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Abstract

Dietary and endogenously modified lipids modulate inflammation by functioning as intra- and

intercellular signaling molecules. Proinflammatory lipid mediators such as the eicosanoids

compete against the signaling actions of newly discovered modified fatty acids that act to resolve

inflammation. In inflammatory bowel disease, multiple aberrancies in lipid metabolism have been

discovered, which shed further light on the pathogenesis of intestinal inflammation. Mechanisms

by which lipids modulate inflammation, abnormalities of lipid metabolism in the setting of

inflammatory bowel disease, and potential therapeutic application of lipid derivatives in this

setting are discussed.
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LIPIDS AND INFLAMMATORY BOWEL DISEASE

Lipids, once considered to be static metabolic energy reserves, have emerged as important

components of cellular signal transduction pathways. Their roles in modulating host

inflammatory responses are of clinical interest as agents of both promotion and resolution.

Dietary lipids are implicated in the pathogenesis of chronic intestinal inflammation,

including inflammatory bowel disease (IBD), and lipid-mediated signaling has been the

focus of research in mucosal immunity over the past two decades. At present, there is

rapidly expanding insight into novel lipid mediators that function to regulate inflammation.

Recent developents in understanding the pro- and antiinflammatory actions of lipid signaling

molecules are discussed herein. Lipids in chronic intestinal inflammation are addressed,

focusing on dietary lipids, the role of lipids in mucosal immunity, lipids in inflammatory
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signal transduction, alterations in lipids associated with the emergence of chronic

inflammation, and lipid-based therapies undergoing exploration in IBD.

IBD BACKGROUND, MUCOSAL IMMUNITY, THE ICROFLORA, GENETIC

RISK, AND THE NVIRONMENT

IBD is a group of chronic, immune dysregulation disorders of the gut, typically classified as

Crohn’s disease (CD) or ulcerative colitis (UC). These disorders have risen rapidly over the

second half of the 20th century, with a preponderance in Westernized nations.1–3 Although

the exact etiology of IBD is unknown, it is a multifactorial process and comprehensive

reviews of IBD pathogenesis have been recently published.1,4,5 While a genetic

predisposition does exist, environmental factors such as enteric infections, smoking, and diet

have also been implicated. The typical Western diet, which is high in fat and refined

carbohydrates and low in fiber, has been linked to many chronic illnesses, including IBD.6

The immune system of the gut must maintain a fine balance between pro- and

antiinflammatory processes. The epithelial and immune cells of the gut need to correctly

identify “normal,” or commensal, bacteria that reside in the colon from pathologic bacteria

that cause disease. In brief, epithelial and antigen-presenting cells, such as dendritic cells,

are constantly sampling the luminal contents of the intestine. Bacterial products of

pathogens bind to pattern recognition receptors (PRRs), such as Toll-like receptors (TLRs)

and nucleotide oligomerization domain (NOD) proteins, and are processed by the cell. This

in turn activates nuclear factor-κB (NF-κB), a transcription factor, which produces

inflammatory cytokines such as tumor necrosis factor (TNF)-α and interleukin (IL)-1β,

resulting in recruitment of T helper (Th)-1, Th-2, and Th-17 cells and further stimulation of

the inflammatory response to ward off infection.4 When the cells correctly identify

commensal bacteria, predominantly antiinflammatory cytokines are produced, including

IL-10 and transforming growth factor-β TGF-β), which prime T cells into T-regulatory

cells.7 This mechanism keeps inflammation in check. When commensal bacteria are

inappropriately recognized as pathogenic bacteria, also known as loss of tolerance,

proinflammatory signaling cascades are stimulated. In IBD, multiple steps along this chain

of events can be aberrant, including inappropriate binding of PRRs, dysregulation of Th cell

differentiation, and exaggerated proinflammatory cytokine signaling (TNF-α, IL-6, IL-23,

etc.).4,8 Acute inflammation can lead to local cell injury and death, release of reactive

oxygen species, and further activation of the inflammatory cascade, resulting in a vicious

cycle. As we learn more about the dysregulation of the immune response in IBD, it is

becoming increasing clear that lipids direct both the type and degree of inflammatory

responses mounted in the intestine.9

BRIEF OVERVIEW OF FATTY ACID NOMENCLATURE

Fatty acids (FAs) are hydrocarbon chains with a terminal carboxylic acid functional group.

They are generally notated by carbon length, the presence or absence of double bonds, and

the location(s) of the double bond(s). Short chain fatty acids (SCFAs) have six carbons or

less, medium chain fatty acids (MCFAs) have 6–12 carbons, long chain fatty acids (LCFAs)

have 12–20 carbons, and very long chain fatty acids (VLCFAs) have greater than 22
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carbons. Saturated fatty acids (SFAs) have no double bonds, monounsaturated fatty acids

(MUFAs) have one double bond, and polyunsaturated fatty acids (PUFAs) have more than

one double bond. The position of the double bond, counting from the terminal methyl

carbon, is denoted as the “omega” position, and is written as ω-X. For example, an omega-3

FA (ω-3) will have a double bond on the third carbon from the terminal end of the fatty acid

chain. Figure 1 provides a description of the FA commonly addressed herein.

LIPIDS AS SIGNALING MOLECULES

Proinflammatory Eicosanoids

Lipids are now recognized as key components of multiple signal transduction cascades,

including those associated with the regulation of inflammation. Fatty acids incorporated into

phospholipids of the membrane bilayer are substrates for multiple members of the

phospholipase family of hydrolytic enzymes. In general, unsaturated fatty acids are located

on the sn-2 carbon of the phospholipid glycerol backbone and are hydrolyzed by a

phospholipase A2 (PLA2) during host inflammatory responses. Arachidonic acid (AA), a 20-

carbon fatty acid containing four double bonds, is a primary target of regulated PLA2

hydrolysis, and is the precursor to a vast array of lipid signaling molecules10 (Fig. 2). PLA2-

mediated hydrolysis of AA is a tightly controlled process that involves two PLA2 isoforms:

the 85 kDa cytosolic PLA2 (cPLA2) and the calcium-independent PLA2 (iPLA2).11 These

enzymes are activated during host inflammatory responses, being primarily regulated by the

mitogen-activated protein kinase (MAP kinase) signaling cascades. Cyclooxygenases (COX)

1/2 oxidize AA, and to a lesser extent other PUFAs, to generate the prostaglandin family of

oxidized fatty acids. Lipoxygenases catalyze fatty acid hydroxylation, cytochrome P450 also

hydroxylates fatty acids, and AA can undergo auto-oxidation reactions to form the

isoprostanes. In general, these lipid species are proinflammatory, propagating their signaling

actions via receptor-mediated mechanisms and are responsible for many of the phenomena

of inflammation, including fever, increased vascular permeability, chemotaxis, edema, and

tissue damage.12,13

Antiinflammatory Mediators

The role of oxidized lipids as proinflammatory mediators is well established. However, in

the past decade several classes of lipid mediators have been discovered whose signaling

actions act to resolve rather than promote inflammation (Fig. 3). The D- and E-series of

resolvins (trihydroxy derivatives of docosahexaenoic [DHA] and eicosatetraenoic [EPA]

acids), lipoxins (trihydroxy derivatives of AA), protectins (conjugated triene derivatives of

DHA), nitroalkenes (fatty acids nitrated at a site of unsaturation), and EFOX (electrophilic

oxo-derivatives), a recently discovered class of enzymatically oxidized omega-3 fatty acids

containing an α,β-unsaturated keto moiety, represent the growing field of endogenous lipid

mediators that work either via receptor-mediated signaling pathways or by protein

posttranslational modification to downregulate inflammatory responses. These molecules are

currently the subject of intense research, as they represent an emerging generation of

investigational new drugs to address inflammatory diseases, including IBD.
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Lipids as Electrophiles

The location of an electron-withdrawing functional group (e.g., a nitro or a keto functional

group) on a carbon–carbon double bond makes the carbon-β to the electron-withdrawing

group electron-poor, enabling it to react with nucleophiles, such as the amino acids cysteine,

histidine, and lysine. This chemical reactivity is termed electrophilicity. Electrophilic lipids

have been shown to form rotein adducts through the reaction of lipid aldehydes with

nucleophilic amino acid residues to form Schiff base products.14 Alternatively, protein

adducts can be formed by Michael addition reactions between protein thiolate anions and

electrophilic carbons. The posttranslational modification of proteins by electrophiles has

been reported in several model systems, wherein exogenously added electrophilic lipids

covalently modify target proteins.15–19 Covalent, posttranslational modifications by

electrophilic fatty acids alter the structure, trafficking, and catalytic activity of proteins such

as cathepsin B,20 Keap1,17 insulin,21 and glyceraldehyde-3-phosphate dehydrogenase

(GAPDH).22,23 A key tissue defense against xenobiotics and oxidants is the regulated

expression of phase II proteins (antioxidant enzymes), which is mediated by electrophilic

interactions, particularly with Nrf2 (nuclear factor erythroid 2-related factor 2, a member of

the basic-leucine zipper NF-E2 family of transcription factors) and the electrophile-reactive,

cysteine-rich cytoplasmic suppressor protein Keap-1 (Kelch-like ECH-associating

protein).24 This widespread mechanism, conserved in both plants and animals, protects

against pathogens and metabolic or inflammatory stress.

Antiinflammatory electrophilic lipid mediators are highly reactive small molecules that react

with nucleophilic centers in biomolecules, which makes their detection in blood and tissue

as free fatty acids problematic. However, “bottom-up” proteomic approaches using mass

spectrometry have enabled the identification of electrophilic protein adducts. Electrophiles

appear to have selective and specific protein targets and only adduct a portion of the

seemingly available sites, which is likely due to the chemical environment of the protein site

surrounding the nucleophilic center and the strength and chemical properties of the

electrophile.25

DIETARY INFLUENCES ON INFLAMMATION

In the United States, oils from corn and soybeans are found in most fast and processed

foods, and in the feed given to domesticated animals used for meat and dairy products.

These oils are high in linoleic acid (LA), an 18-carbon, omega-6 (ω-6) PUFA. LA is readily

converted to AA, which, as described above, can be metabolized into the proinflammatory

prostaglandins (PG), thromboxanes (TX), and leukotrienes (LT). The Western diet is also

typically low in the omega-3 (ω-3) fatty acids (e.g., DHA, and EPA, respectively), which are

thought to promote antiinflammatory responses. This growing proportion of potentially

inflammatory dietary lipids is thought to increase the risk of developing IBD.6

It is intuitive that higher intake of LA from the diet will increase the levels of AA present in

membrane phospholipids, and therefore augment the proportion of ω-6 end products formed

during inflammation. Indeed, a prospective cohort study followed participants over 4 years

and found that a high intake of LA was associated with a greater risk of developing UC.26

Along the same line, another study demonstrated that human IBD intestinal smooth muscle
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and control smooth muscle cells incubated with AA had elevated levels of IL-8 and other

markers of oxidative stress, whereas incubation with oleic acid (OA) appeared to be

protective.27 Administering AA directly through the diet did not change the degree of colitis

in a murine experimental colitis study wherein mice were given diets rich in OA versus AA

versus fish oil for 6 weeks prior to inducing colitis, even though the colonic content of AA

was higher in the AA-fed group.28 These results suggest that dietary fatty acid content can

affect host inflammatory responses.

LIPID METABOLISM IN IBD

Lipids are critical to cell membrane structure and fluidity, mucus production and barrier

integrity, eicosanoid production (Fig. 3), and intra- and intercellular signaling. Given that

anomalies in any of these functions could propagate inflammation and tissue destruction, it

stands to reason that perturbations in lipid metabolism could contribute to the development

of IBD. Indeed, abnormalities of lipid metabolism in patients with IBD are seen at multiple

levels, and are summarized in Table 1.

Fatty Acid Levels in Tissue and Cells

Inflammation alters lipid utilization in the intestine. Some general trends of this alteration

are seen in the mucosal tissue in both humans and rodents, regardless of the etiology of the

inflammation. In a study comparing colonic biopsies of patients with active and inactive UC

versus healthy controls, the UC patients had a significantly higher proportion of SFA and

long-chain ω-3 and ω-6 PUFA with a concomitant decline in essential FA and MUFA,

specifically due to decreased OA levels.29 These same findings of elevated SFA plus lower

MUFA and essential FA are also seen in active and inactive CD patients, with a significant

rise in end product ω-3 and ω-6 PUFA in one group30 and a nonsignificant increase of these

FA in the other study.29 Both ileal and colonic tissue were similar in the CD patients, and

although the degree of change was less in those with inactive versus active disease, even

“normal-appearing” tissue differed from controls.29,30 All of the above subjects reported

typical Western or mixed Western/ Mediterranean diets and were not taking fish oil

supplements to explain the increase in ω-3 FA. Similar results were seen in two other

studies, where a larger proportion AA was detected in the phospholipid component from

colonic biopsies of both UC and CD patients with active disease.31,32 Low levels of OA

were again noted. Diet was not mentioned in these studies. Rodent studies using 2,4,6-

trinitrobenzene sulfonic acid (TNBS) to induce colitis also demonstrated greater end product

LCFA compared to controls despite no difference in diet; however, the changes in SFA and

MUFA differed among the two studies.29,33

These studies taken together indicate that there is a reproducible pattern of intestinal lipid

metabolism with active inflammation in the setting of IBD. Overall, both ω-3 and ω-6 LCFA

end products are found in higher proportions in the intestinal epithelium, whereas the

“building-block” essential FA are diminished, suggesting consumption in the course of

eicosanoid production. This shift in FA patterns may be a response to inflammation rather

than an etiological factor, although the extent and duration of eicosanoid production may

prove to be problematic in IBD. OA levels are routinely reduced, and SFA are seen in

greater proportion, although the significance of this is uncertain. Stearic acid and other long-
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chain SFA have been shown to inhibit endothelial cell growth, as well as induce

inflammation, apoptosis, and accentuate intercellular adhesion molecule 1 (ICAM-1)

expression.34 Similar actions may also be occurring in the intestinal tissue.

In both rodent and human studies, plasma FA levels differ from controls but do not reflect

the mucosal changes described above. Linolenic acid (an ω-3 precursor) is elevated in both

UC and CD (active and inactive), and the polyunsaturated LCFAs are lower compared to

controls, which is the opposite of what is seen in the mucosal tissue.35,36 All study subjects

reported a typical Western diet. Erythrocyte membrane phospholipids in IBD patients had

higher concentrations of LA and total ω-6 FA compared to controls, despite an overall lower

dietary lipid intake. There was no difference in ω-3 levels in the erythrocyte

phospholipids.37

To support the hypothesis that a preferential ω-6 LCFA metabolism occurs in the intestine,

increased phospholipid turnover and elevated levels of phospholipase A2 have been reported

in both UC and CD mucosal biopsies,38 which results in an increase in AA hydrolysis and

the downstream generation of proinflammatory oxidized AA lipid mediators. For example,

elevations in LTB4, as well as the enzymes necessary for its production, have been detected

in colonic biopsies of IBD patients.39,40 Neutrophils from patients with IBD also have

enhanced release of LTB4 compared to controls, despite similar extent of AA-uptake by the

cells.41 Since inflamed mucosa is highly infiltrated with activated neutrophils, this likely

contributes to the overall increase in LTB4 levels present in colonic samples. Other AA-

derived eicosanoids, such as PGE2, also rise in colonic mucosa, especially in severely

inflamed mucosa from UC patients.42 Interestingly, PGE2 was important in resolving colitis

in a mouse model, suggesting it may function as both an instigator and alleviator of

inflammation.43

Fatty Acid Metabolism Gene Expression

Alterations in the expression of genes responsible for FA metabolism occur in IBD. Fatty

acids can diffuse across cell membranes, but transmembrane fatty acid transport proteins

(FATP), including CD36, likely facilitate and regulate specific FA entry into the cell,

especially LCFA and VLCFA. Once the FA crosses the cell membrane, it can reversibly

bind to fatty acid binding proteins (FABP) for further metabolism.44,45 Serum levels of

intestinal FABP rise in severe UC,46 suggesting that essential FA and other LCFA may be

selectively metabolized intracellularly during inflammation. Microarray analysis of pooled

IBD colonic specimens showed higher expression of FABP compared to controls. In

addition, there was an increase in acyl-CoA synthetase and a reduction in fatty acid

synthase.44 In a microarray study of IL-10 knockout mice (a murine model of chronic

colitis), fatty acid metabolism genes were predominantly downregulated, while

inflammatory response genes were upregulated during inflammation, although the specific

genes were not identified.47 Once these mice displayed clinical and histologic improvement

after treatment with a probiotic (an oral commensal bacteria product), there was a concurrent

upregulation of peroxisome proliferator-activated response-γ (PPAR-γ), LA, and AA

metabolic genes as inflammation resolved.
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Mucus and Phospholipid Alterations

The integrity of gut epithelial cells is essential to function as a physical barrier against

pathogens. A layer of mucus adheres to the surface of the epithelium and is formed largely

of phospholipids, predominantly phosphatidylcholine (PC) and lysophosphatidylcholine

(LPC).48 It is hypothesized that defective mucus leads to increased interactions between the

epithelium and luminal antigens/pathogens, stimulating an immune response associated with

IBD.49 Analysis of colonic tissue from patients with IBD who were clinically in remission

displayed significantly less PC among UC patients, compared to those with CD and

controls.50 The FA composition of PC was similar among all groups. The UC group also

had a higher ratio of LPC to PC, which may result in greater detergent activity by LPC and

greater tissue destruction. Another study using cultured enterocytes showed that PLA2

(which is increased in IBD patients), converts PC to LPC, leading to increased tight junction

permeability and bacterial translocation.51 Several animal studies have shown protection

from experimental colitis when given exogenous sources of PC in the diet.52,53 Another key

component of mucus is mucin (a glycoprotein) that has also been found to be selectively

abnormal in UC patients, but not those with colitis from CD, infection, or ischemia.54,55

Ceramide and Metalloproteinase-1

Mucosal destruction can arise from the action of sphingomyelinase, which generates

ceramide, a lipid molecule that acts as an intracellular second messenger. Ceramide is a

component of sphingomyelin, which is found in the cell membrane and is associated with a

wide variety of cellular functions, including differentiation, growth, and apoptosis.

Ceramide modulates AA metabolism by increasing PLA2 activity or by directly activating

NF-κB, depending on the type of sphingomyelinase employed by the cell.56 In two types of

experimental chronic colitis in mice, ceramide rose substantially in the intestinal epithelial

cells as inflammation evolved. Caco-2 intestinal cells were also stimulated with exogenous

sphingomyelinase, which resulted in a robust production of matrix metalloproteinase-1

(MMP-1). Inhibition of the sphingomyelinase also inhibited MMP-1 production.57 MMPs

are a family of proteases that degrade the extracellular matrix and can disrupt the epithelial

basement membrane, leading to tissue damage, loss of cells, and impaired wound healing,

and are of particular interest in the pathogenesis of IBD.58,59 Elevated levels of MMP have

been found in the ulcerated tissue of patients with IBD, and the allelic composition of MMP

genes may influence CD phenotype with regard to stricture formation.60–62 MMPs are also

involved in chemotaxis and cell adhesion, and appear to be activated by inflammatory cells

and their cytokines, such as TNF-α.58,59,62

Cholesterol and Lipoprotein Metabolism

Changes in cholesterol and apolipoprotein metabolism occur during IBD as well.

Hypocholesterolemia has previously been noted during times of acute inflammation,

including active IBD,63–66 and can be used as a marker of disease severity. Other general

trends include elevated triglycerides and decreased high-density lipoprotein (HDL)

levels.65,66 Apolipoprotein A-1 (ApoA-1), which mediates cholesterol efflux from

peripheral tissues, is also decreased in patients with IBD.65,66 One possible mechanism of

action is that ApoA-1 is displaced by the acute phase reactants, C-reactive protein and serum
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amyloid A, which are elevated during times of active IBD.67 These impairments could lead

to atherosclerosis, which is associated with IBD68,69.

LIPIDS AS THERAPY FOR IBD

Omega-3 Fatty Acids and Oleic Acid

While a diet high in LA can promote a proinflammatory cascade in IBD, other fats may help

limit inflammation. The dietary intake of OA or ω-3 FA appears to competitively inhibit AA

for eicosanoid production. Omega-3 FA from dietary fish oil is incorporated into colonic

tissue in as little as 3 weeks, and eicosanoid production is altered over a 12-week period in

patients with IBD.70 OA was also increased in the colonic mucosa by 12 weeks in patients

given olive oil, but no change in eicosanoid production was seen. Despite the protection

afforded by consuming ω-3 FA in other models and clinical situations, studies of ω-3

supplementation in IBD have had mixed results. A recent review of this literature was done

by Calder71 and several other systematic reviews have been published.72–76 Results from

animal studies show greater therapeutic effect—this may be due to the relatively higher

doses of ω-3 FA given to animals compared with human trials. Also, the “placebo” oils used

in some the human trials, such as OA, may have antiinflammatory properties themselves,

which confounds interpretation of the results. A recent G-protein-coupled receptor has been

identified that functions as an ω-3 FA receptor.77 These receptors are highly expressed in

macrophages, and the antiinflammatory effects of ω-3 FA supplementation are lost in

knockout mice that do not possess these receptors. It is interesting to speculate whether these

receptors are abnormal in certain IBD populations, which may affect responsiveness to ω-3

supplementation. Another consideration is the complexity of diet in general. It may not be

enough to simply supplement one lipid without changing to an overall healthier diet with

limited processed foods.

Enteral Nutrition

Complete enteral nutrition can be a first-line treatment for CD, although it is more effective

and better tolerated in children than adults.78,79 The mechanism by which this diet leads to

clinical improvement and mucosal healing is uncertain and is likely multifactorial, but one

hypothesis is that the fat content, which is high in MUFA, is less inflammatory. Studies have

shown that manipulating the fat in enteral formulas changes the remission rate, but the

optimal lipid composition is still uncertain and results have been contradictory. In one study,

adult patients with active CD were randomized to receive elemental diets with varying

amounts of fat, predominantly from LCFA: low (3 g/ day), medium (16 g/day), or high (30

g/day). The remission rates were 80%, 40%, and 20%, respectively, suggesting the lower the

LCFA intake, the better.80 They did not evaluate how differing amounts of mixed FA would

be tolerated. It is also worth noting that even the “high” amount of fat in this study is about

half the daily intake of a regular diet. In another study of adult patients with active CD, the

groups received an enteral diet with 35 g/1000 kcal of lipid as either high OA/low LA versus

low OA/high LA, or steroids and a regular diet. After adjusting for poor compliance to the

enteral diets, the 4-week remission rates were 27%, 63%, and 79%, respectively, with the

group receiving low OA/high LA doing better than the other diet group.81 In another adult

study of active CD, patients received enteral formulas with either 5% or 30% of calories
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coming from LCFA. The total calories from fat was identical and the remainder was

comprised of MCFA. Thirty-nine percent of the patients withdrew from the study due to

intolerance to the diet. Of those that continued with treatment, the remission rate was similar

between both groups (46% and 45%, respectively).82 Similar studies have not been carried

out in pediatric patients, where enteral feeding is more efficacious.

Short Chain Fatty Acids

Short chain fatty acids, such as butyrate, proprionate, and acetate, are produced by colonic

bacteria as they digest fiber and other nonabsorbable sugars. These SCFA are integral to

healthy epithelial cells, as they are used by the cells as an energy source and help maintain

homeostasis and regulate inflammation. Human studies are sparse, but other studies suggest

SCFA may directly inhibit NF-κB activation or bind PPAR-γ receptors.83,84 Although other

factors are also involved, SCFAs are needed to help repair the damaged epithelium

associated with IBD.85 Various abnormalities of SCFA have been seen in both active and

inactive phases of IBD, but it is not clear if there is a problem with SCFA utilization by the

epithelial cells or if there is abnormal production by colonic bacteria.86

While clinical studies focusing on nutritional intake have been difficult to control and follow

over long periods of time, manipulating dietary lipid intake is still attractive as a therapeutic

intervention for IBD. At the biochemical level, lipids may attenuate inflammation by

undergoing reactions that favor the formation of derivatives displaying antiinflammatory

actions. Table 2 lists potentially therapeutic lipids.

PRO-RESOLVING LIPID MODULATORS

Lipoxins and Resolvins

The conversion of AA to proinflammatory eicosanoid products is well defined; however,

AA and other PUFAs can also be modified via alternative mechanisms to form signaling

molecules involved in resolution of inflammation. The role these mediators play in

modulating the pathology of IBD is an emerging area of interest.87 Examining exu-dates

from animal models with resolving, self-limited inflammation revealed that AA metabolites

undergo a “class switch,”88 wherein rather than being used as a substrate for eicosanoid

synthesis, AA is modified by lipoxygenases or aspirin-acetylated COX-2 to form lipoxins

(Lx). These products are generated by leukocyte, platelet, and endothelial/epithelial cell-to-

cell interactions. Intestinal epithelial cells have lipoxin receptors that when bound suppress

inflammatory gene expression via the NF-κB pathway. They also resolve local inflammation

by dampening chemotaxis, leukocyte adhesion, and transcellular migration of neutrophils.89

Mononuclear cells are then recruited to help clean up cellular debris. Patients with UC do

have lower levels of Lx in their colonic tissue compared to healthy controls,90 although it is

uncertain if this is due to overwhelming inflammation or a decreased ability to produce Lx.

Notably, the isolated UC colonic cells did respond to aspirin by producing lipoxins in vitro.

Resolvins are molecules that are structurally similar to Lx (i.e., trihydroxy fatty acid

derivatives), but are derived from ω-3 FA: Resolvin E (RvE) species stem from EPA, and

Resolvin D (RvD) are generated from DHA. Resolvins are formed in vivo, but their

production is enhanced by the presence of aspirin. They also play a role in neutrophil
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trafficking and clearance of neutrophils from the mucosa.88,91 Studies of experimental

colitis in a murine model have shown clinical and histologic improvement by treating with

synthetic RvE1.92–94

Electrophilic Oxo-derivatives

A recent study has identified another class of antiinflammatory keto-fatty acid mediators

derived from ω-3 FA: EFOX.95 These products are formed by macrophages and neutrophils

activated by multiple agonists including phorbol myristate acetate (PMA), LPS, and

interferon-γ (IFN-γ), with concentrations of up to 20–200 nM poststimulation. The roles that

these molecules play in mediating inflammation are not fully understood, but studies

indicate that EFOX induce Nrf-2 nuclear accumulation and expression of the Nrf-2-

regulated cytoprotective enzymes HO-1, glutamate-cysteine ligase subunit (GCLM), and

nicotinamide adenine dinucleotide phosphate (NADPH):quinine oxidoreductase 1 (NQO1).

Furthermore, EFOX suppresses the expression of IL-6, monocyte chemotactic protein 1

(MCP-1), IL-10, and inducible nitric oxide synthase (iNOS). The formation of these

antiinflammatory mediators derived from ω-3 FA may play an important role in the

resolution of IBD, especially in animals and patients given dietary supplements of DHA and

EPA.

Nitrated Fatty Acids

Nitrated fatty acids (NO2-FA) are also a recently discovered class of antiinflammatory lipid

mediators.96,97 These molecules are present endogenously and are defined as electrophilic

fatty acids containing a nitro functional group attached to a carbon–carbon double bond.98

Fatty acid nitration can occur in an acidic milieu,99,100 such as ischemic environments,101

and may be formed in the acidic gastric compartment with dietary nitrite and PUFA. These

molecules are believed to be the product of reactions between free radical reactive nitrogen

species and PUFAs. In vitro, nitrated linoleic acid (LNO2) has been shown to regulate vessel

relaxation by cyclic guanosine monophosphate (cGMP)-dependent and -independent

mechanisms and to modulate inflammatory responses, including inhibition of neutrophil

function and platelet activation via a mechanism involving cyclic adenosine monophosphate

(cAMP).102,103 Nitrated oleic acid (OA-NO2) and LNO2 have also been shown to: 1)

upregulate heme-oxygenase 1 (HO-1) expression104; 2) serve as potent PPAR-α, δ, and γ

ligands that rival or exceed fibrates and thiazolidinediones in their ability to mediate PPAR

activation98,105,106; 3) react as strong electrophiles that covalently bind biological

nucleophiles such as glutathione and protein His and Cys residues, thus implicating them in

regulation of protein structure/function107,108; 4) inhibit cytokine release in LPS stimulated

inflammatory cells via adduction to the p65 unit of NF-κB109; and, importantly, 5) inhibit

the onset of induced IBD in rodent models.110

LIPIDS AND THE ANTIINFLAMMATORY PPAR-γ PATHWAY

PPAR-γ is a member of the superfamily of nuclear hormone receptors that function as

transcription factors, modulating glucose and lipid metabolism, inflammation, and cell

proliferation. PPAR-γ forms heterodimers with retinoid X receptors, which bind to PPAR

response elements, and regulates transcription of target genes. The mechanisms by which
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PPAR-γ attenuates inflammation are complex and incompletely understood, with PPAR-γ

activation believed, in part, to repress NF-κB.111 Although present in several tissues, PPAR-

γ is highly concentrated in the colon and plays a role in IBD.112 Abnormally low PPAR-γ

expression occurs in patients with UC,113 and mice with disrupted PPAR-γ gene expression

in epithelial cells have significantly greater disease activity and inflammatory cytokine

production compared to littermates with normal PPAR-γ expression.114 In another study,

PPAR-γ deficient mice had increased intestinal ischemia/reperfusion injury.115 Also of

interest, the PPAR-γ expressing mice displayed downregulated ICAM-1 expression when

given a synthetic PPAR-γ activating ligand.115

PPAR-γ agonists are potential therapeutic agents for treating IBD. Well-known synthetic

ligands include the antidiabetic thiazolidinediones and 5-aminosalicylic acid (5-ASA).116,117

5-ASAs have widely been used in the treatment of IBD, and there is also a potential role for

their use in the treatment of colon cancer, for which IBD patients are at greater risk.112,118 A

small clinical trial has also shown potential therapeutic benefit from Rosiglitazone, a

thiazolidinedione, in UC patients.119

Many lipids and eicosanoids are plausible endogenous ligands for PPAR-γ, although

clinically relevant ligands have been difficult to identify. Not all lipids that dock at the

ligand binding domain cause a conformational change in the receptor. Electrophilic lipids

that can bind with a critical thiol (Cys285) within the ligand binding domain, thereby

forming a covalent bond and prolonging receptor activation, appear to be the best

candidates.120,121 The most studied endogenous eicosanoid is 15-deoxy-prostaglandin J2.

PPAR-γ in the colon may work as a lipid “sampler,” able to bind many lipids (including

more than one at a time) derived from the diet and local bacterial metabolism, and then

dictate various transcription processes, depending on which ligands bind the receptor.111

Recently, two new classes of endogenous PPAR-γ ligands have been identified: nitrated

fatty acids and EFOX.122–124 These molecules are strongly electrophilic and rival the

thiazolidinediones for potency. These ligands differ significantly from Rosaglitazone in that

they appear to be “partial” agonists that induce selective gene expression, which is an aspect

of growing importance in the field of PPAR-γ drug discovery. Potential dietary ligands

include ω-3 FA, LA, curcumin (from turmeric), capsaicin (from peppers), several

flavonoids, and conjugated linoleic acid (CLA).125

CLA is a group of naturally occurring fatty acids that are positional isomers of LA that are

typically found in meat and dairy products from grass-fed ruminants. The isomer that shows

most promise as an antiinflammatory signaling molecule is c9-t11-CLA, although some

degree of a racemic mixture may be biologically important.126 Several studies have shown

that CLA decreases TNF-α and other inflammatory cytokines from various cell types after

exposure to LPS, including intestinal epithelia cells (Caco-2),127 bone marrow-derived

dendritic cells (BMDC),128 and peripheral blood mononuclear cells.129,130 In a murine

model of LPS-induced inflammation, mice fed diets rich in CLA had less of a rise in some

serum proinflammatory cytokines, and their BMDC had increased IL-10 and less TLR4

mRNA compared to mice on a low-CLA diet. Nuclear expression of PPAR-γ was higher in

CLA-fed mice before and after LPS stimulation. The TLR4 expression, but not that of the

coreceptor, was reversed when the cells were treated with a PPAR-γ inhibitor, suggesting
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that CLA induction of PPAR-γ may suppress TLR4.131 In a contradictory study, intestinal

cells (Caco-2) were given an inflammatory stimulus in the presence of various lipids. IL-6

and IL-8 production was decreased and PPAR-γ expression was increased by troglitazone

and ω-3 PUFA, but no effect was seen with CLA.132 These effects were reversed in the

presence of PPAR-γ antagonist.

Murine models of IBD suggest that CLA does activate PPAR-γ.133 In an experimental

colitis mouse model using dextran sodium sulfate, mice were fed a diet supplemented with

CLA. These mice had decreased clinical and histological colitis, increased mRNA

expression of PPAR-γ, and decreased expression of TNF-α and NF-κB. The same

experiment was performed with colonic PPAR-γ null mice, and the protective effects from

CLA were not seen in this group.134 In a similar study, mice (including immune cell/colonic

PPAR-γ null mice) were given agents to induce colitis as well as colorectal cancer while

being supplemented with CLA. The PPAR-γ expressing mice had milder colitis and reduced

adenocarcinoma, which was not seen in the null mice.135 To date, no studies of CLA have

been carried out in humans with IBD.

CONCLUSION

Unsaturated fatty acid-derived mediators contribute to both the generation and resolution of

inflammation. The high LA content of the Western diet may promote the development of

IBD and other chronic inflammatory conditions, at least in part through arachidonic acid-

derived eicosanoid production. In IBD, abnormalities in lipid utilization and metabolism

alter cell signaling along multiple pathways, resulting in inappropriate perpetuation of

inflammation and likely contribute to its pathogenesis. The impairments in lipid metabolism

associated with IBD result in defective mucous production and intestinal barrier function,

altered FA uptake for eicosanoid production, and overproduction of inflammatory signaling

molecules by various cellular mechanisms.

There are multiple studies in animal models that demonstrate the efficacy of ω-3 FA and

CLA as dietary-based treatments for IBD. However, there has been little insight generated as

to the mechanism of their antiinflammatory properties. These antiinflammatory FA may

directly compete as substrate for eicosanoid production, or may be converted into modified

FA such as lipoxins, resolvins, nitrated fatty acids, and EFOX derivatives. The recent

discovery of an ω-3 FA receptor with downstream antiinflammatory signaling actions is

another possible explanation. In this regard, current studies in our laboratory and elsewhere

are addressing these important signaling molecules in the context of pathological

inflammation. Additionally, the ideal balance of dietary lipids in the context of IBD is an

area of active investigation; dietary manipulation of fat may help attenuate inflammation and

maintain remission in IBD. As more is discovered about the functions of individual lipids

during inflammation, more directed therapies for IBD may become available.
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FIGURE 1.
Fatty acid nomenclature and structures. The nomenclature used to describe fatty acids has

evolved to such an extent that multiple conventions are used in the literature. Common

names, IUPAC nomenclature, informal denotation, and structures are defined for the fatty

acids described herein.
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FIGURE 2.
Eicosanoid formation. During host immune responses, arachidonic acid is hydrolyzed from

membrane phospholipids and is converted to multiple oxidized fatty acid metabolites via

enzymatic and autocatalytic mechanisms. In general, eicosanoids mediate proinflammatory

cell signaling pathways and are involved in the pathogenesis of IBD.
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FIGURE 3.
Antiinflammatory lipid mediators. Recent advances in inflammatory and lipid research have

identified promising lipid mediators in vivo that appear to resolve inflammation, including

nitrated fatty acids, resolvins, and lipoxins, and electrophilic oxo-fatty acid derivatives

(EFOX).
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TABLE 1

Fatty Acid Metabolism in IBD

Abnormal Finding in Colonic Tissue Proposed Effects References

↑ Long chain fatty acids ↑ Eicosanoid production 29–33

↓ Essential fatty acids ↑ Eicosanoid production 29–30

↑ Phospholipase A2 (PLA2) ↑ Pool of free arachidonic acid 38

↑ Fatty acid binding protein (FABP) ↑ Fatty acid intracellular utilization 46

↑ Leukotriene B4 (LTB4) ↑ Inflammatory signaling 39–41

↑ Prostaglandin E2 (PGE2) ↑ Inflammatory signaling; possible mitigating agent 13, 42–43

↓ Phosphatidylcholine (PC) ↑ Abnormal mucous production and barrier function 50

↑ Ceramide ↑ PLA2 and NF-κB activities 56–57

↑ Matrix metalloproteinase (MMP) ↑ Intra- and extracellular destruction 57–62

Summary of proposed mechanisms by which abnormal lipid metabolism may contribute to the pathogenesis of IBD.

Inflamm Bowel Dis. Author manuscript; available in PMC 2014 July 16.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Shores et al. Page 24

TABLE 2

Lipids as Potential Therapeutic Agents to Treat IBD

Lipid Treatment Clinical Outcome References

ω-3 Fatty acids ↓ Colitis in rodents; mixed results in humans 71–76

Short chain fatty acids Induced epithelium repair in human intestinal tissue 85

Resolvins ↓ Colitis in rodents 92–94

Nitro-oleic acid ↓ Colitis in rodents 110

Conjugated linoleic acid ↓ Colitis in rodents↓; colitis in pigs 113–135

Free fatty acids have been used to treat IBD in animal models of the disease as well as in humans.
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