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Abstract

Since the identification of a metazoan counterpart to yeast Mediator nearly 15 years ago, a

convergent body of biochemical and molecular genetic studies have confirmed their structural and

functional relationship as an integrative hub through which regulatory information conveyed by

signal activated transcription factors is transduced to RNA polymerase II. Nonetheless, metazoan

Mediator complexes have been shaped during evolution by substantive diversification and

expansion in both the number and sequence of their constituent subunits, with important

implications for the development of multicellular organisms. The appearance of unique interaction

surfaces within metazoan Mediator complexes for transcription factors of diverse species-specific

origins extended the role of Mediator to include an essential function in coupling developmentally

coded signals with precise gene expression output sufficient to specify cell fate and function. The

biological significance of Mediator in human development, suggested by genetic studies in lower

metazoans, is emphatically illustrated by an expanding list of human pathologies linked to genetic

variation or aberrant expression of its individual subunits. Here, we review our current body of

knowledge concerning associations between individual Mediator subunits and specific

pathological disorders. When established, molecular etiologies underlying genotype-phenotype

correlations are addressed, and we anticipate that future progress in this critical area will help

identify therapeutic targets across a range of human pathologies.

1. Introduction

The specification and maintenance of cell fate in multicellular organisms is critically

dependent upon the precise spatiotemporal control of RNA polymerase II transcription in

response to a determinative set of cell-intrinsic and –extrinsic signals. Accordingly, genetic

or environmental factors that perturb physiologic transcription controls can alter cell fate

decisions leading to a variety of pathologic conditions including developmental defects and

cancer. Because of its central importance in organismal biology, metazoans have evolved an

elaborate protein machinery to ensure proper transcription control. Work over the last

decade and a half has identified Mediator as a critical component of this regulatory
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apparatus. Mediator is a conserved multiprotein interface between gene-specific

transcription factors and RNA polymerase II [1]. In this capacity, Mediator serves to channel

regulatory signals from activator and repressor proteins to affect changes in gene expression

programs that control diverse physiological processes, including cell growth and

homeostasis, development, and differentiation [2, 3]. Originally discovered in the budding

yeast S. cerevisiae, Mediator has since been identified as an essential component of the

RNA polymerase II transcriptional apparatus in metazoans ranging from worms to humans

[4]. Nonetheless, consistent with the enhanced complexity of multicellular organisms,

metazoan Mediator complexes are generally larger than their yeast counterparts and include

both orthologous as well as metazoan-specific subunits. Among metazoans, mammalian

Mediator exhibits the greatest degree of compositional and structural complexity,

comprising 33 subunits, 23 of which correspond to clear orthologs in S. cerevisiae Mediator.

Because of its role as an integrator and processor of regulatory information conveyed by

signal-activated transcription factors, Mediator represents an endpoint in a variety of

fundamentally important developmental signaling pathways [2, 3, 5]. Consistent with such a

role, genetic studies in mice have broadly implicated Mediator in mammalian development.

Genetic inactivation of core Mediator subunits responsible for direct communication with

RNA polymerase II result in very early embryonic lethality, indicating that Mediator per se

is likely required for cell viability [6]. However, targeted inactivation or mutation of

peripheral Mediator subunits, while invariably lethal, nonetheless confers broad yet

distinctive defects in organogenesis and altered programs of gene expression that generally

phenocopy mutations in essential developmental transcription factors [7–18]. These

observations support the idea borne from biochemical and cell-based studies that Mediator

transduces regulatory information conveyed by signal-controlled transcription factors that

interface with distinct Mediator subunits. Thus, individual Mediator subunits can manifest

activator- and/or repressor-selective functions in the regulation of developmental gene

programs. It is therefore not unexpected, and emerging studies have indeed confirmed, that

individual Mediator subunits are associated with wide range of human diseases spanning

congenital malformations to cancer. In this review, we highlight examples in which overt

mutation or altered expression of human Mediator subunits have been linked with specific

pathological disorders (summarized in Table 1).

2. Mediator and Disorders of Development

2.1. Neurodevelopmental Disorders

2.1.1. MED25 and Charcot-Marie-Tooth Disease—Charcot-Marie-Tooth (CMT)

disease or hereditary motor and sensory neuropathy (HMSN) comprises a large group of

clinically and genetically heterogeneous peripheral nervous system disorders. CMT is the

most commonly inherited peripheral neuropathy worldwide, and all mendelian modes of

inheritance have been described [19]. Two major CMT forms are distinguishable based on

electrophysiological and pathological criteria: the demyelinating CMT type I (CMT1) and

the axonal CMT type II (CMT2) [20]. Among all forms of CMT, the autosomal recessive

axonal forms (ARCMT2) are comparatively rare and severe [20]. To date, genes for three

distinct and specific ARCMT2 loci have been identified on chromosomes 8q (Lamin A/C;
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LMNA), 1q (ganglioside-induced differentiation-associated protein 1; GDAP1), and 19q

(Mediator subunit 25; MED25) [20].

The association of MED25 on chromosome 19q13.3 with ARCMT2 was initially established

through investigation of an extended consanguineous Costa Rican family of Spanish and

Amerindian ancestry [21]. Affected patients in this family presented with relatively late-

onset chronic symmetric sensory-motor polyneuropathy and axon degeneration. Refined

genetic mapping within the 19q13.3 region identified a critical interval of 1 Mb; sequence

analysis of this region identified 53 genes, 3 of which exhibited variations that cosegregated

with the recessive neuropathy in this family. Among these, a p.A335V missense mutation in

MED25 was identified as the likely disease causing variation.

The molecular basis by which a homozygous A335V missense mutation in MED25 triggers

ARCMT2 is unclear. Amino acid 335 lies between two established structural and functional

domains in MED25: an N-terminal ‘von Willebrand factor type A’ domain (aa 17-226)

through which MED25 associates with core Mediator, and a C-terminal seven-stranded β-

barrel activator interaction domain (aa 402–590) targeted by the viral transactivator VP16

[22, 23]. Possibly, the A335V mutation could compromise the structural integrity and/or

crosstalk between these two established functional domains, although evidence to support

this conjecture is currently lacking. Amino acid 335 is located in a MED25 proline-rich

domain with high affinity for SH3 domains of the Abelson type; molecular and biochemical

analyses have further revealed that the A335V mutation relaxes the binding specificity of

this region, expanding the range of SH3-type domains with which it interacts [21]. However,

the functional relevance of the SH3-binding domain for MED25-dependent transcriptional

regulation remains to be established, and the significance of these findings is presently

unclear. While the direct molecular consequence(s) of the A335V mutation on MED25

structure and/or protein interaction preference thus remains to be established, a likely

biological outcome is disruption of MED25 as a critical Mediator interface for an

unidentified transcriptional regulator of genes required for peripheral nervous system

function.

2.1.2. MED17 and Infantile Cerebral and Cerebellar Atrophy—Postnatal-onset

microcephaly (POM), in which a normal head circumference at birth declines to > 2SD

below the mean after the neonatal period, is a feature of many neurological disorders

characterized by developmental and psychomotor retardation, and it often carries a grave

prognosis [24]. Recent work has uncovered a direct link between the Mediator subunit

MED17 and a specific form of POM within the Caucasus Jewish community [25]. This link

was initially established through genetic analysis of five infants from four unrelated families

of Caucasus Jewish origin who presented shortly after birth with microcephaly, spasticity,

epilepsy, and profound psychomotor delay [22]. Brain scans revealed severe cerebral and

cerebellar atrophy accompanied by poor myelination. Genetic mapping was employed to

identify a common homozygous region among these patients spanning 2.28 MB and 16

genes on chromosome 11. Among these genes, a single missense mutation in MED17

(p.L371P) segregated with the disease state, and was subsequently identified in four

additional patients of Caucasus Jewish heritage presenting with similar clinical and

radiologic manifestations. Notably, population screening for the MED17 L371P mutation
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revealed that four of 79 anonymous individuals of Caucasus Jewish origin, but none of 110

Ashkanazi Jewish or 113 Arab Muslim individuals, carried this mutation. It thus appears that

L371P is a founder mutation in the Caucasus Jewish community [25].

MED17 plays an important role in Mediator architecture and function. It is critical for head

module assembly, overall Mediator integrity, and association of Mediator with RNA

polymerase II and promoter DNA [26, 27]. Additionally, MED17 is an established physical

target and functional transducer of diverse signal-activated transcription factors, including

p53 and NF-κB [28, 29]. Whether and how the L371P mutation might impact one or more

of these critical functions leading to infantile cerebral and cerebellar atrophy remains to be

established. Nonetheless, the S. cerevisiae MED17 ortholog, Srb4, engineered to carry a

corresponding L371P missense mutation failed to complement a temperature sensitive srb-4

yeast strain for growth, indicative of a deleterious impact of this mutation on general

MED17 function [25]. Because of the prominent postnatal involvement of white matter in

affected patients whose development prenatally is unperturbed, it has been suggested that

the L371P missense mutation might disrupt a critical function for MED17 in control of

genes important for oligodendrocyte development, as this process commences only after

birth in humans [25].

2.1.3. MED12 and Syndromal X-linked Mental Retardation: FG and Lujan
syndromes—X-linked mental retardation (XLMR) affects 1–2/1,000 males and accounts

for ~10% of all mental retardation [30]. Approximately 1/3 of XLMR cases are associated

with sufficiently coincident somatic, neurobehaviorial, or metabolic features to permit

diagnostic designation, and are therefore classified as “syndromal” in nature. To date, more

than 140 syndromal XLMR conditions have been identified [31]. A growing number of

these syndromes, originally considered distinct entities on the basis of clinical criteria alone,

have instead been linked through identification of common gene mutations. Two such

XLMR disorders, FG syndrome and Lujan syndrome, have recently been linked by

mutations in MED12, an Xq13-encoded 230 kDa Mediator subunit.

FG syndrome, first described In 1974 by Opitz and Kaveggia, is characterized by mental

retardation, complete or partial agenesis of the corpus callosum, relative macrocephaly,

congenital hypotonia, craniofacial dysmorphisms (including tall and prominent forehead,

downslanting palpebral fissures, and micrognathia), sensorineural deafness, constipation,

seizures and behavioral disturbances, including hyperactivity, emotional lability, and autistic

mannerisms [32–34]. Major anomalies are not uncommon in FG syndrome and include

anorectal and urogenital malformations as well as congenital heart defects [34]. The

combination of anal and cardiac defects is lethal during prenatal and early postnatal periods

in some affected patients.

In the mid 1980’s, Lujan and Fryns independently described an XLMR syndrome

(commonly called Lujan-Fryns, or Lujan syndrome) characterized by developmental delay,

agenesis/dysgenesis of the corpus callosum, macrocephaly, hypotonia, distinct facial

dysmorphisms (including prominent forehead, long narrow face, maxillary hypoplasia, and

small mandible), and behavioral disturbances, including hyperactivity, emotional lability,

autistic mannerisms, and psychoses [35, 36]. Although FG and Lujan syndromes share
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several overlapping clinical manifestations (macrocephaly, tall forehead, tall narrow palate

with dental crowding, hypotonia, mental retardation, behavioral disturbances and dysgenesis

of the corpus callosum), neither syndrome was originally considered in the differential

diagnosis of the other. Recent findings, however, have revealed that these syndromes are

allelic and caused by different missense mutations in MED12.

FG syndrome is genetically heterogeneous, and five loci (FGS1-5) have so far been

identified on the X chromosome [34]. Sequence analysis of candidate genes from XLMR

families with linkage to Xq13 identified a recurrent p.R961W missense mutation in MED12

responsible for FG syndrome in 6 out of 45 families, including the original family for whom

the condition was named [37]. Shortly thereafter, a systematic sequencing screen of 737

annotated genes in 250 XLMR families identified a p.N1007S missense mutation in MED12

in the original Lujan syndrome family as well as a second family that was originally

diagnosed with FG syndrome [38]. Neither sequence alteration was found in over 1400

control X chromosomes [37, 38].

The etiological basis by which the R961W and N1007S missense mutations in MED12 elicit

cognitive dysfunction, while not fully resolved, is nonetheless suggested by recent studies

that implicate MED12 in critical aspects of neural development. First, MED12 has been

linked biochemically and genetically with the Notch, Wnt, and Sonic hedgehog signaling

pathways that control key aspects of brain development and function, from initial patterning

to neuronal plasticity [12, 39–45]. Second, in zebrafish, MED12 has been shown to be

required for the proper development of the brain and neural crest, among other organs,

where it plays an important role in the production of monoaminergic neurons and cranial

sensory ganglia [46–49]. Third, and more directly relevant to the molecular etiology of

MED12-associtiated XLMR, we recently discovered that the FG/R961W and Lujan/N1007S

missense mutations in MED12 disrupt epigenetic silencing of neuronal gene expression

imposed by the RE1 silencing transcription factor/neuron restrictive silencer factor (REST/

NRSF), a master regulator of neuronal fate.

REST occupies a central role in non-neuronal lineage restriction through its ability to silence

neuronal-specific gene expression in terminally differentiated non-neuronal cells and neural

progenitor cells [50–55]. Mechanistically, REST-directed gene silencing is achieved via

REST-dependent recruitment of multiple corepressors, including G9a histone

methyltransferase, that collectively function to impose restrictive epigenetic modifications

on the chromatin structure of REST-target genes [53, 55–57]. We found that the MED12

interface in Mediator links REST with G9a to silence REST-target genes through the

imposition of transcriptionally repressive histone H3K9 dimethylation [58]. Notably, we

also found that both the FG/R961W and Lujan/N1007S missense mutations in MED12

disrupt its REST-specific corepressor function, leading to unscheduled derepression of

REST target genes [58]. Because REST and MED12 are both implicated in neuronal

development, misregulation of REST target genes arising as a consequence of pathological

mutations in MED12 could affect neuronal differentiation and possibly contribute to XLMR.

Further studies in appropriate animal models will be required to validate this hypothesis.
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2.1.4. CDK19 and Congenital Retinal Folds, Microcephaly, and Mental
Retardation—Along with microcephaly, mental retardation, and certain other systemic

malformations, congenital retinal fold, characterized by the presence of a raised retinal fold

extending radially from the posterior pole to the fundus periphery, has been considered a

distinct clinical syndrome of heterogeneous genetic etiology [59]. Recently, CDK19 was

linked to this condition through genetic analysis of a single female Caucasian patient [59].

Karyotpe analysis of this patient revealed a pericentric inversion of one copy of

chromosome 6 causing haploinsufficiency of CDK19 [59].

CDK19 is a paralog of the bona fide Mediator subunit CDK8; the two human proteins share

77% sequence identity, and are nearly equivalently related to a single Drosophila ortholog

(cdk8), suggesting their close functional relationship [59, 60]. Conditional knockdown of

Drosophila cdk8, important for normal eye development, in multiple dendrites and neurons

was shown to result in significantly reduced dendritic branching and altered morphology of

the dendritic arbor, thus revealing an important function for the Drosophila ortholog of

CDK19 in the development of structures implicated in the etiology of mental retardation

[59, 61]. Based on the paralogous relationship between CDK8 and CDK19, as well as the

identification of CDK19 in purified Mediator preparations, it seems probable that CDK19

might replace CDK8 as a bona fide Mediator subunit in specialized cellular contexts, such as

in the developing nervous system [59, 60]. If so, haploinsufficiency of CDK19 in humans

could deleteriously impact Mediator function and neuronal gene expression programs

leading to altered neuronal development and congenital retinal folds, microcephaly, and

mental retardation. Future studies will be required to clarify the mechanism(s) by which

haploinsufficiency of CDK19 leads to these distinct neurodevelopmental phenotypes.

2.2. Cardiovascular Disorders

2.2.1. MED13L and Transposition of the Great Arteries—Congenital heart disease

occurs in approximately 0.7–1.0% of live births and thus represents the most common

severe birth defect in humans [62]. Transposition of the great arteries (TGA) accounts for 5–

7% of all congenital heart disease and is therefore the most common cyanotic heart defect

diagnosed in neonates [62]. TGA is a condition marked by ventriculoarterial discordance, in

which the aorta and pulmonary arteries arise from the morphological right and left

ventricles, respectively, in a reversal of the normal cardiac outflow [63]. As a consequence,

the systemic and pulmonary circulations operate in parallel rather than in series, resulting in

the return of oxygen-poor blood to the body rather than the lungs. As TGA is incompatible

with healthy survival, postnatal palliative treatment and corrective surgery is required.

Despite its high prevalence, little is currently known regarding the pathogenesis of this

disease. In this regard, MED13L, a paralog of the Mediator subunit MED13, was initially

identified based on its disruption by a translocation breakpoint in a patient with TGA and

mental retardation.

Positional mapping and sequence analysis of the region lying at the breakpoint on

chromosome 12q24 revealed a novel transcription unit encoding a predicted protein with

significant homology to MED13 (formerly TRAP240) [64]. On this basis, the gene was

named PROSIT240 (protein similar to TRAP240), and later renamed MED13L (MED13-
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like) according to the unified Mediator nomenclature [64, 65]. MED13L is broadly

expressed in a variety of fetal and adult tissues, with particularly high expression in heart

and brain, consistent with the clinically affected organ systems of the patient [64].

Disruption of a single MED13L allele in this TGA patient through chromosomal

translocation led to haploinsufficiency at this locus. Subsequent screening analysis of 97

additional TGA patients revealed 3 missense mutations in MED13L (p.E251G; p.R1872H;

p.D2023G) that were not present in 400 control chromosomes [64]. These findings implicate

MED13L in the etiology of TGA and suggest an important role for this Mediator subunit in

proper development of the heart and brain.

Based on the paralogous relationship between MED13L and MED13, the validated presence

of MED13L in purified Mediator preparations, and the higher comparative expression of

MED13L versus MED13 in heart (aorta) and brain (cerebellum), it seems likely that

MED13L–enriched Mediator complexes could engage a unique ensemble of tissue-restricted

regulators, thus enabling cardiac- and brain-specific transcriptional programs. Future studies

will be required to confirm this prediction and establish how reduced expression or

mutational inactivation of MED13L elicits TGA.

2.2.2. MED15 and 22q11.2 Deletion Syndrome—Chromosome 22q11.2 deletion

syndrome, eponymously called DiGeorge syndrome (DGS) or velocardiofacial syndrome

(VCFS) among others, represents one of the most common multiple congenital anomaly

syndromes in humans, occurring in approximately 1/3000 live births [66]. This syndrome is

characterized by an extremely heterogeneous phenotypic spectrum impacting nearly every

organ system and developmental function [67]. Common clinical manifestations include

cardiac defects, palatal anomalies, characteristic facial dysmorphisms, immune dysfunction

and hypocalcemia arising from underdevelopment of the thymus and parathyroid glands,

respectively, and neuropsychiatric anomalies, including schizophrenia and psychoses [66,

67]. Many of these abnormalities are attributed to defects in early neural crest cell migration

and/or differentiation in the pharyngeal arches, wherein neural crest cells contribute to

morphogenesis of the heart vessels, thymus, parathyroid gland and craniofacial structures

[68]. The broad range of clinical manifestations associated with 22q11.2 deletion syndrome

suggests the involvement of multiple genes; consistent with this expectation, the typically

deleted region (TDR) in >90% of patients spans 3.0 Mb and 60 genes, while <10% of

patients harbor a smaller deletion of 1.5 Mb encompassing 28 genes [69]. These

microdeletions are the most common interstitial deletions known to occur in humans, and

arise as a consequence of meiotic recombination errors involving low copy repeat sequences

that are reiterated along chromosome 22 [69]. Among the genes deleted in the 3.0 Mb

microdeletion associated with 22q11.2 deletion syndrome is MED15, initially cloned based

on its identification as a subunit of the ARC/PC2 Mediator-like complexes and named

PCQAP (PC2 glutamine/Q-rich-associated protein) [70, 71]. The gene encoding MED15/

PCQAP was physically mapped to the DGS/VCFS region on chromosome 22q11.2, and

further genetic analysis confirmed the gene to be deleted in DGS/VCFS patients carrying the

major hemizygous deletion in the TDR [71].

Human MED15 is a physical target and functional transducer of the sterol regulatory

element-binding protein 1α (SREBP1α) and TGFβ-activated SMAD2/3 that control lipid

Spaeth et al. Page 7

Semin Cell Dev Biol. Author manuscript; available in PMC 2014 July 16.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



metabolism and developmental programs, respectively [72, 73]. Its pleiotropic activity as a

key hub in a variety of biologically important signal transduction pathways could thus

explain how haploinsufficiency and reduced expression of MED15 might contribute to the

clinically heterogenous phenotypes associated with the 22q11.2 deletion syndrome.

2.3. Behavioral Disorders

2.3.1. MED12 and Schizophrenia/Psychosis—Schizophrenia is a chronic, profound,

and disabling mental disorder characterized by a wide spectrum of symptoms including

delusions, hallucinations, disintegration of cognitive processes, and deterioration of social

behaviors [74]. The global lifetime prevalence and incidence of the disease are estimated to

be 0.3–0.7% and 10.2–22.0 per 100,000 person-years, respectively [75]. Etiologically,

schizophrenia is a multifactorial disorder, with a relatively high heritability (~80%) believed

to derive from both genetic and epigenetic factors that are susceptible to environmental

influences [76]. On the basis of data derived from candidate gene and genome-wide

association studies, the number of genes potentially implicated in schizophrenia is estimated

to number greater than 1000 [76]. Thus, familial aggregation of schizophrenia is best

explained not by genetic variation in a few loci with strong penetrance, but instead by the

contribution of variation at many loci with weak to moderate association and linkage. One

such locus in which genetic variation has been linked to a moderate increase in

schizophrenia is MED12.

The gene encoding MED12 was originally isolated during an effort to identify GC-rich

candidate genes for neurodevelopmental disorders. Isolation and characterization of human

genomic clones bearing large trinucleotide repeats revealed a gene encoding a carboxyl

terminal OPA (opposite paired) domain, which was named human OPA-containing gene

(HOPA), and later renamed MED12 following its identification as a bona fide Mediator

subunit [65, 77]. Initial polymorphism analysis of MED12 identified a 12 bp insertion

(HOPA12bp) coding for four additional amino acid residues (QQHQ) in its OPA domain that

subsequent association and transmission disequilibrium analyses revealed is associated with

a modest risk (~1.5) for an endophenotype of schizophrenia [78, 79]. Further analyses

revealed a second, rare deletion polymorphism within the MED12 OPA domain

(HOPA−15bp) that appears also to be associated with psychosis [79, 80].

Distinct from the HOPA12bp and HOPA−15bp polymorphisms that impact the MED12 OPA

domain, missense mutations R961W and N1007S causing FG and Lujan syndromes,

respectively, have also been linked to neuropsychiatric illness. In addition to mental

retardation and various congenital anomalies, FG and Lujan syndromes are associated with

distinctive behavioral disturbances. In FG syndrome, adolescent behavior characterized by

hyperactivity, affability, and excessive talkativeness yields during early adulthood to an

increased risk for maladaptive behavior, aggression, anxiety, inattention, and obsessive-

compulsive disorders [37, 81, 82]. In Lujan syndrome patients, a wide variety of anomalous

behaviors have been documented, including hyperactivity, emotional lability, autistic

mannerisms, and frank psychosis [38, 83, 84].

The molecular basis by which genetic variation in MED12 predisposes to behavioral

dysfunction is not clear, but is suggested by recent advances, highlighted earlier, that
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implicate MED12 in critical aspects of neural development. MED12 is critically implicated

in the development and specification of certain neuronal subtypes, including those of the

dopaminergic class proposed to be a driving force in positive symptom psychosis such as

that associated with the HOPA12bp polymorphism [48, 85]. Furthermore, MED12 is an

essential transducer of both the canonical Wnt and Shh signaling pathways critical for

dopaminergic neuronal differentiation [39, 40]. Finally, MED12 is implicated in neuronal

cell fate specification through its functional interaction with the neuronal gene silencer

REST/NRSF [58]. It is therefore possible that deficits in the number and/or function of

dopaminergic and perhaps other neuronal subtypes could contribute to the aberrant

behavioral phenotypes associated with pathological sequence variations in MED12.

3. Mediator and Cancer

Given the established role of Mediator as an integrative hub linked to a variety of signaling

pathways that govern growth, development, and differentiation, it is not surprising that many

of its constituent subunits have, in recent years, been increasingly linked with cancer. In the

ensuing section, recent findings concerning associations between specific cancers and

individual Mediator subunits are highlighted, with particular emphasis accorded those for

which mechanistic relationships as opposed to strictly correlative associations have been

established.

3.1. Hormonal Cancers

3.1.1. MED1 and Breast Cancer—The first clearly established link between Mediator

and cancer was the association of MED1 with breast cancer. Breast cancer is the most

commonly diagnosed cancer and the leading cause of cancer deaths among women

worldwide [86]. Among a variety of established etiological factors linked to breast cancer,

the steroid hormone estrogen (17-β-estradiol; E2) has long been implicated in disease

pathogenesis. Numerous animal studies have revealed that E2 can induce and promote breast

cancer, while estrogen ablation therapy or the administration of antiestrogens can oppose

these effects [87, 88]. The physiological effects of E2 in the breast are mediated by cognate

receptors that are expressed as two structurally related subtypes, estrogen receptor α (ERα)

and β (ERβ) [89, 90]. Both receptors bind E2 with high affinity, and these associations

trigger conformational changes in the receptors that enable direct association with

coactivator complexes, including Mediator, sufficient to promote high levels of

transcriptional activation from target genes bearing cis-acting enhancer sequences to which

the receptors bind [89, 91]. ERα is the predominant receptor isoform expressed in breast

cancer cells, and approximately 70% of breast cancer patients score positive for ERα at

diagnosis [92, 93]. ERα is therefore a dominant etiologic and valuable predictive factor with

respect to breast cancer development and hormone sensitivity status.

Following the discovery that Mediator was a functionally requisite coregulatory complex for

diverse members of the nuclear receptor superfamily, including ERα, MED1 was firmly

established as the principle direct receptor interface in Mediator [94–96]. Both in vitro

transcription-based functional assays and in vivo chromatin association studies revealed that

Mediator is recruited by enhancer-bound ERα to facilitate transcription preinitiation

complex formation and high-level transcript synthesis from ERα-target genes [94, 97–99].
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Furthermore, gene-targeted mice expressing an ERα-binding defective MED1 mutant were

found to exhibit blunted estrogen-responsive gene expression and defects in mammary gland

development and differentiation that partially phenocopy those arising from genetic ablation

of ERα itself [11, 100]. Taken together, these observations establish MED1/Mediator as a

physiologically important coactivator of ERα.

On the basis of its close functional relationship with ERα, Zhu et al. examined MED1 in

ERα-positive primary human breast tumors in an effort to establish whether its expression

levels may be correlated with breast cancer occurrence [96]. Notably, MED1 mRNA levels

were found to be overexpressed in ~50% of breast tumors studied; in approximately one-half

of such tumors, overexpression was determined to derive from amplification of the MED1

gene located on chromosome 17q12. Thus, MED1 overexpression in breast tumors may

occur by mechanisms both dependent and independent of copy number gain. Taken

together, these analyses suggest that MED1, as an obligate ERα coactivator required for

proper mammary epithelial differentiation, may contribute to breast carcinogenesis.

Emerging studies suggest that MED1 may additionally participate in ERα-independent

signaling pathways that impact breast cancer cell growth. The adipocytokine leptin is the

product of the obese (OB) gene and a neuroendocrine peptide with pleitropic activities,

including appetite control, reproductive function, and angiogenesis, among others [101–

103]. Notably, leptin has also been identified as an endogenous growth factor for breast

cancer, providing a possible basis to explain, at least in part, the established epidemiological

link between obesity and enhanced breast cancer risk in postmenopausal women [104–107].

Recently, leptin was shown to promote breast cancer cell growth via activation of the JAK/

Stat3 axis and downstream activation of the CYCLIN D1 promoter through a mechanism

involving MED1-dependent recruitment of Mediator [108]. Thus, MED1 appears to play an

essential role in leptin-induced activation of Cyclin D1 expression and breast cancer cell

proliferation.

3.1.2. MED1 and Prostate Cancer—Prostate cancer is the second most frequently

diagnosed cancer and the sixth leading cause of cancer deaths in men worldwide [86].

Prostate cancer onset is driven by circulating androgens through their interactions with the

androgen receptor (AR), a ligand-activated transcription factor that promotes high levels of

transcription from androgen-responsive genes that control prostate cancer cell growth and

survival [109, 110]. Analogous to its relationship with other nuclear receptors, MED1 has

been shown to be a crtical transducer of AR-dependent signaling. Liganded AR binds

Mediator in a MED1-dependent manner and similar to liganded ERα, but with distinct

temporal kinetics, recruits MED1/Mediator to facilitate chromosomal looping and RNA

polymerase II tracking between distal enhancers and proximal promoter regions within AR-

target genes, enhancing their androgen-dependent expression [110–113]. Based on the clear

functional relationship between AR and MED1, Vijayvargia et al. examined MED1

expression in primary human prostate cancers [111]. Notably, MED1 was found to be

significantly overexpressed in 50% of prostate cancers examined, suggesting a possible role

for MED1 in prostate cancer progression. Unlike breast cancers, in which amplification of

chromosomal 17q12 contributes prominently to enhanced MED1 expression, this region is

not significantly amplified in prostate cancer, and other studies have reported no significant
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increase in MED1 mRNA levels in primary human prostate cancers [114]. It has been

speculated, though not yet proven, that MED1 overexpression in prostate cancer cells could

derive from phosphorylation-induced protein stabilization. Thus, phosphorylation of MED1

by mitogen activated protein kinase (MAPK), itself constitutively activated in many prostate

cancers, increases MED1 protein stability, half-life, and interaction with RNA polymerase II

and other Mediator subunits, suggesting that MED1 phosphorylation could enhance both its

expression and function in the prostate cancer setting [115, 116]. As it has recently been

shown that MED1 phosphorylation is a critical determinant of transcription factor-mediated

chromosomal looping between distal enhancer and proximal promoter elements, it will be

important to determine the role of MED1 phosphorylation as a potential mechanistic link

between MED1 overexpression and enhanced function in prostate cancer [117]. Notably,

MED1 is also overexpressed in and functionally required for proliferation of some

androgen-independent (AR-negative) prostate cancer cell lines and primary tumors [112]. It

will therefore be of critical interest to establish the role of MED1 in AR-independent

pathways that control prostate cancer cell growth and survival.

3.1.3. MED28 and Breast Cancer—Along with MED1, MED28 has also been linked to

breast cancer, and an emerging body of literature concerning MED28 function suggests

possible bases for its involvement in this disease. Originally identified as an endothelial cell

gene stimulated by tumor-conditioned media and thus named endothelial-derived gene 1

(EG-1), its encoded protein was subsequently determined to be a bona fide Mediator subunit

and so named MED28 according to the unified Mediator nomenclature [65, 118, 119].

Based on the angiogenic nature of human tumors and its initial endothelial origins, MED28

(EG-1) expression was initially examined in breast, colon, prostate, and lung cancers.

MED28 expression was found to be elevated in cancerous as opposed to benign epithelial

cells of the breast, colon, and prostate, with little differential expression observed between

normal and cancerous lung epithelia [120]. More recently, MED28 expression was evaluated

on a population basis using a larger breast cancer patient sample, and the association of

MED28 expression with histopathological subtypes, clinicopathological variables, and

disease outcomes was assessed. MED28 protein levels were found to be elevated in ductal

carcinoma in situ and invasive ductal carcinoma of the breast relative to nonmalignant breast

epithelium of glandular and ductal origin. MED28 protein levels were found to be elevated

in ductal carcinoma in situ and invasive ductal carcinoma of the breast relative to

nonmalignant breast epithelium of glandular and ductal origin [121]. Furthermore, MED28

expression proved to be a strong prognostic indicator of disease outcome, with higher

MED28 expression associated with a greater risk of death in both early and late stage breast

cancers [121].

Consistent with a role for MED28 in breast carcinogenesis, its overexpression or knockdown

was found to enhance or inhibit breast cancer cell proliferation, respectively both in vitro

and in vivo [121, 122]. Notably, MED28-mediated control of breast cancer cell growth was

independent of estrogen receptor (ER) status, and MED28 expression in human breast

tumors was found to be significantly associated with ER negativity [121–123]. Thus, unlike

MED1, functional collaboration with ER cannot explain how MED28 controls breast cancer

cell proliferation and tumor growth. In this regard, it is notable that MED28 was
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independently identified as a binding partner of the cytoskeletal neurofibromatosis 2 (NF2)

tumor suppressor merlin [124]. Furthermore, MED28 appears to partition between the actin

cytoskeleton in association with merlin, and the nucleus as a resident subunit of the

Mediator head module. Based on its bipartite compartmentalization dynamics and unique

protein interaction profile, it has been proposed that MED28 might function to couple

receptor-mediated signals at the cell surface to gene expression changes through cytoskeletal

reorganization. Mechanistically, this could involve signaling crosstalk between the Src

tyrosine kinase and mitogen activated protein kinase (MAPK) families, since cytosolic

MED28 was found capable of stimulating both pathways and catalytically active c-Src is

known to activate MAPK signaling [121, 125–128]. Significantly, both pathways are

implicated in breast cancer development and/or progression [129, 130]. Further work will be

necessary to clarify whether and how crosstalk between the Src and MAPK signaling

pathways possibly contributes to ER-independent control of breast cancer cell growth by

MED28.

3.2 Non-Hormonal Cancers

3.2.1. CDK8 and Colon Cancer—Worldwide, colon cancer is the second and third most

commonly diagnosed cancer in women and men, respectively, and a leading cause of

cancer-related deaths [86]. While early surgical excision of non-invasive tumors is

essentially curative, few effective treatment options are available for advanced stage disease,

which carries a grave prognosis. Colon tumors arise from intestinal crypts, from whence

progenitor-derived epithelial cells commence differentiation as they initiate their ascent up

intestinal villi [131]. Maintenance of the crypt progenitor phenotype is dependent upon the

expression of genes programmed by the canonical Wnt/β-catenin pathway, and constitutive

activation of this pathway is a driving force in the immortalization of intestinal epithelia and

the initiation of colon cancer [131–134]. While the upstream events in this pathway linked to

signal-induced stabilization and activation of β-catenin in the cytoplasm have been

deciphered in considerable detail, the mechanistic basis by which β-catenin activates gene

transcription upon translocation into the nucleus is comparably poorly understood. In this

regard, a series of recent studies implicating the Mediator kinase module in Wnt/β-catenin

signaling have converged to clarify these mechanistic issues, and further identify potential

therapeutic targets in β-catenin driven cancers.

The Mediator kinase module was initially implicated in Wnt/β-catenin signaling based on

the observation that the β-catenin C-terminal transactivation domain physically and

functionally targets the MED12 interface in Mediator to activate transcription [40].

Subsequently, the Drosophila homologs of MED12 and MED13 were shown to be physical

and functional targets of the essential β-catenin co-activator Pygopus, suggesting a model in

which the two principal activation surfaces within the β-catenin transcriptional complex, the

C-terminus of β-catenin and the N-terminal homology domain in Pygopus, both target

MED12 within the Mediator kinase module [135]. These observations have important

mechanistic implications for β-catenin-dependent gene activation because MED12 fulfills

important architectural and biochemical roles within the kinase module of human Mediator.

Structurally, MED12 effectively links CDK8/CyclinC with Mediator, since MED12

depletion leads to reductions in the steady state levels of CDK8/CyclinC as well as their
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incorporation into Mediator [40, 58]. Biochemically, MED12 activates the CyclinC-

dependent CDK8 kinase [136]. Taken together, these considerations suggest the

involvement of enzymatically active CDK8 in β-catenin-driven gene regulation, a possibility

since confirmed by recent work notable for its revelation of a direct link between the kinase

module in Mediator and colon cancer.

In an effort to identify within the human kinome prospective modulators of β-catenin

important for colon cancer, Firestein et al. conducted parallel high-throughput RNAi-based

loss of function screens to identify kinases/phosphatases required for both β-catenin

transactivation and colon cancer cell proliferation [137]. Among nine candidate genes found

to be required for both functions, only CDK8 on chromosome 13 was observed to reside in a

region of copy number gain in a significant subset of colon cancers. Further work revealed

that CDK8 kinase activity was required for cell transformation as well as β-catenin-regulated

target gene transcription and colon cancer cell proliferation. These observations thus identify

CDK8 as a colon cancer oncogene and mechanistically implicate its kinase activity in β-

catenin-driven gene regulation and colon carcinogenesis [137]. Because β-catenin binds

directly to MED12, but not to CDK8 (or CyclinC) [40], β-catenin transactivation potential

must be transduced through MED12 to CDK8, most likely via MED12-dependent

stimulation of CyclinC-dependent CDK8 kinase activity. Future studies will be necessary to

confirm this prediction and to identify CDK8 substrates downstream of β-catenin important

for it oncogenic activity.

In addition to its role as a direct transducer of Wnt/β-catenin signaling, there is also

convincing evidence that CDK8 may indirectly stimulate β-catenin activity through

suppression of negative β-catenin regulators. Using a genetic screen in Drososphila to

identify in vivo regulators of E2F–dependent apoptosis, Morris et al. recently uncovered an

antagonistic relationship between E2F1 and β-catenin [138]. Either protein was found

capable of suppressing the phenotypic effects wrought by overexpressing the other, and

importantly, E2F1-induced apoptosis was found to be dependent upon its ability to inhibit β-

catenin-dependent gene activation. In a consequent genetic screen for upstream regulators of

E2F1, CDK8 was identified as a potent E2F1 suppressor. Subsequent biochemical analysis

revealed that CDK8 kinase activity could suppress the inhibitory effect of E2F1 on β-

catenin-dependent transcription. Taken together, these studies uncover twin regulatory

functions for CDK8 within the Wnt/β-catenin pathway- one as a direct transducer of β-

catenin-dependent gene activation and the other as an indirect suppressor of negative

pathway regulators [137, 138]. It is likely that both of these activities contribute to the

function of CDK8 as a colorectal cancer oncogene.

3.2.2. CDK8 and Melanoma—Melanoma is the least common but the most deadly form

of skin cancer, accounting for only ~4% of skin cancer cases but >75% of skin cancer deaths

[139]. Over the past 40 years, the incidence of melanoma has increased more rapidly than

any other cancer [140]. While highly curable in its early stages, there is no effective

treatment for metastatic melanoma, and a greater appreciation of the genetic and epigenetic

changes involved in melanoma progression is therefore essential to advance these limited

options. Recent work in this regard has uncovered a new link between CDK8 and

melanoma, a finding with significant prognostic and therapeutic implications, and one that
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also provides evidence of an expanding role for the Mediator kinase domain in the etiology

of human cancers.

To explore histone variant exchange as a possible epigenetic determinant of melanoma

progression, Kapoor et al. probed the H2A variant profile, including macroH2A (mH2A)

and H2A.Z, H2A isoforms typically associated with transcriptionally silent and active

chromatin states, respectively, during the course of melanoma progression [141]. Strikingly,

this analysis revealed a global decrease in mH2A expression, along with chromatin

decondensation, coincident with a reciprocal increase in H2A.Z expression, suggesting

possible H2A variant exchange during the course of melanoma progression. Notably, forced

reduction of mH2a in minimally malignant melanoma cells enhanced their proliferative and

migration capacities in vitro as well as their growth and metastatic potential in vivo,

consistent with a role for mH2A as a suppressor of malignant melanoma. To assess the

transcriptional consequences of chromatin decondensation elicited by mH2A loss, Kapoor et

al. profiled gene expression changes in mH2A knockdown cell lines, and identified CDK8

as an mH2A–repressed gene and, thus, a potential mediator of malignant melanoma

progression. Accordingly, CDK8 knockdown in mH2A–depleted melanoma cells

suppressed the proliferative advantage provoked by mH2A loss, and an inverse correlation

was observed between mH2A and CDK8 expression in melanoma patient samples.

Together, these findings implicate CDK8 as a major effector of mH2A–mediated melanoma

progression [140].

The molecular basis by which CDK8 promotes melanoma progression is presently unclear.

As a critical transducer of Wnt/β-catenin signaling, CDK8 could enable this pathway, which

is constitutively activated in melanoma [142]. However, if this is the case, the mechanistic

basis by which CDK8 mediates β-catenin-dependent gene activation and cell proliferation

must fundamentally differ between melanoma and colon cancer, since CDK8 kinase activity

is irrelevant in the former but indispensable in the latter [137, 141]. Future studies focused

on CDK8 function and regulation in melanoma will undoubtedly help to clarify these

intriguing distinctions. Interestingly, MED1 has also recently been implicated in melanoma

progression. MED1 expression was found to be inversely correlated with degree of

melanoma cell tumorigenicity, with high and low MED1 expression levels observed in

melanoma cells of low and high tumorigenic potential, respectively [143]. Furthermore,

MED1 depletion in non-tumorigenic melanoma cells increased their invasive properties in

vitro as well as their tumorigenic potential in vivo, with no effect on their proliferative

capacities [143]. Finally, enhanced tumorigenicity triggered by MED1 suppression was

accompanied by expression changes in established melanoma invasion genes, implicating

MED1 in regulation of gene expression programs important for melanoma progression

[143]. Whether and how MED1-dependent gene expression networks important for

melanoma progression crosstalk with those under control of mH2A and CDK8 will

represent an important area of future inquiry.

3.2.3. Other Mediator Subunits and Cancer—Mediator has been implicated in a

growing list of additional human malignancies based on association studies linking aberrant

expression of its constituent subunits with a variety of different cancers. In most instances,

detailed molecular insight sufficient to explain how Mediator contributes to tumor
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development and/or progression is lacking. Therefore, these studies are only briefly outlined

below.

In addition to its well-established relationship to breast and prostate cancers, MED1 has

been linked to lung cancer. Yun et al. recently identified MED1 expression in ~1/3 of human

lung adenocarcinomas surveyed, and determined that MED1 expression is positively

associated with more favorable histological subtypes, fewer lymph node metastases, positive

ERβ receptor status, and enhanced survival [144]. Very recently, MED19, a key

architectural component of the Mediator middle module, has been linked to lung, bladder,

and breast cancers. Consistent with the expression profile underlying its initial discovery as

a lung cancer metastasis related protein (LCMR1), MED19 is overexpressed in lung, as well

as in bladder and breast tumors; in the latter, MED19 expression was significantly positively

correlated with high tumor grade [65, 145–148]. Notably MED19 depletion reduced

proliferation and colony formation of lung, bladder, and breast cancer cells in vitro as well

as the tumorigenicity of lung and bladder cancer cells in vivo [145–147]. Thus, by

mechanisms not yet established, MED19 appears to be an important regulator of lung,

bladder, and breast tumorigenesis.

MED29, the human homolog of the Drosophila Doublesex coactivator Intersex, was

recently found to be recurrently amplified and overexpressed in a subset of pancreatic

cancers characterized by chromosomal 19q13 gain [149–152]. MED29 depletion in

pancreatic cancer cells with high endogenous expression due to gene amplification was

observed to potentiate apoptosis and attenuate oncogenic phenotypes in vitro, including

proliferation, colony formation, cell migration, and invasion, thus revealing MED29 to be an

essential determinant of pancreatic cancer cell growth and survival [151, 153].

Unexpectedly, forced overexpression of MED29 in pancreatic cancer cells with low

endogenous expression levels also reduced cell proliferation in vitro as well as tumor growth

in vivo, and triggered concordant transcriptional changes in cell cycle regulatory genes

[153]. Together, these findings imply complex, and possibly context-dependent, dual

oncogenic and tumor suppressive properties for MED29 in the regulation of pancreatic

tumorigenesis.

Finally, at least two Mediator subunits, MED1 and MED23, have been implicated in

suppression of tumor metastases. Loss of MED1 expression in lung carcinoma or MED23 in

malignant melanoma, the latter through chromosomal deletion and loss of heterozygosity,

was found to be associated with diminished promoter activation and reduced expression of

the metastasis suppressors DAPK1 and KiSS-1, respectively [154, 155]. Mechanistically,

tumor-specific loss of MED1 or MED23 depletes an interface in Mediator for the C/EBP-β

or Sp1 transcriptional activators that drive expression of DAPK1 and KiSS-1, respectively

[154–156]. Thus, pathologic reductions in the levels of key coactivators can drive cancer

progression through diminished production of downstream suppressors of tumor metastases.

4. Conclusions and Future Perspectives

Functional and comparative genomics analyses have revealed a deep evolutionary origin for

the multiprotein Mediator as a central conduit of regulatory information that converges on
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eukaryotic protein coding gene promoters [4]. These analyses suggest the presence some 1–

2 billion years ago of 17-subunit core “protocomplex” that served as structural framework

upon which additional Mediator subunits have been added, rearranged, and occasionally

duplicated during evolution to yield the unique species-specific Mediator assemblies present

today. The diversification and expansion in both the number and sequence of Mediator

subunits during the course of eukaryotic evolution represents a two-edged sword. While it

very likely contributed to the expanding genetic circuitry of increasingly complex

multicellular organisms, it also undoubtedly introduced new points of ontogeneic and

oncogenic susceptibility. Given its central role as an integrative hub for diverse

developmental signaling pathways, we expect the list of human diseases linked to mutation

or dysregulation of Mediator subunits to continue its rapid expanse, and likely encompass

the range of physiological systems in which Mediator is an indispensable component.

Further, we also expect an increase in the number of reported virus-Mediator interactions, an

emergent area of considerable interest and direct relevance to human disease. Since initial

observations that human Mediator is a physical and functional target of the adenovirus E1A

and herpes simplex virus VP16 transactivator proteins, a growing list of human pathogenic

viruses, including Kaposi’s sarcoma associated herpesvirus, varicella-zoster virus, and

bunyamwera virus, have been shown to target Mediator and thus reprogram the host cell

transcription machinery for purposes of viral latency, immune evasion, or lytic replication

[28, 70, 157–164]. Fortunately, as a direct transducer of oncogenic and viral pathogenic

induced signaling, we may also expect that Mediator and its constituent subunits will hold

important keys to future therapeutic intervention in a range of human pathologies.
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Highlights

1. Mediator subunits are associated with human developmental defects.

2. Neurodevelopmental and behavioral disorders has been linked to Mediator

3. Dysregulation of Mediator subunits are linked to cancer development and

progression.

4. Mediator kinase module is implicated in both cancer and neuropsychiatric

illness.

5. Mediator is potential therapeutic target for a range of human pathologies.
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TABLE 1

Molecular Disposition of Human Mediator Subunits Linked to Pathological Disorders

Disease/Disorder
Mediator
Subunit Molecular Disposition References

NEURODEVELOPMENTAL DISORDERS

X-Linked Mental Retardation FG syndrome MED12 missense mutation (R961W) [37]

Syndromes Lujan syndrome MED12 missense mutation (N1007S) [38]

Infantile Cerebral and Cerebellar Atrophy MED17 missense mutation (L371P) [25]

Autosomal recessive axonal Charcot–Marie–Tooth disease MED25 missense mutation (A335V ) [20], [21]

Congenital Retinal Folds, Microcephaly, and Mental
Retardation

CDK19 haploinsufficiency (pericentric inversion) [59]

CARDIOVASCULAR DISORDERS

Transposition of the Great Arteries (TGA) MED13L haploinsufficiency (chromosomal translocation) [64]

MED13L missense mutation (E251G; R1872H; D2023G) [64]

22q11.2 Deletion Syndrome MED15 deletion [69], [71]

BEHAVIORAL DISORDERS

Schizophrenia; Psychosis MED12 polymorphism (HOPA12bp; HOPA−15bp) [78–80]

CANCER

Bladder MED19 overexpression [146]

Breast MED1 overexpression (with/without gene amplification) [96]

MED19 overexpression [147]

MED28 overexpression [120], [123]

Colon MED28 overexpression [120]

CDK8 overexpression (gene amplification) [137]

Lung MED1 reduced expression [144], [155]

MED19 overexpression [145]

Melanoma MED1 reduced expression [143]

MED23 loss of heterozygosity (chromosomal deletion) [154]

CDK8 overexpression (secondary to mH2A loss) [141]

Pancreas MED29 overexpression (gene amplification) [151], [153]

Prostate MED1 overexpression (without gene amplification) [112], [114]

MED28 overexpression [120]
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