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Even genetically distant prokaryotes can exchange genes between them, and

these horizontal gene transfer events play a central role in adaptation and evol-

ution. While this was long thought to be restricted to prokaryotes, certain

eukaryotes have acquired genes of bacterial origin. However, gene acquisitions

in eukaryotes are thought to be much less important in magnitude than in

prokaryotes. Here, we describe the complex evolutionary history of a bacterial

catabolic gene that has been transferred repeatedly from different bacterial

phyla to stramenopiles and fungi. Indeed, phylogenomic analysis pointed to

multiple acquisitions of the gene in these filamentous eukaryotes—as many

as 15 different events for 65 microeukaryotes. Furthermore, once transferred,

this gene acquired introns and was found expressed in mRNA databases for

most recipients. Our results show that effective inter-domain transfers and

subsequent adaptation of a prokaryotic gene in eukaryotic cells can happen

at an unprecedented magnitude.
1. Introduction
In nature, species need to constantly adapt to changing environments, and this

can be achieved by modifying their genetic repertoire to acquire new functions.

Indeed, gene duplications (followed by evolution of new functions) and other

genomic rearrangements have shaped eukaryotic genomes [1]. However, gen-

etic innovation can also result from the acquisition of exogenous genes by

horizontal gene transfer (HGT). Prokaryotes adapt largely by HGT, and strains

of a particular species can differ by large fractions of their genome [2–6].

Long thought to be a prokaryote specialty, HGT is now recognized as a mech-

anism of genetic innovation in eukaryotes as well [7–10]. Genome analysis of

eukaryotes revealed that several genes had been horizontally transferred [11,12],

with important implications for environmental adaptation [13–15]. Indubitably,

HGT can enable acquisition of entirely novel functions, which is more drastic

than the gradual evolutionary processes that rely on modification of pre-existing

genes [16–18] and may enhance ecological opportunities. In this context, the pro-

karyotic gene pool can serve as a large reservoir of potential functions for

eukaryotes [9]. Indeed, it appears that prokaryote-to-eukaryote inter-domain

HGT events are more prevalent than eukaryote-to-eukaryote ones [19]. As

described for the insect Hypothenemus hampei, where inter-domain HGT of a man-

nase-encoding gene from a Firmicute enabled the insect to parasitize coffee berries

[7], the acquisition of a single gene can lead to enhanced competitiveness and eco-

logical specialization. However, inter-domain HGT can involve more than one

gene. Thus, previous studies reported that significant parts of genome, up to 10%

of the gene repertoire of the multicellular rotifer Adineta ricciae [13], had been hori-

zontally acquired. Although these acquisitions resulted from several transfers,

the extent to which a given bacterial gene may undergo inter-domain transfers to

eukaryotes remains unclear.
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The bacterial gene acdS has been evidenced not only in taxo-

nomically contrasted bacteria [20], notably in strains with plant

growth-promotion activity, but also in a few fungi [21–23].

The AcdS enzyme 1-aminocyclopropane-1-carboxylate (ACC)

deaminase (EC 4.1.99.4) can transform the plant’s ethylene

precursor ACC to a-ketobutyrate and ammonia. By degrading

ACC in exudates, plant-interacting bacteria can indirectly

lower ethylene level in roots, thus stimulating root growth and

modulating plant stress resistance [24,25]. In addition to the

acdS gene itself, AcdS catalytic activity was also found in fungi,

namely the Ascomycota Trichoderma asperellum [22], Cyberlind-
nera (formerly Hansenula) saturnus [23], Penicillium citrinum [21]

and Magnaporthe oryzae (M.B., C.P.-C., P.L., Y.M.-L. & D.M.

2013, unpublished data), raising the question of the evolutionary

origin of this gene in eukaryotes.

In this study, we show that the bacterial gene acdS has

been repeatedly transferred to a wide range of eukaryotic

recipients (i.e. fungi and stramenopiles). Phylogenetic analy-

sis pointed to multiple acdS acquisitions, from different

bacterial phyla to different eukaryotes. Ancestral state charac-

ter reconstruction confirmed past occurrence of multiple,

independent transfers of acdS from each of these bacterial

phyla to different types of eukaryotes. Moreover, transferred

acdS genes were effectively transcribed and occasionally

acquired introns in eukaryotic recipients. Altogether, these

results show that prokaryote-to-eukaryote transfer of a

single gene can happen at high frequency, with adaptation

of the transferred gene to its new host cell machinery.
2. Results
(a) acdS prevalence in eukaryotes
We found as many as 65 acdS homologues in eukaryotes—four

in stramenopiles (all oomycetes) and 61 in fungi—after analysis

of 149 sequenced genomes based on the AcdS protein sequence

of the proteobacterium Pseudomonas fluorescens F113. Significant

sequence identity (at least 38% amino acid identity) was evi-

denced between bacterial and eukaryotic AcdS proteins.

Moreover, conservation of nucleotide sequences between bac-

terial and eukaryotic acdS genes was also high (at least 40%

identity). It reached as much as 65% between the actinobacter-

ium Streptomyces violaceusniger Tu4113 and the ascomycotan

M. oryzae 70–15, and 78% between the proteobacterium

Acidovorax radicis N35 and the stramenopile Phytophthora
infestans T30-4. Such gene sequence conservation across two

different domains of life suggests both a common evolutionary

origin and genetic transfer(s) between them.

(b) Distribution of acdS homologues in eukaryotes
Phylogenetic analysis of AcdS protein homologues retrieved by

BLAST showed that eukaryotic AcdS sequences were distribu-

ted in three distinct clades (figure 1; electronic supplementary

material, figures S1–S3). The first clade is rooted by actinobac-

terial AcdS sequences and corresponds exclusively to fungi

(Ascomycota and a few Basidiomycota). The second clade is

rooted by gammaproteobacterial AcdS sequences and only

includes Ascomycota. The third clade is rooted by betaproteo-

bacterial AcdS sequences, and includes a stramenopile

subclade (Phytophthora species) and a fungal subclade. This top-

ology was retrieved both with maximum-likelihood and

Bayesian reconstructions [26] (see the electronic supplementary
material, figure S1). Thus, our results strongly support a bac-

terial origin for acdS eukaryotic homologues, and also indicate

that Actinobacteria, Betaproteobacteria and Gammaproteobac-

teria served as distinct acdS donors for eukaryotes. Fungal

recipients belonged to several taxonomical classes, and different

possibilities may account for the uneven distribution of acdS
homologues in oomycetes and fungi. The first hypothesis is

an ancestral acquisition of the gene followed by multiple

losses in a broad range of eukaryotic lineages. The second

hypothesis entails multiple HGT events, perhaps even between

different types of eukaryotes.

(c) Estimated acdS gains and losses along fungal
evolutionary history

To assess the extent of acdS transfer and loss events, we recon-

structed the ancestral states of acdS presence/absence along

fungal phylogenetic history, using 150 sequenced fungi. For acti-

nobacterial donors, ancestral state reconstruction showed four

supported acquisitions in Basidiomycota, which concerned

Gymnopus luxurians, Schizophyllum commune, Gloeophyllum
trabeum (Agaricomycetes class) and a Cryptococcus ancestor (Tre-

mellomycetes class) (figure 2). Similarly, four acquisitions were

identified for Ascomycota: a recent one in Oidiodendron maius
(Leotiomycetes class), as well as three more ancient ones in the

Eurotiomycetes class ancestor, in the Sordariomycetes class

ancestor and in a Mycosphaerellaceae subclade (Dothideomy-

cetes class). Ancestral state reconstruction for the acdS clade of

betaproteobacterial origin pointed to two recent acdS acqui-

sitions in the Basidiomycota Fomitopsis pinicola SS1 and

Punctularia strigosozonata (Agaricomycetes class), and another

acquisition by an unidentified ancestor of the Dothideomycetes

Hysterium pulicare, Rhytidisteron rufulum and Botryosphaeria dothi-
dea. Complete reconstructions for these two clades can be found

in the electronic supplementary material, figures S4 and S5.

For gammaproteobacterial acdS donors, ancestral state

reconstruction did not provide a clear scenario using

maximum-likelihood reconstruction (see the electronic supple-

mentary material, figure S6), but Bayesian reconstruction

strongly pointed to independent acquisitions in every acdSþ

fungus (see the electronic supplementary material, table S1).

Yet these two reconstructions strongly support the absence of

acdS in the most ancestral nodes for the Saccharomycetes, refut-

ing the hypothesis of a single, ancestral acquisition of the gene.

For each putative ancestral recipient, no case of subsequent

acdS gene loss was detected in the descent, regardless of

whether the gene originated from Actinobacteria, Betaproteo-

bacteria or Gammaproteobacteria. Thus, our results point to

recurrent HGT events of acdS towards oomycetes and fungi.

(d) Functionality and selection patterns of
eukaryotic acdS

Functionality of eukaryotic acdS is indicated by the conserva-

tion of the catalytic function. Indeed, the key residues K51,

Y269, Y295 and E296 needed for ACC deaminase catalytic

activity in the yeast C. saturnus [23] were conserved in all

eukaryote sequences (both in Phytophthora and fungi), as

were the amino acids adjacent to these residues (figure 3).

This highlights the conservation of the bacterial acdS catalytic

function across distant eukaryotic lineages that experienced

independent acdS acquisitions. In addition, direct evidence

for acdS transcription in eukaryotes was also obtained, as
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mining transcript databases allowed the identification of all

or part of acdS mRNA in almost all stramenopiles and

fungi studied (see the electronic supplementary material,

figure S7). This indicated that differences in promoter regions

between bacteria and eukaryotes were not a barrier for

successful genetic transfers.

The lack of acdS deletion and the high AcdS sequence

conservation suggest that this gene confers a selective advan-

tage to microeukaryotes. In addition, comparing relative
fixation rates of synonymous (silent) and non-synonymous

(amino acid altering) mutations showed strong negative

selection (dN/dS ratio , 1) in most species (see the electronic

supplementary material, figure S8), meaning that functional

mutational modifications were selected against. Despite this

purifying selection, positive selection (dN/dS ratio . 1) was

also found in ancestral branches, notably in the Ascomycota

Aspergillus (Eurotiomycetes class), Trichoderma and Fusarium
(Sordariomycetes class), and in the Dothideomycetes class.
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This diversifying selection, which means that functional AcdS

modifications could be selected, is more likely to reflect

sequence adaptation to gene biology in eukaryotes rather

than a true change in protein function. This hypothesis is

strengthened by the conservation of key residues implicated

in the catalytic function of the protein, as well as demonstration

of AcdS enzymatic activity in fungi tested [21–23].
(e) Intron acquisitions in eukaryotic acdS sequences
Unlike in prokaryotes, eukaryotic genes typically display a

combination of introns and exons, and indeed we found

one or several spliceosomal introns (up to eight in the

Basidiomycota G. trabeum) in eukaryotic acdS sequences
(figure 4). Thus, acdS acquisition by eukaryotes was follo-

wed by intron formation(s) in around half the identified

transfers (31 of 65 eukaryotes). Most Sordariomycetes (corre-

sponding to nine distinct taxonomic families) presented a

conserved region of intron insertion, located 186–195 nucleo-

tides from the acdS start codon. Introns were also found in

this region in species belonging to distant taxonomic classes,

such as the Lecanoromycete O. maius Zn and the Eurotiomy-

cete Penicillium marneffei ATCC18224. However, the intron

sequences themselves showed no conservation, except in clo-

sely related species (data not shown). Taken together, the

data point to lineage-specific intronization, which might

have gone on par with acdS evolution and domestication

within these lineages.
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3. Discussion
HGT is a key feature of bacterial evolution [27,28], but recent

studies have also reported HGT events from prokaryotes to

eukaryotes [3,7–10,12]. A significant portion of the genome of

certain eukaryotic species was acquired horizontally [13–15],

yet it was not clear at which order of magnitude such transfers

could take place for a given gene. This work demonstrates that

the bacterial gene acdS is extensively present in filamentous

eukaryotes, based on the recovery of this gene in as many as

44% of the 149 sequenced genomes available. Different pro-

cesses can explain the uneven distribution of genes in a given

lineage, such as convergent evolution [29,30], lineage-specific

gene loss [31,32] or HGT [8,33,34]. In our case, convergent evol-

ution is unlikely as acdS nucleotide sequence identity of

bacterial and eukaryotic homologues (40–78%) is particularly

high, indicating a similar evolutionary origin.

Even though the gene loss hypothesis cannot be fully

rejected, data clearly point to multiple and independent HGT

events for acdS. In particular, eukaryotic acdS homologues do

not form an independent clade outside bacterial acdS homol-

ogues (as expected if genes were vertically transmitted) but

are rather interspersed within bacterial sequences. Thus, acdS
phylogeny identified three major incongruences with the

species tree (electronic supplementary material, figure S2),

indicating HGT from three bacterial phyla to many eukaryotic

lineages. Moreover, incongruences were also found inside

eukaryotic clades, suggesting eukaryote-to-eukaryote trans-

fers. Such events can take place [31,34], but here poor node

supports failed to strengthen the hypothesis.

For two of the three major incongruences—namely those

involving (i) branching of various fungi and stramenopiles

(two distant eukaryotic lineages [35,36]) inside Betaproteobac-

teria and (ii) Basidiomycota and Ascomycota in relation to

Actinobacteria—this could entail a unique acquisition of acdS
by a eukaryotic ancestor followed by extensive gene loss

during evolution and speciation of the different eukaryotic

lineages. Considering vertical transfer to explain the patterns

of acdS presence would imply an ancestral acquisition in an

ancestor common to various eukaryotes. However, this

hypothesis is rather unlikely considering the high conserva-

tion of acdS sequences in the eukaryotic lineages in each

case. An alternative possibility is a series of multiple, distinct

acdS transfers to different microeukaryotic clades. The two

ancestral character reconstruction methods that were used

clearly pointed to the latter possibility, which is very well sup-

ported statistically when considering acdS distribution in

relation to fungal and stramenopile evolutionary histories.

The third incongruence involves Gammaproteobacteria

and diverse Saccharomycetes/Schizosaccharomycetes. In this
case, the two methods of ancestral character reconstructions

gave conflicting results, thus inferences should be taken

with caution. Maximum-likelihood reconstruction pointed to

a unique, ancestral acquisition of acdS followed by subsequent

vertical transmission and differential gene losses. However,

10 of 16 nodes of the Saccharomycetes/Schizosaccharomycetes

clade were not statistically supported, limiting conclusions

on the current analysis. By contrast, Bayesian reconstruc-

tion inferred the presence of the gene in a last eukaryotic

common ancestor, but this was unlikely (and thus might

reflect analysis bias) because only a few Saccharomycetes/

Schizosaccharomycetes fungi possessed acdS. Nevertheless, a

robust Bayesian reconstruction was obtained when constrain-

ing the model to infer the absence of acdS at the root of the

tree. In this case, the analysis favours multiple and indepen-

dent transfers with strong statistical support at each node of

the Saccharomycetes/Schizosaccharomycetes clade.

In the 65 acdSþ microeukaryotes, we estimated that acdS
acquisition entailed at least 15 different HGT events based

on ancestral character reconstructions (figure 2). Such a mag-

nitude for genetic transfer of a bacterial gene across a vast

range of filamentous eukaryotes has never been described

before [37,38] and challenges our understanding of eukaryote

evolution, as most current models in evolutionary biology

assume gene duplication as a key process of biochemical

innovation [39]. In contrast to duplication, which gives rise

to slow genetic innovation, gene acquisition might play a

distinct role in enabling rapid phenotypic or ecological adap-

tation. Nevertheless, the actual mechanism(s) by which acdS
was acquired by filamentous eukaryotes remain(s) unknown.

We did not find any remnant of a mobile genetic element in the

vicinity of acdS insertion sites. Furthermore, other putative

bacterial genes in the vicinity of acdS were not found in eukary-

otic genomes based on sequence identity search, except one

encoding a putative monooxygenase downstream acdS in

Eurotiomycetes, but that is also largely present in acdS-negative

fungi (data not shown). Thus, it seems that acdS could have

been transferred alone. Phagotrophy, the consumption of a

whole cell by another one, is seen as a driving force in

bacteria-to-unicellular eukaryote HGT [40], but cannot explain

HGT in fungi [41].

The fact that most acdSþmicroeukaryotes live in the vicinity

of plants is of primary interest, because sharing a same ecologi-

cal habitat may facilitate physical interaction between HGT

protagonists [42,43] and is likely to promote acdS transfer. In

addition, plants are the main natural source of ACC, which

may represent a significant source of carbon (a-ketoglutarate)

and nitrogen (ammonia) for AcdSþ plant-associated eukaryotes

[44]. In return, the latter act on plants by decreasing ethylene

levels. In non-pathogenic fungi like T. asperellum T203, this
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promotes root elongation of canola and cucumber, favouring

plants’ nutrient uptake and in turn their growth and yields

[22,45]. In phytopathogenic oomycetes and fungi, however,

the main effect of ACC degradation might be to facilitate
plant infection, because ethylene signalling acts synergistically

with jasmonate to induce plant defence responses [46,47].

The ACC deamination case is unusual in that the function

can be ecologically important for microeukaryotes (and thus
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was selected), easy to perform with existing cell machinery

(requiring only B6 vitamin), novel in comparison with pre-

existing eukaryotic capacities (and thus was maintained as

such) and involves a highly conserved gene (also suggesting

that acdS transfers were recent). Consistent with this, we

found that acdS was acquired by different types of filamentous

eukaryotes (from both stramenopile and fungi kingdoms),

which obtained the gene from contrasted bacterial phyla

(both Actinobacteria and Proteobacteria). Furthermore, this

took place with a conservation of the original AcdS catalytic

function, a rapid domestication process (based on intronization

dynamics), and effective expression of acdS in most oomycetes

and fungi studied (based on mRNA database analyses). Thus,

this study provides an estimate for the higher transfer rate that

could be expected for this type of inter-domain HGT event.

In summary, this study shows that HGT between prokar-

yotes and eukaryotes can happen in high magnitude, along

with the conservation of the original catabolic function

and a successful adaptation of the transferred gene to very

distantly related recipients.
 8
4. Material and methods
(a) Homologous sequence retrieval and re-annotation
The AcdS protein sequence (YP_005208895) of P. fluorescens F113

was queried with BLASTp [48] against the NCBI RefSeq database

[49] to retrieve prokaryotic homologues, with an E-value threshold

of 1�10220 to filter results. To retrieve eukaryotic homologues,

the same sequence was simultaneously queried with BLASTp

against the JGI Mycocosm [50] and NCBI RefSeq databases, with

same 1�10220 E-value threshold. ACC deaminase sequences

were further selected among the retrieved homologues based on

functional domain identification, using RPS-BLAST [48].

(b) Phylogenetic analysis
Protein sequences were aligned with CLUSTAL OMEGA [51].

Sequences were manually filtered to discard gaps and aligned

regions of low quality. For acdS sequences, the phylogenetic

trees were inferred with PHYML [52] with the GTR model, 1000

bootstraps, SPR topology search [53] and the estimation of the

proportion of invariant sites. Paralogues were identified by a

phylogenetic approach and removed from the analysis.

(c) Fungal phylogenetic tree reconstruction
The fungal species tree was inferred from 43 concatenated protein

markers [54]. For the latter, the markers were obtained for 145

sequenced fungi using HMMER3. When multiple homologues of

a given marker were retrieved for a given fungal species, redun-

dancy was resolved using a tree-based approach, and markers
showing major incongruences were discarded [55]. A few

sequences aligning poorly were also discarded in the final align-

ment to limit the possibility of false homologues, which does not

compromise tree topology if sufficient data are provided [56].

Sequences were aligned as explained above (alignment of 15 813

positions) and rooted using an outgroup composed of Homo
sapiens, Capsaspora owczarzaki ATCC3086, Monosiga brevicolis
MX1, Nematostella vectensis and Hydra magnipapillata. The phyloge-

netic tree was obtained as described above, except that NNI

topology search [57] was used to infer the topology and 100 boot-

straps were done.

(d) Ancestral state reconstruction
Maximum-likelihood and Bayesian reconstructions were used to

mitigate potential methodological biases of each approach

[58,59]. The maximum-likelihood method allows quick reconstruc-

tion of ancestral statewith a good sensitivity [59], whereas Bayesian

methods of reconstruction have the advantage of taking into

account tree uncertainty by reconstructing ancestral states over a

set of phylogenetic trees [60]. Analyses were done with the pre-

viously inferred fungal tree and matrices of presence/absence of

fungal acdS homologues, using MESQUITE (http://mesquitepro

ject.org/mesquite/mesquite.html) with maximum likelihood

Asymmk2 model of rate variations [61] and the reversible jump

Markov chain Monte Carlo method of BAYESTRAITS [60]. Statistical

confidence was assessed with a likelihood ratio test and the

Bayes factor ratio, respectively.

(e) Conservation of key amino acids in eukaryotic
acdS homologues

Unfiltered alignments were used to verify the presence of amino

acids required for ACC deaminase activity. Structural analysis

along with site-directed mutational studies of the AcdS protein

in C. saturnus identified four important amino acids (K51, Y269,

Y295 and E296 [23]). Multiple alignments were numbered accord-

ing to C. saturnus sequence and represented using WEBLOGO

(http://weblogo.berkeley.edu).

( f ) Intron annotation
Introns were re-annotated in nucleotide sequences using WISE

v. 2.1.20 (http://www.ebi.ac.uk/Tools/psa/genewise). A hidden

Markov model (HMM) profile was generated using HMMER3

and served as query to align against nucleotide sequences. WISE

software was set to consider GT/AG splicing sites only.
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