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Climate-driven changes in biotic interactions can profoundly alter ecological

communities, particularly when they impact foundation species. In marine

systems, changes in herbivory and the consequent loss of dominant habitat

forming species can result in dramatic community phase shifts, such as

from coral to macroalgal dominance when tropical fish herbivory decreases,

and from algal forests to ‘barrens’ when temperate urchin grazing increases.

Here, we propose a novel phase-shift away from macroalgal dominance

caused by tropical herbivores extending their range into temperate regions.

We argue that this phase shift is facilitated by poleward-flowing boundary

currents that are creating ocean warming hotspots around the globe, enabling

the range expansion of tropical species and increasing their grazing rates in

temperate areas. Overgrazing of temperate macroalgae by tropical herbivor-

ous fishes has already occurred in Japan and the Mediterranean. Emerging

evidence suggests similar phenomena are occurring in other temperate

regions, with increasing occurrence of tropical fishes on temperate reefs.
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Figure 1. Conceptual model of fish control of macroalgal biomass on coral reefs, unimpacted and ‘tropicalized’ temperate reefs. Proposed mechanisms shifting
macroalgal-dominated temperate reefs to ‘tropicalized’ systems are in italics. Black arrows of different widths symbolize dissimilar levels of herbivory. Faded macro-
algae represent their decline in tropicalized systems owing to: (i) direct overgrazing by browsers, or (ii) prevention of recovery by grazers and scrapers when other
sources of stress first initiate macroalgal decline.
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1. Introduction
Understanding and predicting the impacts of climate change

is now a central theme in ecology. Climate-related changes in

temperature, rainfall patterns, frequency of extreme weather

events and, in marine systems, altered ocean circulation and

acidification, can all affect the physiology, distribution and

phenology of organisms [1]. Such direct effects of climate

change are well documented in both terrestrial and marine

systems [2,3].

Climate change can also indirectly affect organisms

by altering biotic interactions, which can have profound

consequences for populations, community composition and

ecosystem functions [4]. Indirect effects may occur: (i) via

generation of new biotic interactions, as range-shifted species

appear for the first time in naive communities [5]; (ii) by

removing existing interactions when species shift out of

their existing range [6]; or (iii) by modulating key behaviour-

al, physiological or other traits that mediate species

interactions [3]. When climate-driven changes in biotic inter-

actions involve keystone or foundation species, impacts can

cascade through the associated community [4].

Marine communities are thought to be more strongly

regulated by top-down forces (consumers) than terrestrial

communities [7], and climate-driven modulation of biotic inter-

actions between consumers and their prey could therefore

strongly impact marine systems. Herbivory is especially intense

in marine environments, with approximately 70% of benthic

primary production being consumed by herbivores globally

[8]. Changes in herbivory in marine systems can cause com-

munity phase shifts in which the dominant habitat-forming

organisms are eliminated, or replaced by a completely different

group. Classic examples are found in tropical coral reefs, where

a decrease in herbivory leads to a shift from coral- to algal-domi-

nated reefs [9], and in temperate algal forests, where an increase
in herbivory by sea urchins leads to deforested barrens [10].

Ocean warming has been implicated as a factor for both of

these phase shifts [5,10].
Here, we propose a novel phase shift in coastal marine

systems, driven by changes to herbivory linked to worldwide

ocean warming: the potential deforestation of temperate algal

forests and decline in temperate seagrass beds as tropical her-

bivores expand their ranges polewards (figure 1). This

expansion exposes temperate macrophytes to high densities

and diversity of tropical vertebrate herbivores that are

capable of removing 100% of algal primary production on

tropical coral reefs [11]. We first consider the oceanographic

conditions that create ocean warming hotspots around the

globe, highlighting the role of western boundary currents

(WBCs) that transport warm tropical water into temperate

regions. We then review range shifts of tropical herbivorous

fishes and their effects on temperate macroalgal forests and

seagrass meadows at these hotspots. Potential mechanisms

for this novel herbivore-mediated phase shift are discussed,

focusing on the functional diversity of consumers and pri-

mary producers, novelty effects and chemical defences. We

then consider how changes in marine herbivory interact

with other climate-mediated stressors to facilitate macrophyte

declines and the tropicalization of temperate communities.

Finally, the broader implications and societal impacts of this

novel phase shift are examined in relation to food security,

conservation and management.
2. Poleward boundary currents, other ocean
warming hotspots and their consequences
to species distribution and abundance

A large portion of the ocean has undergone significant

warming over the past century that has been attributed to

anthropogenic climate change [12]. There are however consider-

able regional differences in the rate of warming, with localized

areas of enhanced warming commonly referred to as hotspots

[13]. A common feature across many ocean temperature

datasets is that during the twentieth century, temperate regions
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Figure 2. World map showing schematic of large-scale circulation, shifts in herbivorous fishes and ecological impacts in broad regions where emerging signs of the
tropicalization of temperate marine communities have been recorded. Panels (a,b) and (e – g) highlight western (and eastern; d ) boundary currents (depicted as
arrows) that have been associated with ocean warming hotspots. Panel (c) shows the eastern Mediterranean region and the Suez Canal (dashed arrow). Loss of
macrophytes is depicted with crosses symbolizing overgrazing of Ecklonia spp. by Kyphosus spp., Siganus spp. and C. japonicus in Japan (a); decline of Ecklonia
radiata and potential overgrazing by Kyphosus spp. and Siganus spp. in western (d ) and eastern (e) Australia, and loss of Cystoseira spp. in the Mediterranean owing
to overgrazing by Siganus spp. (c). Increased herbivory by range-shifting parrotfish in the Gulf of Mexico is symbolized with a ‘plus’ symbol and a dashed black arrow
(b). Tropical herbivorous fishes have been observed shifting their distribution in southeastern America ( f ) and southeastern Africa (g). See the electronic supplementary
material, table S1 for a full list of range-shifting species and documented impacts. (Online version in colour.)
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along poleward-flowing WBCs (figure 2) have warmed two to

three times faster than the global mean (figure 3a) [14]. Regions

with continuous tropical–temperate coastlines that are strongly

influenced by WBCs—Japan, eastern USA, eastern Australia,

northern Brazil and southeastern Africa—are thus potential

hotspots for biological change as organisms respond to the

warming of these coastal waters (electronic supplementary

material, table S1).

Enhanced warming of temperate coastlines by WBCs is

associated with a stronger poleward transport of warm

low-latitude water driven by changes in the basin-wide

wind field. In the Southern Hemisphere in particular, these

wind changes have been tied to stratospheric ozone depletion

and increased greenhouse gas concentrations [15]. Most state-

of-the-art climate models incorporating these drivers (which

form the Coupled Model Intercomparison Project v. 5,

CMIP5; [16]) are able to reproduce many of the observed fea-

tures for these trends in sea surface temperature (figure 3b).

Model projections for the twenty-first century suggest that

certain western boundary regions will continue to warm faster

than the global average (figure 3c) probably forcing significant

biological change.

In addition to WBCs, other oceanographic features also

transport tropical water towards temperate regions. The pole-

ward-flowing Leeuwin current along the coast of western

Australia is a prime example (figure 2d ). In 2011, a strength-

ening of this current caused a marine ‘heat wave’ in which

the coastal waters along much of west Australia increased

by 2–48C for approximately two months [17]. Connectivity

can also be altered substantially by humans, as with the

opening of the Suez Canal that now allows connections

between the previously isolated tropical Indo-Pacific waters

and the Mediterranean Sea.
Changes in ocean circulation influence the distribution of

marine species not only by shifting thermal zones [13], but

also by affecting dispersal patterns [5]. Most coastal species

have pelagic life-history stages (e.g. larvae, spores), whose abun-

dance and distribution patterns are strongly influenced by

coastal boundary currents such as WBCs [18]. This strongly

influences recruitment and connectivity of fishes, macroalgae

and other organisms [18]. Given the relatively low (or no) moti-

lity of many benthic organisms as adults and the restricted home

ranges of most coastal fishes [19], the effects of altered circulation

on larval dispersal can be considerable. There is now strong

evidence for enhanced dispersal and range expansions of species

from several intensifying WBCs, such as the East Australian

Current and the Kuroshio Current (electronic supplementary

material, table S1) [5,20]. Nevertheless, other factors such as

warmer background temperatures may also affect growth rates

and settlement times of tropical larvae, and consequently may

also modulate future dispersal trajectories.
3. Intrusion of tropical herbivorous fishes into
temperate systems and impacts on temperate
algal and seagrass beds

The distributions of many marine fishes are shifting poleward

[2,20], impacting world fisheries and causing a global ‘tropica-

lization’ of catch [21]. An increase in seawater temperatures

and/or the poleward intensification of ocean currents has

been linked to the intrusion of tropical fishes into temperate

waters in all regions influenced by poleward boundary cur-

rents (electronic supplementary material, table S1): Japan

(figure 2a; [22,23]), southeastern USA (figure 2b; [24,25]),
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western (figure 2d; [17,26]) and eastern Australia (figure 2e;

[27]), northeastern South America (figure 2f; [28,29]) and

South Africa (figure 2g; [30]). Intrusions include key herbivores
from coral reef systems (see the electronic supplementary

material, table S1 for a detailed species list), such as the unicorn-

fish Naso unicornis [22,27], numerous species of Acanthurus
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Figure 4. Underwater photographs from Tosa Bay (Southern Japan) showing: (a) well-developed Ecklonia cava bed in the early 1990s; (b) overgrazed E. cava bed
(‘isoyake’) in October 1997; (c) rocky barren area in January 2000; (d ) coral communities present in January 2013. Photographs (a,d) and (b,c) were taken from sites
,50 m apart; the distance between sites (a – d) and (b,c) is approximately 400 m. The full original distribution of E. cava and its decline in Tosa Bay are reported
by Serisawa et al. [34]. Photograph credits: (a – c) Zenji Imoto and (d ) Yohei Nakamura.
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[23–25,30] as well as many parrotfishes [23–25,28,29] and rab-

bitfishes [23,26]. In addition, tropical herbivorous rabbitfishes

have colonized the Mediterranean Sea via the Suez Canal and

established large populations (figure 2c; [31]).

Grazing by warm-water herbivorous fishes has had the

greatest ecological impacts to date in southern Japan and the

Mediterranean (electronic supplementary material, table S1),

whereas evidence is growing in Australia and the USA (figure 1).
(a) Southern Japan and the ‘isoyake’ phenomenon
Increases in ocean temperature and a rise in the abundance of

tropical fishes have coincided with a dramatic decline in

macroalgal beds in southern Japan over the past three dec-

ades (figure 2a and the electronic supplementary material,

table S1) [32,33]. It is estimated that the mass disappearance

of kelp (Ecklonia spp.) and fucoid (Sargassum spp.) beds in

southern Japan totals several thousand hectares, representing

a loss of more than 40% of the cover of macroalgal beds since

the 1990s [32]. This replacement of algal forests by deforested

barrens is known in Japan as ‘isoyake’ (figure 4).

Tosa Bay in southern Japan (338 N) provides a dramatic

example of a phase shift where a temperate kelp ecosystem

has been tropicalized (figure 4) [23]. In the 1980s, benthic

communities in Tosa Bay were dominated by forests of the

kelp Ecklonia cava [34] (figure 4a). These algal beds declined fol-

lowing persistently warm conditions caused by the 1997 El

Niño southern oscillation event [35]. Remaining populations
showed clear signs of intense herbivory by fishes by the end

of the decade (figure 4b), resulting in denuded substrate, or iso-

yake, by the early 2000s (figure 4c). Over time, kelp forests have

been replaced by reef building corals which now dominate the

benthos (figure 4d) [36].

While multiple mechanisms may interact to produce iso-

yake, increased herbivory combined with the direct effects of

changes in temperature are consistently cited as critical fac-

tors [33,37]. The rabbitfish Siganus fuscescens, the parrotfish

Calotomus japonicus and various kyphosids appear to be the

most responsible for the overgrazing of kelp beds and the cre-

ation of isoyake in southern Japan [33,37]. These tropical and

subtropical species have been present in southern Japan for

more than a century, but their annual grazing rates have

increased dramatically as winter ocean temperatures have

risen [33]. Warmer waters increase grazing rates of tropical

fishes [38], and it is this temperature-mediated increase in

grazing that has been linked to the regional disappearance

of kelp forests in southern Japan [33].

The importance of temperature-mediated fish herbivory in

limiting the development of kelp populations in southern

Japan is confirmed by the habitual use of herbivore-exclusion

cages or nets in management efforts to restore kelp populations.

Using a caging experiment in an isoyake area, Masuda et al.
[39] showed that transplanted kelps only survive throughout

the year when protected from fish grazing, and uncaged

kelp recruits quickly disappear owing to grazing during the

warmer months when herbivory rates are highest, as evidenced
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by bite marks on the fronds and by the persistence of recruits

in cages.

(b) Eastern Mediterranean: a warming sea connected to
the Indo-Pacific via the Suez Canal

The opening of the Suez Canal in 1869 connected the tropical

Indo-Pacific with the temperate Mediterranean Sea, regions

that had been separated since the Oligocene (i.e. 20 Ma) [40].

The canal allowed the Mediterranean Sea to be colonized by

species from the Red Sea (figure 2c) [41]. Following this artifi-

cial introduction, the subsequent range expansion of tropical

species has been strongly influenced by rising temperatures

in the Mediterranean [39,42].

In recent decades, two herbivorous rabbitfishes, Siganus
rivulatus and Siganus luridus have become abundant along the

eastern part of the Mediterranean (electronic supplementary

material, table S1). Experimental evidence shows that these rab-

bitfishes have profoundly transformed shallow rocky reefs,

removing all canopy-forming macroalgae and preventing the

establishment of new algae, shifting the system towards defor-

ested areas covered by a thin layer of epilithic algae and detritus

[31,43]. This shift from productive algal forests to largely

denuded areas has occurred across of hundreds of kilometres,

and has led to a 60% reduction in overall benthic biomass and

40% decrease in species richness [43].

In accordance with thermal tolerance limits of rabbitfish, the

geographical distribution of areas deforested by rabbitfish is

restricted to the southeastern Mediterranean Sea [43]. However,

the Mediterranean basin is warming fast [44], and rabbitfish are

responding by expanding their distribution westwards [41].

This continuing range expansion of tropical rabbitfishes poses

a major threat to shallow water Mediterranean ecosystems,

and demonstrates how the intrusion of tropical herbivores can

dramatically affect temperate algal ecosystems.

(c) Emerging evidence of tropicalization from the USA
and Australia

While the impacts of the intrusion of tropical herbivorous fishes

in other regions are not yet as clear as it is in southern Japan or

the Mediterranean, evidence is building. Warming has been

linked to large increases in the abundance of some herbivorous

fishes in the northern Gulf of Mexico (southeastern USA; elec-

tronic supplementary material, table S1), including a 22-fold

increase in abundance of the parrotfish Nicholsina usta [25],

which consumes seagrass at five times the rate of native grazers

(figure 2b) [45]. Warming has also been linked to increases in the

abundance of other tropical vertebrate herbivores in south-

eastern USA, including juvenile green turtles and manatees

(electronic supplementary material, table S1) [46]. Herbivory

by these species reduces the standing crop of seagrass, increas-

ing energy flux through the grazing food web and reducing

the nursery role of seagrasses for finfish and shellfish (K. L.

Heck 2014, unpublished data).

There is evidence for a decline in kelp forests in tropical–

temperate transition zones in eastern and western Australia,

and some of this appears to be mediated by tropical or subtro-

pical herbivorous fishes (figure 1d,e). In western Australia,

macroalgal foundation species collapsed following an extreme

heat wave event during 2011 [6,17]. Since then, macroalgal forests

have not recovered, and emerging evidence suggests increases in

the abundance of tropical and subtropical herbivorous fishes
are preventing their recovery (T. Wernberg 2014, unpublished

data). In eastern Australia, kelp has disappeared from numerous

warm-edge reefs in the past 5 years even though no discrete

warming events have been recorded, and video footage shows

unequivocal signs of intense fish herbivory in the years previous

to kelp disappearance (A. Verges 2014, unpublished data). The

role and ecological impact of tropical herbivores in these two

temperate regions is currently being quantified.
4. Mechanisms facilitating the tropicalization
of temperate systems by herbivorous fishes

(a) Functional differences between tropical
and temperate herbivorous fishes

The diversity and composition of herbivore communities

determines how well herbivores control tropical macroalgae

[47,48]; this should also hold true for tropical herbivores invad-

ing temperate systems. On tropical reefs, a critical functional

mix of herbivores is needed for suppression of macroalgae

which facilitates coral dominance [47,48]. This includes ‘brow-

sers’ that feed directly upon macroalgae, ‘grazers’ that feed on

algal turfs and prevent the establishment of macroalgae, ‘detri-

tivores’ that remove detritus from associated turfs and facilitate

feeding by grazers, and ‘scrapers’ or ‘excavators’ that remove

the turf and underlying substrate and can also influence macro-

algae by removing recruits [49]. Changes in the relative

abundance of these functional groups alter benthic community

structure. For example, field manipulations of browsers and

grazers in the Florida Keys showed that macroalgae sup-

pressed corals in treatments with single herbivore species,

but that mixed species removed a broader range of macroalgae

and facilitated corals [48].

Variation in feeding within functional groups of herbi-

vores also plays a key role in mediating macroalgal control.

For example, Rasher et al. [47] showed that different species

of macroalgal ‘browsers’ varied in their resistance to macroal-

gal chemical defences and that multiple species within a

functional group are necessary to control algal assemblages.

Thus, increased herbivore diversity increases suppression of

macroalgae on reefs.

Because the taxonomic and functional diversity of herbivor-

ous fishes in temperate systems is low [50], the addition of a

diverse group of tropical fishes to temperate systems should

also more strongly impact temperate macroalgae. The trajectory

and magnitude of this effect is likely to depend on the mix

of invading herbivores. For example, it is unlikely that the

addition of grazers, detritivores or scrapers alone would

remove mature kelp forests. However, if kelp forests are lost

owing to direct grazing by browsers or by other means such

as disease or a heat wave, then these functional groups of herbi-

vores should prevent recovery. Tropical herbivores can thus

strongly influence temperate macroalgae in a dual manner, by

both removing adult thalli (browsers) and by preventing their

re-establishment (grazers, scrapers and excavators).

An increase in the abundance of functionally diverse tropi-

cal and subtropical herbivorous fishes in temperate systems

may therefore decrease the resilience of kelp forests (i.e. their

ability to recover following perturbations). This contrasts mark-

edly with what occurs in tropical systems, where increased

functional diversity of herbivorous fishes increases the ability

of coral reefs to recover from disturbance events [48].
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(b) Functional differences between tropical
and temperate macrophytes

Plant traits strongly influence the impact of herbivory on macro-

phytes in marine ecosystems [8]. Thus, the diversity and

composition of primary producers in the recipient temperate

systems will mediate the impacts of expanding tropical

herbivores. Studies on the palatability of seaweeds [51] from

temperate versus tropical locations indicate that lower lati-

tude plants are better defended chemically and less palatable

than higher latitude plants, although exceptions occur [52].

Additionally, as new herbivores invade, they encounter plants

that have not been selected to resist these herbivores [53]. In

the few experiments where tropical fishes and temperate sea-

weeds or their tissues have been mixed, the temperate

seaweeds have generally been readily consumed [54].

Kelps and fucoids, the main foundation species of temper-

ate rocky reefs, commonly produce phlorotannins, some of

which deter herbivory [55]. However, levels of phlorotannins

in tropical and temperate brown algae vary substantially,

with variation more a function of taxonomy and the specifics

of geography than latitude per se [56]. Herbivores vary substan-

tially in their response to phlorotannins, with some herbivores

avoiding high concentrations [52], whereas others are unaf-

fected [57]. Regardless of this variability in the response of

tropical or temperate herbivores to phlorotannins, the virtual

elimination of kelps from areas of temperate Japan and fucoids

from areas of the Mediterranean by tropical fishes suggests that

phlorotannins were ineffective against these tropical herbivores.

Impacts of expanding tropical herbivores on seagrass

meadows, the main foundation species in temperate soft-

bottom ecosystems, may differ from those on macroalgae,

because up to 50% of seagrass biomass is below the sedi-

ment–water interface and unavailable to herbivorous fishes.

Additionally, exposed blades may be less digestible owing to

their high cellulose content. Thus, tropical herbivorous fishes

may suppress leaf length and above-ground biomass, but not

seagrass survivorship. Additionally, moderate grazing can

stimulate seagrass production [58], suggesting that seagras-

ses may be more grazing tolerant than many macroalgae.

Nevertheless, prolonged, intense herbivory can deplete

below-ground reserves and cause mortality, as evidenced by

tropical herbivores limiting tropical seagrass distribution [59].

(c) Latitudinal- and temperature-mediated changes in
nutritional quality of food sources

Globally, carbon : nitrogen ratios of plants predict the pro-

portion of primary production consumed by herbivores [60]

and macrophytes with higher nitrogen concentrations are fre-

quently preferred by tropical herbivores [45]. Nitrogen content

of plants consistently increases with latitude [61], thus, nitro-

gen-rich, temperate macrophytes may enhance the fitness of

tropical herbivores and exacerbate herbivore persistence and

influence in temperate locations.

Algal-derived detritus is nutritious and targeted by many

tropical herbivorous fishes [62]. Temperature-mediated increa-

ses in dissolved organic matter [63] and bacterial activity

[64] should increase production of particulate organic matter,

resulting in more amorphous and highly nutritious detritus

on temperate reefs. The movement and persistence of tropical

herbivores into temperate reefs may therefore be facilitated by

enhanced nutritional quality of detritus in these systems.
5. How will other effects of climate change
modulate the interaction between temperate
macroalgae and range-shifting tropical
herbivores?

Macroalgae in temperate systems are already subjected to biotic

and abiotic stressors owing to warming and other anthro-

pogenic disturbances. These can affect interactions among

species [65,66], complicating the impacts of intruding tropical

herbivores. Here, we examine how other effects of climate

change may influence macroalgae–herbivore interactions.

(a) Temperature
Increasing temperatures typically have negative impacts on

canopy-forming macroalgae [reviewed in 65], and multiple

lines of evidence suggest that the distribution of cool-water,

habitat-forming macroalgae is already retracting poleward in

response to warming [6,17,66]. In addition to these direct

effects, temperature stress can affect the intensity of top-down

control by herbivores owing to changes in the rates of both

algal growth and consumption [38,67] and/or changes to

macrophyte palatability [65].

Temperate algal abundance and structure may be compro-

mised at their more tropical borders by increased herbivory,

but the global impact of this may be limited by their potential

to expand or increase their abundance at higher latitudes [68].

Indeed, emerging evidence suggests increasing temperatures

may be inhibiting recruitment of some high latitude popu-

lations of herbivorous sea urchins, and this has been linked

to the recent recovery of kelp forests in Norway [69]. However,

this will not be a global effect, as the potential for high latitude

escapes or refugia are limited by the end of continents in many

mid-temperate latitudes [70].

(b) Increased coral – algal interactions
Increased water temperatures are strongly influencing the

distribution of habitat-forming species other than algae,

most notably corals. Although projections of coral species’

distributions in a warmer world are compounded by uncer-

tainties regarding ocean chemistry and local stressors [71],

there is now evidence of poleward range extensions of

corals in several systems influenced by poleward boundary

currents, including Japan, western Australia and eastern

Australia (electronic supplementary material, table S1).

The intrusion of corals into higher latitudes increases the

prevalence of coral–algal interactions in temperate regions

and a shift from algal to coral dominance has been observed

in restricted areas in southern Japan ([36]; figure 4). In tropical

regions, in the absence of herbivores, macroalgae generally out-

compete corals [72]. Herbivores are therefore crucial in

mediating the effects of algae on coral, as the ability of algae

to compete depends on accumulating sufficient biomass to

overgrow corals on tropical reefs [72]. An increase in total

levels of herbivory via the arrival of new consumers is likely

to enhance the establishment of corals in temperate systems,

at the expense of macroalgae.

(c) Macroalgal disease and microbes
A consistent prediction of ocean warming is that higher temp-

eratures alter the abundance, behaviour and distribution of
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pathogens increasing the impact of diseases in marine systems

[73]. Grazing can also facilitate disease by creating infection

sites or otherwise compromising host resistance to consumers

[74,75]. Furthermore, diseased hosts can be more susceptible

to attack by herbivores [74], creating a potential positive feed-

back loop between these two groups of natural enemies.

Consumers are also often vectors of disease [75], so shifts in

the distribution of grazers owing to tropicalization may lead

to greater exposure of hosts to vector-borne pathogens.
 g.org
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6. Socio-ecological consequences of climate-
mediated changes in herbivory

Emerging theory predicts that increased physical stress and

consumer pressure can interact to strongly determine impacts

on the total ecosystem, leading to the local collapse of

foundation species [75]. This has already been observed in mul-

tiple ecosystems, where consumer fronts develop in the areas of

highest physical stress, spreading further subsequently [75].

Here, we propose a similar phenomenon, whereby climate

change acts as a stressor that increases top-down control of

temperate reef communities, eventually leading to the collapse

of macroalgal foundation species and consequent decline in the

diversity of associated biota.

If macroalgae are lost and not replaced, then biodiversity

is likely to decline dramatically. However, if canopy-forming

macroalgae are replaced by corals, then biodiversity may be

retained or increase [76]. In the eastern Mediterranean, a

shift away from macroalgae has led to a loss of over 60% of

benthic biomass and species richness [43]. The ecosystem ser-

vices provided by a new suite of species will change, and

management practices will need to adapt to shifts in resource

use by humans [77]. For example, in southern Japan, the dis-

appearance of kelp habitat has led to the complete collapse of

the abalone fishery, which went from generating 11 million

yen in 1996 to extinction of the fishery by 2000 [34].

A shift towards vertebrate, herbivore-dominated systems

in tropicalized systems may direct a greater proportion of

production into food-based pathways that serve humans.

Herbivorous fishes are a prominent component of tropical

marine systems and are often targeted in a number of tropical

fisheries even when alternative trophic groups remain available

[78]. Range-expanding rabbitfishes are already an important

component of fisheries catches in the eastern Mediterranean

[79]. As tropicalization continues and the diversity of herbivores

in temperate areas increases, it is likely that an even higher pro-

portion of benthic production will be transferred to higher

trophic levels owing to subtle resource partitioning among tro-

pical herbivores [47,48]. Such changes in the distribution of

species are likely to alter fishing patterns and behaviour.
Marine reserves may serve as areas that are more resistant to

species range shifts and tropicalization (e.g. overgrazing by

tropical herbivorous fishes) by building resilience in key tem-

perate communities such as kelp forests and seagrass beds.

For example, no-take marine reserves have already buffered

fluctuations in biodiversity and provided resistance to the initial

stages of tropicalization (i.e. the colonization by subtropical

vagrants) in a warming hotspot off southeastern Australia

[80]. This may be owing to increased predation inside the

reserve, or to differences in biogenic habitat resulting from

cascading effects of protection, which may provide different

settlement cues for warm-affinity fishes outside reserves [80].
7. Conclusion
Climate change influences biotic interactions, leading to cascad-

ing ecosystem-scale effects as species from formerly separated

communities interact. Here, we suggest that a novel, ocean

warming driven phase shift in coastal kelp and macrophyte habi-

tats has now begun, owing to range-shifting tropical herbivores

and overgrazing of macrophyte forests. In two regions—Japan

and the Mediterranean—there is experimental evidence that

the intrusion of tropical herbivorous fishes has contributed to

such a phase shift, resulting in widespread loss of canopy-form-

ing macroalgae. In other temperate regions, oceanographic,

distributional, ecological and fisheries data (electronic sup-

plementary material, table S1) suggest that similar phenomena

are also starting to occur, implying that tropicalization of temper-

ate marine communities could become a global phenomenon.

Such climate-mediated changes in herbivory have the potential

to profoundly alter temperate communities, with cascading

effects for the biodiversity and function of coastal ecosystems,

and significant socio-economic and management implications.
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