between the PRC2 and SWI/SNF complexes,
leading to an anti-tumor effect. SNF5 is inactivated through
biallelic mutation in nearly all cases of malignant RTs and
atypical teratoid RTs [131]. Synthetic lethality therapy
using EZH2 inhibitors in such tumors is awaiting clinical
application.

Targeting BRD4, which is involved in
transcriptional regulation of cancer-related genes
BRD4 is a member of the bromodomain and extraterminal
(BET) subfamily. These proteins recognize acetylated lysine
residues on chromatin and bind to them via bromodomains,
facilitating activation of transcription along surrounding
DNA. JQ1, a small-molecule inhibitor of BRD4, competi-
tively binds to the bromodomain in BRD4, leading to dis-
placement of BRD4 from chromatin [132]. Recent studies
have revealed the promising anti-tumor effects of JQ1 in
various hematologic malignancies [133–135]. In an AML
mouse model, Zuber et al. performed a screen for epigenetic
vulnerability using short-hairpin RNAs targeting known
chromatin-regulating proteins and identified BRD4 as a key
hit [133]. Consistent with this, they showed that JQ1 inhibits
proliferation of diverse subtypes of AML cells. Merz et al.
demonstrated that cell lines derived from various hemato-
logic malignancies were highly susceptible to JQ1 [134].
Delmore et al. showed that JQ1 prolongs survival of mice
bearing multiple myeloma [135]. Furthermore, Dawson et al.
developed another BRD4 inhibitor, I-BET151, and showed

that this compound prolonged the lifespan of mice with
mixed-lineage fusion leukemia treated with I-BET151 [136].
On the other hand, JQ1 also exerts an anti-tumor effect in
nuclear protein in testis (NUT) midline carcinoma, a rare
subtype of squamous cell carcinoma with an aggressive
nature, in which t(15;19) chromosomal translocation results
in a fusion between BRD4 and NUT [137].
Previous studies have suggested that the anti-tumor effect

of BRD4 inhibition depends on suppression of MYC tran-
scription, leading to genome-wide downregulation of
MYC-dependent target genes [134, 135]. In addition to MYC,
two other well-known cancer-related genes, BCL2 and
CDK6, have recently been identified as targets of transcrip-
tional regulation by BRD4 [136]. The preclinical results are
encouraging with regard to potential clinical applications of
BRD4 inhibitors. However, because BRD4 is broadly
expressed in almost all normal human cells and regulates
gene expression throughout the genome, the off-target effects
of BRD4 inhibition in humans should be carefully investi-
gated. Most recently, the mechanism underlying selective
activation of MYC transcription by BRD4, which has been
termed a ‘super-enhancer’, was revealed in multiple
myeloma cells [138]. Further studies are needed to establish
the optimal way to treat cancer by targeting BRD4.

PERSPECTIVES

The growing incidence of cancer worldwide indicates that ra-
diation therapy will become increasingly significant in
cancer treatment [139]. Enhancing the efficacy of IR against
cancer cells is paramount if we are to improve local control
of tumors. Recent studies have elucidated the involvement of
various chromatin-regulating proteins in the DDR after
irradiation, and these proteins represent promising targets for
radiosensitization. As we discussed, several inhibitors of
HATs or HDACs exert radiosensitizing effects in preclinical
models. However, the detailed mechanisms by which these
compounds sensitize cancer cells to IR are still largely
unknown. Moreover, it remains unknown whether these
compounds can achieve clinically significant radiosensitiza-
tion in humans at a dose that causes no (or at least low) tox-
icity; this issue warrants further investigation.
Large-scale genome sequencing techniques have eluci-

dated the genetic landscape of various cancers, accelerating
the development of molecularly targeted drugs. High fre-
quencies of mutation in chromatin-regulating genes, espe-
cially in the SWI/SNF genes, highlight the pivotal roles of
chromatin-regulating proteins in cancer cells, and thus offer
rationales for targeting these mutations in cancer therapy.
DOT1L inhibition in MLL-rearranged leukemia, EZH2
inhibition in EZH2-mutant or MLL-rearranged hematologic
malignancies and SNF5-deficient tumors, BRD4 inhibition
in hematologic malignancies, and BRM inhibition in
BRG1-deficient tumors all hold great promise and are
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awaiting clinical applications. Moreover, considering the
role of chromatin-regulating proteins in the DDR [4], eluci-
dation of the association between mutation status in
chromatin-regulating genes and the clinical outcome of radi-
ation therapy and/or chemotherapy will facilitate the selec-
tion of patients who will (or will not) respond to such
therapies. Accordingly, we recently reported that single-
nucleotide polymorphisms in the BPTF gene, which encodes
a bromodomain PHD finger transcription factor contained in
the NURF chromatin-remodeling complex, affect the risk of
lung adenocarcinoma in the Japanese population [140].
Future studies will elucidate the molecular mechanisms
underlying the effect of aberrant chromatin-regulating pro-
teins on carcinogenesis and cancer progression, and will con-
tribute to the establishment of personalized treatment based
on the genetic profiles of tumors.
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