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Abstract

It has been shown that the tensor calculation is very sensitive to the presence of noise in the

acquired images, yielding to very low-quality Diffusion Tensor Images (DTI) data. Recent

investigations have shown that the noise present in the Diffusion Weighted Images (DWI) causes

bias effects on the DTI data which cannot be corrected if the noise characteristic is not taken into

account. One possible solution is to increase the minimum number of acquired measurements

(which is 7) to several tens (or even several hundreds). This has the disadvantage of increasing the

acquisition time by one (or two) orders of magnitude, making the process inconvenient for a

clinical setting. We here proposed a turn-around procedure for which the number of acquisitions is

maintained but, the DWI data are filtered prior to determining the DTI. We show a significant

reduction on the DTI bias by means of a simple and fast procedure which is based on linear

filtering; well-known drawbacks of such filters are circumvented by means of anisotropic

neighborhoods and sequential application of the filter itself. Information of the first order

probability density function of the raw data, namely, the Rice distribution, is also included.

Results are shown both for synthetic and real datasets. Some error measurements are determined

in the synthetic experiments, showing how the proposed scheme is able to reduce them. It is worth

noting a 50% increase in the linear component for real DTI data, meaning that the bias in the DTI

is considerably reduced. A novel fiber smoothness measure is defined to evaluate the resulting

tractography for real DWI data. Our findings show that after filtering, fibers are considerably

smoother on the average. Execution times are very low as compared to other reported approaches

which allows for a real-time implementation.
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1 Introduction

Regularization of Diffusion Tensor Images (DTI) is a problem of paramount importance as a

prior step for finding connectivity in the brain. DTI are obtained from Diffusion Weighted

Images (DWI), i.e., MR images acquired after applying gradients in different directions

[2,25]. It has been shown that background noise present in DWI introduces artifacts in DTI

[3]. In particular, in [15] some of this artifacts were analyzed. This work reported that the

background noise present in the DWI produces an underestimation (bias) of indices of

diffusion anisotropy which is not possible to correct once the DTI data are determined. This

work justifies the need of filtering the DWI before any attempt at calculating the DTI data.

In addition, in [4] the authors presented some interesting results showing a decrease in the

trace as well as a bias in the anisotropy.

Many attempts have been reported to tackle DTI regularization; [26] makes a good

classification of the existing techniques. These approaches can be summarized as follows:

• DWI regularization techniques carry out DWI filtering prior to determining the

DTI. In [19] the authors choose a well-established method to perform non-linear

anisotropic smoothing for each DW image independently. In particular, they used

the method developed by Perona and Malik [21]. They do not incorporate

dependencies among the DWI. In [18], the authors perform DWI smoothing by

means of a total variation approach which can be casted as a variational technique

in which a gradient descendent method has to be solved. In addition, in [4] the

authors present a variational formulation to a maximum a posterior estimation for

the noise-free DWI, using a Rician maximum likelihood term and a prior

smoothing term. This is performed independently for each DWI.

• For DTI estimation methods, a simultaneous regularization and estimation of DTI

out of the DWI is performed. In [27] the authors proposed a constrained variational

framework for a direct estimation and regularization of DTI out of the complex

DWI. The main drawback of this technique is that the complex DWI data are not

always available but the natural envelope. A very interesting work [9] has been

recently published in which the DTI data are regularized using directly the DWI

data: the DTI are simultaneously estimated and regularized. In this work several

models for the DWI are compared. The Rice model for the DWI gives rise to the

better performance. The problem is posed as a maximum a posteriori estimation

under a variational framework. In addition, the authors make use of the Riemannian

approach and Log-Euclidean metrics proposed in [20]. In this approach, the space

spanned by positive definite tensors is replaced by a regular and complete manifold

for which null eigenvalues are at the infinity and negative values are not allowed in

the corresponding tensor space. Common image processing techniques as

interpolation and Gaussian smoothing can be thus performed unrestrictedly

throughout this new space. The tensor is constructed by projecting points from the

manifold back onto the tensor space. To our knowledge and in our opinion, this is

the best approach to solve the noise problem in DTI.
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• On the other hand, in DTI regularization approaches, the filtering is directly

performed on the noisy DTI. Constraints of positive semi-definiteness are usually

imposed. Some techniques work directly on the tensor elements [6,17,20] while

others do it on the spectral tensor decomposition [22,8,7]. In [6] the authors

propose a non-linear partial differential approach constrained to lie on a manifold

on which the tensors are positive semi-definite. [17] poses the problem as a

Bayesian estimation problem making use of a Markov Random Field and

multivariate Gaussian distributions. Concerning the second approach, in [22] an

energy function based on a Markovian model was used to regularized the noisy

dominant eigenvector. In [8] an iterative restoration scheme for principal diffusion

direction is proposed. Finally, in [7] a vector extension of the anisotropic filtering

of Perona and Malik [21] is developed to smooth the tensor eigenvectors.

Most of these works are numerically intensive and do not make use of the underlying

statistical distribution. The work by Basu et al. [4] is very interesting as it made use of the

Rice model, but the DWI were processed independently which, as pointed out in [9] is not a

good idea: “only the combination of all the DWI reveals the complex neural structure of the

white matter”. So a method should model the DWI jointly and exploit the existing

correlation among the DW components. The method by Filliard et al. [9] is, in our opinion,

very interesting, as it has all the good ingredients. However, it does not exploit the

correlation among the signals in the DWIs, as the joint probability function is built by

multiplying the marginals which means the DWIs are considered as independent signals. In

addition, it is computationally expensive and could not be considered as real-time: the

execution time reported was 12 minutes. In this paper, we present a fast and simple method

with results similar to the work by Filliard et al. to filter the DWI prior to the calculation of

the DTI. It is based on a modified Wiener filter. It exploits the whole correlations among the

DWIs. Drawbacks of this approach 1 which are well known and have been comparatively

highlighted elsewhere (for instance, in [7]) will be circumvented by two main ideas. First,

information about the probabilistic nature of DWI data (i.e. the Rice distribution [10]) will

be accounted for. Second, anisotropy in the filter will be included by means of estimating

the parameters of the filter within estimation windows whose shapes are a function of the

local characteristics of the data. Furthermore, the filter is applied sequentially to refine such

estimates. Additional assumptions let us formulate the problem in closed-form manageable

expressions. We come up with a simple and fast procedure which yields very good results

both on synthetic images and on real DWI. In addition, the filter allows an important

reduction of the DTI bias reported in the literature. A version of this filter dealing with

scalar Magnetic Resonance signals (which does not include information of the Rice

distribution of the data) has been recently published [16] and has drawn results comparable

to other schemes based on the diffusion equation, at a lower computational cost. Here we

extend this work in the direction indicated above.

1Such as the Gaussianity assumption for the data and the fact that the filter leaves the data unaltered at boundaries. In addition, the
Wiener filter is largely affected by errors in the estimation when true parameters are unknown.
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2 Methods

2.1 Isotropic Solution

Let Y denote the observed dataset defined for a 3D grid with size S = P × Q × R. The DW

dataset contains the 6 scalar volumes for the 6 diffusion gradient directions as well as the

baseline data. The total number of variables in the observed dataset is 7S. This dataset will

be considered as a column vector created by stacking column vectors of 7 components (the

observations at every spatial position, each from every gradient used); the stack is created by

visiting each voxel with some predefined order, but the order itself is irrelevant to the

purposes of this paper.

The model Y = X + N is assumed, where X and N are the signal and the noise components,

respectively. The filter performs the following operation 2

(1)

where ηX and CX are the signal means and covariance matrix, respectively, and CN is the

covariance of the noise.

S is usually very large so the operation above is very involved; in addition, correlations tend

to diminish for voxels sufficiently distant. An extreme case is to assume that voxels are

mutually uncorrelated, both for the signal and for the noise. If this is the case, the covariance

matrices CX and CN would be block-diagonal, i.e., only S blocks with size 7 × 7 located in

the main diagonal would be non-zero. Specifically, denoting with Y(p) the vector of the 7

measurements for voxel p, with 1 ≤ p ≤ S, the covariance matrix of this vector would be

CX(p, p) + CN(p, p), and this matrix would be the p-th block in the main diagonal of matrix

CX + CN; it turns out that the inverse of this matrix is also block diagonal, where each block

p in the main diagonal equals the inverse of matrix CX(p, p) + CN(p, p). This result makes

equation (1) be decoupled voxelwise as

(2)

The vector function U{·} is defined for a vector variable. It sets each negative element of the

input vector to zero. This is needed in order to guarantee that the solution lies in the positive

hyper-quadrant of the 7-dimensional space. This correction keeps the positive property of

envelopes unaltered and it allows the Stejskal-Tanner equation [25] to be solved properly, as

it was the case with the original data. However, this does not insure that the estimated

tensors have always positive eigenvalues. In practice, this is not a problem. We will further

discuss on that in section 4. We can say that the local filter is linear, memoryless and space-

variant. It is worth noting that the assumed model both for the signal and for the noise,

although simplified, is still non-stationary as both mean vectors and covariance matrices are

functions of the voxel position p. To assume that the signal is stationary is far too restrictive,

2For the derivation and the assumptions of this expression see appendix A. Further details can also be found in [16].
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but this assumption is reasonable for the noise. Accepting this, we can drop index p from the

noise covariance matrix, yielding 3

(3)

In addition, as the DW images are acquired independently, the noise samples present in two

such images can be assumed uncorrelated. For this reason we will assume the noise

covariance matrix CN diagonal. We have to consider only 7 noise variances  with 0 ≤

k ≤ 6. The number of unknowns to estimate has been considerably reduced; this number is

equal to 35S + 7: 7S signal means, 28S signal covariance parameters 4, and 7 noise

variances. If these parameters were known, equation (3) would give the local Wiener

solution; however, and generally speaking, this is not usually the case so we have to find out

how to estimate these parameters in advance from the observation Y.

We can rely on some assumption about the signal X. Though we said that this signal is

clearly non-stationary, it is reasonable to assume that the local variation of both the means

and the autocovariance matrices within a given neighborhood is less than the global

variation, i.e., we will assume that the signal has only local interactions [5]. Our assumption

is that the signal can be considered locally ergodic so as to use spatial averages to estimate

the unknown parameters.

Let ∂(p) denote a set of L neighbors corresponding to the site (voxel) p. The set ∂(p) also

includes the voxel p. We will bear in mind neighborhoods of L = ∣∂(p)∣ = 27 voxels.

We can use those neighborhoods ∂(p) to estimate the 35S + 7 unknowns. As the

neighborhoods are isotropic this filter will be referred to as isotropic Wiener. This is the first

approach we will present. Later on we will introduce an anisotropic counterpart.

Assuming local ergodicity in the set ∂(p) for site p, we get estimates

(4)

(5)

The estimation of the noise variances , for 0 ≤ k ≤ 6, is more involved and will have a

great influence in the filter output as we will see later. The problem is due to the fact that the

autocovariance matrices add up as CY(p) = CX(p) + CN. One possible solution is to look for

a region in the image grid for which the signal components are a priori known to be zero. In

this case CX(p) will be zero and we will have that  will be equal to the element (k, k)

3For the sake of simplicity, we have dropped the second p index for the signal covariance matrix as CX(p, p) = CX(p).
4A 7 × 7 symmetric autocovariance matrix has 28 degrees of freedom, thus we have 28 signal covariance parameters per voxel and S
voxels.
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of the autocovariance matrix CY(p) in that region. Thus, the sample variances in that region

would give us a reasonable estimation of the noise variances. Nevertheless, that piece of

knowledge may not be available or it would require the user’s supervision. The proposed

solution is to introduce a free parameter λ ranging in the interval (0, 1) that will be hereafter

referred to as regularization parameter which would allow us to fine tune the amount of

regularization required by means of a selection of the noise variances between two given

bounds as

(6)

where  is the (k, k) element of the the autocovariance matrix  with

(7)

where TR[·] stands for the matrix trace and  is the (k, k) element of

(8)

We can say the higher the λ value, the higher the noise variances  and, consequently,

the higher the regularization and vice versa. This parameter may be either manually set or

learned by training for a specific target application. Consequently, in equation (3) we can

replace the parameters by their corresponding estimates giving rise to

(9)

where  is a diagonal matrix whose diagonal elements are the noise variance estimates

.

Equations (4), (5) and (6) are coarse approximations, thus a direct implementation of

equation (9) will lead to poor results, therefore, we propose here a sequential scheme [13],

as follows

(10)

with the initial condition

(11)

The estimates are recalculated at iteration (n) using equations (4), (5) and (6) with the data

Y(n)(p). A number of iterations N ∈ (5, 10) has been considered in the experiments as

sufficient. The final solution is then given by
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(12)

This will also provide local coherence among neighboring voxels, a fact that palliates the

(somewhat restrictive) assumption of uncorrelation within the signal components, i.e., the

sequential approach is close to a non-sequential version in which the voxels are assumed to

be correlated.

2.2 Anisotropic Solution

The Wiener filter introduced so far can be consider as isotropic. Hereafter we will describe

how we can modify the estimation proposed in equations (4), (5) and (6) to be considered as

anisotropic. This approach will be referred to as anisotropic Wiener. In figure 1 we can see

six different non-homogeneous neighborhood subsystems ∂m(p), with 1 ≤ m ≤ 6, for which a

specific orientation is assumed. We can repeat equations (4) and (5) for each voxel and each

orientation m using the subsystem ∂m(p) to obtain oriented means

(13)

and oriented autocovariance matrices

(14)

Then the true orientation q(p) can be estimated as

(15)

The final estimation for ηX(p) = ηY(p) and CX(p) ≈ CY(p) can be determined by using

equations (13) and (14) with m = q(p) for each position p, respectively. Thus, we write

(16)

Then, equation (6) can be used to estimate the noise variances  as explained before.

We also propose to implement a sequential version of the anisotropic filter using the new

anisotropic parameter estimation method by using equations (10), (11) and (12) as explained

in section 2.1.

2.3 Non-Gaussian Corrections: Inclusion of the Rice Distribution

As it is well-known, the Wiener filter, as explained along previous sections, only makes use

of first and second order statistics, since this is the only information used by the linear

minimum MSE estimator. As shown in appendix B, the noise-free natural envelope s of the

signal (equation (B.6)) is very far from the expected value of the noisy natural envelope

(equation (B.9)) for low signal to noise ratios. This will introduce a bias in the filtering

procedure, since the solution is always centered about the signal mean as pointed out by
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equation (3). We need to estimate the Rice parameter s in order to compensate for the bias.

However the noise parameter σ is also unknown. Maximum likelihood of both parameters is

possible, but no closed form solution for it exists [24]. An iterative algorithm is needed, but

it would be computationally very expensive. It will not give rise to a fast implementation.

We have resorted the estimation problem to a simple and fast solution which follows 5.

The bias effect has to be considered mainly for low SNR. For high SNR, as the Rice

distribution approaches a Gaussian distribution, the Wiener solution is the general optimum

solution with no bias. In figure 2 we can see the SNR as a function of the coherent to non-

coherent ratio, i.e., the γ parameter. We referred to this function as B(γ) function. See

appendix B for its derivation.

The SNR can be estimated by the method of moments as

(17)

From figure 2 it is clear that the B(·) function is a monotonic function of γ, thus the inverse

function B−1(·) is well-defined. We can write

(18)

This inverse function is shown in figure 3. An estimate of the γ parameter can be determined

by replacing the SNR value by its estimate given by equation (17). We can write then

(19)

We can write the mean-squared value using γ as

(20)

Finally, by replacing the parameters by their estimates we can write

(21)

The bias correction is performed by means of

(22)

5The basic material —including definitions of the parameters involved— concerning the Rice distribution has been written in
appendix B.
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for each voxel p. This is done independently for each of the 7 DW images. Equation (22)

constrains the output to be positive, as an envelope cannot be negative. Negative values for

the DWI are not possible as a logarithm is used to calculate the DTI (see for instance

equation (6) in [28]). After this bias correction step, the procedures defined in sections 2.1

and 2.2 will be applied to the modified dataset. These methods are also constrained to be

within the positive hyper-quadrant in the 7-dimensional space. In conclusion, no negative

values are permitted so that the DTI data can be computed without difficulties as it was the

case for the original data. However, in principle this does not guarantee the positive-

semidefiniteness property in the estimated tensors (see section 4). However, the smoothing

introduced with the use of the neighboring information improves the quality of the

estimation as it will be shown in the experiments.

2.4 Synthetic Data

We have created three 50 × 50 × 50 DT synthetic images with different shapes (namely,

EARTH, LOGARITHM and CROSS data sets, see appendix C for a description about how

these tensor data sets have been created) to evaluate the performance of the framework

proposed. The associated eigenvalues for the EARTH and LOGARITHM were (λ1, λ2, λ3) =

(7, 2, 1). The final tensor field was normalized by 10−4. Using a value of b = 1000 and the

six gradient directions (1, 1, 0), (0, 1, 1), (1, 0, 1), (0, 1, −1), (−1, 1, 0) and (−1, 0, 1) the

tensor field was converted to DWI data, using as baseline the trace of the tensors. Rice noise

with SNR = 10 was added to form the noisy dataset. Finally, the noisy tensor field was

determined. The stochastic fiber tracking method (the random walk algorithm) proposed in

[11] was used.

The CROSS synthetic data have a crossing region where two orthogonal fibers cross. This

region have planar anisotropy. This example was selected to show that the filter is able to

regularize regions with uncertainty. Algorithms filtering only the principal direction

diffusion will fail in this case. The stochastic fiber tracking algorithm should be able to

follow both paths in a smooth manner. The EARTH example was chosen to see whether a

tensor field with a high variation in orientation is properly filtered. In addition, in this

example the boundaries among the regions are not straight and allows to test whether the

anisotropic part of the filter works properly, even though the anisotropic parameter

estimation uses the simple boundaries shown in figure 1. Finally, the LOGARITHM

example was selected to measure the averaged change in the anisotropy (bias correction). It

is a tensor field having only prolate tensors allowing some orientation variation.

We define different measures to evaluate the performance of the filters. The DWI filtering

error ∊ can be defined as

(23)

The squared bias of the error is defined by

(24)
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where ∊k(p) is the error at p-th voxel (out of S) in the k-th acquisition image (out of 7). The

mean-squared error and the variance are defined by

(25)

In order to take into account the data variability, M noisy samples under the same scenario

have been generated. We can then calculate statistics at each voxel position for the DTI data.

Specifically, we define the total variance TV(p) of a diffusion tensor D(p) at voxel position

p, with 1 ≤ p ≤ S, as

(26)

where for each voxel p, CD(p) is the covariance matrix of the components of tensor D(p) as

(27)

and DV(p) is a column vector consisting of the six different elements of the symmetric tensor

D(p) arranged in any predefined order.

In equation (27), the expectations are replaced by sample means using the M available

samples per voxel. In this case the sample total variance  will be given by

(28)

where for each voxel p,  is the sample covariance matrix defined as

(29)

and  is the m-th sample of a column vector arrangement for sample tensor D(m)(p).

In addition to previous measures, [1,14] propose an interesting measure to quantify DTI

uncertainty due to noise. They propose a new glyph representation referred to as “cone of

uncertainty”, i.e., a cone whose cone angle is equal to the uncertainty (i.e., a given

confidence interval) in the estimate of the orientation of the principal eigenvector and with a

long axis that coincides with the mean eigenvector. We follow this idea to estimate the

uncertainty.

In order to measure the confidence interval (uncertainty), we have simulated M noisy data

sets. Let assume  is the eigenvector associated to the largest eigenvalue for the m-th

sample tensor D(m)(p) at voxel position p. Let v1(p) denote this same vector but of the

ground truth tensor T(p) at voxel position p. The angle between these two vectors is given

by
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(30)

In this expression the modulus allows to account for the problem of antipodal symmetry,

i.e., eigenvectors are only defined up to its orientation along a particular axis. The closer to

zero the α value the lower the uncertainty. Since in this case, equation (30) is always greater

than zero, the distribution of α is necessarily one-sided. Hence, the value of α(m) at the

0.95M-th position in the list of M samples (sorted in ascending order) constitutes the upper

bound of the 95% confidence interval (CI) of the angles, i.e., the uncertainty.

In addition to this measurements, and to measure the anisotropy, we use the Fractional

Anisotropy (FA) value as well as the linear, planar and spherical components as defined in

[28]. With respect to the orientation, it is color coded. 6 We use elliptic glyphs to represent

some of the results. 7

In addition to that, and to show the anisotropic performance of the filter, we have added an

additional experiment comparing the isotropic solution with the anisotropic one. We have

simulated a new synthetic data set as explained above with two clear discontinuities having

only prolate tensors with orthogonal orientations.

2.5 Real Imaging Data

A DWI volume dataset using single-shot spin Echo Planar Imaging (EPI) sequence with

diffusion-tensor encoding using 6 directions (1, 1, 0), (0, 1, 1), (1, 0, 1), (0, 1, −1), (1, −1, 0)

and (−1, 0, 1), size 128 × 128 × 54 and voxel size 1.86 × 1.86 × 2.0mm was acquired. The

non-biased anisotropic Wiener filter was run sequentially with N = 5 iterations and λ = 0.5.

DTI datasets were determined both for the observed data and for the resulting data.

Anisotropy and orientation are determined out of the tensor field. Additionally, we show a

glyph representation for three manually-selected regions of interest. In order to quantify the

bias correction in the DTI, we have segmented for each region of interest the sites

corresponding to left-right (red), anterior-posterior (green) and inferior-superior (blue) by

thresholding the corresponding channel in the RBG color giving rise to 9 subregions: three

new regions within each manually-selected region of interest. Then, we have determined the

averaged linear component, as defined in [28], in each subregion before and after filtering.

Finally, the stochastic method proposed in [11] has been applied to determine the fiber

tracts. A quantitative measure μ of the smoothness along fibers has been calculated as

explained in appendix D. This parameter was defined so that the lower the μ value, the

smoother the fiber. An averaged smoothness  is defined for a set of fibers.

6Red means left-right, green anterior-posterior and blue inferior-superior. The color intensity is scaled by the FA value to avoid
coloring isotropic regions.
7Glyphs are cropped in order to avoid overlapping whenever the tensor trace is too large. This often happens in isotropic regions such
as the ventricles.
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3 Results

3.1 Synthetic data

One noise-free synthetic tensor data set was generated for the EARTH, LOGARITHM and

CROSS cases. Tractographies for the three noise-free synthetic data sets are shown in figure

4. In particular, figure 4(a) shows a tractography for the noise-free EARTH data set, figure

4(b) for the LOGARITHM and figure 4(c) for the CROSS.

We have evaluated both the biased version of the filter (the one filtering on data Y) and the

non-biased version (the one that filters the data Y’ —see equation (22)) for each noisy DWI

synthetic data set. Additionally, the parameters were estimated both on the whole

neighborhood (with L = 27 neighbors) and on the oriented neighborhoods (as indicated in

figure 1 and equation (15)). Squared bias (Bsq), variance (Var) and MSE for the filtered

DWI data sets (see equations (24) and (25)) were calculated. Achieved results are shown in

tables 1, 2, 3 and 4. These tables show results for the three synthetic examples (columns):

CROSS, LOGARITHM and EARTH. Values in the tables were scaled by a factor of 108 for

the sake of clarity. Minimum attained values have been highlighted for each measurement

and synthetic case.

Table 1 represents the values for the observed noisy data. Table 2 shows values of the

estimation of the parameter s only prior to the filtering stage as explained in section 2.3.

Two type of estimation schemes were used (isotropic and anisotropic) as indicated by the

last column (as described in sections 2.1 and 2.2 respectively).

Table 3 shows results after applying the filter for λ = 0.5 and N = 5 iterations. Isotropic and

anisotropic versions of the filter as well as with and without bias correction are presented

and ordered as indicated by the last column. Table 4 gives similar results but for N = 10

iterations.

M = 100 noisy synthetic DWI data sets were computed for the LOGARITHM and the

EARTH cases. Each noisy data set was then filtered. The anisotropic version of the filter

with bias correction, N = 5 iterations and λ = 0.5 was selected for this experiment. The

corresponding DTI data sets for the M executions were computed. The estimated total tensor

variance per voxel was then determined using equations (28) and (29) for the noisy and for

the filtered DTI datasets. Figure 5 shows the achieved distribution of the total variance for

the different voxel positions. In particular, 5(a) shows the result for the noisy data sets and

5(b) for the filtered ones in the EARTH case.

A CI of the uncertainty angle (the angle of the “cone of uncertainty”) per voxel was

determined as explained in section 2.4. Figure 6 shows the achieved distribution of the CIs

for the different voxel position. In particular, 6(a) shows the result for the noisy data sets and

6(b) for the filtered ones in the LOGARITHM case.

For the total variance and the CI of the uncertainty angle, and for each case, mean and

standard deviation were computed for the noisy and the filtered values. In addition, an

unbalanced one-sided t-test with unknown unequal variances at a significance level of α =

0.05 was also performed to check whether or not the mean of the total variances and the
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mean CI of the uncertainty angle measures for the filtered valued is smaller than the noisy

counterpart. Results are shown in table 5. Mean and standard deviation for the total variance

was scaled by a factor of 108 for the sake of clarity.

For illustration purposes, figure 7(a) shows the resulting tractography for the noisy CROSS

data set and figure 7(b) after filtering. In figure 8 a glyph representation for a region of

interest in the axial plane in the EARTH experiment is shown. Colors codify orientation. A

similar representation for a coronal view in the LOGARITHM experiment is also shown in

figure 8. In the three cases the anisotropic version of the proposed filtered was applied using

the bias correction during N = 5 iterations and λ = 0.5. For the LOGARITHM data set,

several scalar measures were determined. In table 6 the achieved results are shown for the

original data, noisy data, isotropic filtering and anisotropic filtering. The filter applied the

bias correction with N = 5 iterations and λ = 0.5.

Finally, a last experiment was performed to show the need of the anisotropic filtering. In

figure 10 a glyph representation with color coding orientation is shown for the original data,

the noisy data, isotropic filtering and anisotropic filtering.

3.2 Real Data

The anisotropic version of the filter with bias correction and for N = 5 and λ = 0.5 was

applied to the real data. Results are shown in figures 11, 12, 13 and 14. These figures

represent axial, sagittal and coronal slices for different measures of anisotropy and

orientation. In particular, figure 11 shows the FA value, figure 12 the planar component,

figure 13 the spherical component and figure 14 a color representation for the main

orientation. In each case, the original data set and the result after filtering are shown.

Additionally, in figures 15, 16 and 17, a glyph representation for the regions of interest

highlighted in figure 14(a) is shown. In these figures colors codify orientation. As explain in

section 2.5 we have determined 9 subregions by thresholding. For the sake of illustration, in

figure 18 one of these subregions is shown for the original data set: the blue subregion for

the coronal view. We have measured the linear component before and after regularization in

these 9 subregions of interest. Results are shown in table 7.

Finally, we have run the fiber stochastic fiber tracking algorithm for the whole brain before

and after filtering. We obtained an averaged fiber smoothness  for the

observed data and a value of  after applying the proposed filtering scheme.

4 Discussion

Synthetic experiments allow us to quantify how the proposed method is able to reduce the

amount of noise. Tables 1, 2, 3 and 4 show some results for the DWI data sets prior to

calculating the DTI. These results show how the bias is reduced by the bias correction stage

and how the variance is reduced by the Wiener filtering step. In addition, as several versions

of the filter were run, comparisons can be made.
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Table 2 shows the result after estimating the s parameter without using the Wiener filtering.

It is worth noting that low bias values were obtained at the cost of increasing variances even

above the values given in table 1 for the observed data. The overall result is that the total

MSE is very similar to the one given in table 1. Better results were obtained for the

anisotropic estimation than for the isotropic counterpart (bold type fonts were used for the

lowest values). It has to be highlighted that the LOGARITHM data set has no discontinuity.

That is the reason why the isotropic and anisotropic versions of the filter give rise to very

similar results for the variance and MSE (second column in table 2). However, as in the

other two cases (CROSS and EARTH) some discontinuities are present, the anisotropic

version of the filter gives lower values for the bias, variance and MSE.

Table 3 provides the achieved results for 5 iterations under several filter settings. When no

bias correction is included, the resulting bias is similar to the one in the observed noisy data,

shown in table 1. The bias correction described in section 2.3 gives rise to large reductions

in the bias which are similar to those shown in table 2 but with much lower variances,

resulting in low MSE values. Comparing isotropic to anisotropic filter types, and generally

speaking, the anisotropic version provides lower variance, which leads to lower MSE values

as well. This effect can be seen more clearly in table 4, which gives similar results but for N

= 10 iterations. In this latter case, the minimum attained MSE values were obtained for the

anisotropic case with bias correction for the three synthetic cases under analysis. The MSE

values were 30.30, 35.98 and 13.46 times smaller than the MSE value of the noisy data for

the CROSS, LOGARITHM and EARTH cases, respectively, giving rise to an average of

26.6 times smaller MSE value. It is worth noting in the LOGARITHM case, where no

discontinuity is present, that the isotropic filter gives very good results and these results are

very similar to the anisotropic case for this data set. In the CROSS experiment, the isotropic

filter clearly fails. Though the bias is reduced from 0.0311 to 0.0093 (table 3) when the bias

correction is applied, the variance increases from 0.0302 to 0.2778 (table 3) giving rise to

MSE values of 0.0613 without bias correction and 0.2871 with bias correction. In

conclusion, the bias correction makes the variance increase when the data set has

discontinuities. With respect to the EARTH case, the situation is even worse: both the bias

and the variance increase when the bias correction is included, thus making the MSE value

increase from 0.1863 to 0.6697 (table 3). When the anisotropic version of the filter is

considered, more reasonable results are achieved: for the three cases when the bias

correction is applied the resulting bias is lower and the variance is of the same order

resulting in a minimum MSE value (see tables 3 and 4).

The synthetic case also allows to evaluate the effect of the proposed method in the

corresponding DTI data set. The results for the total variance and the CI of cone of

uncertainty, both averaged for M = 100 repetitions, are shown in figures 5 and 6 as well as in

table 5. The estimated distribution of the total variance per voxel was highly reduced as

shown in figure 5 for the EARTH with a reduction of the estimated mean of the total

variance by 35.47 times on the average as shown in table 5. In addition, and for the same

case, the estimated standard deviation of the total variance was also reduced by a factor of

3.66 on the average. As far as the LOGARITHM case is concerned, the estimated mean of

the total variance was reduced by a factor of 19.67 and the estimated standard deviation by a
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factor of 7.53. We can conclude that the filter makes the total variance of the DTI decrease

by an average factor of 27.57 and its standard deviation by an average factor of 5.96. The t-

test was passed with a very low p value (equal to zero at the numerical precision we have

worked with) which leaves no room for doubt about whether the mean value was reduced

thanks to the filtering.

Similar results were also obtained for the CI of the cone of uncertainty, as shown in figure 6

and table 5. The estimated mean value for the cone of uncertainty was reduced by an

averaged factor of 5.4 and the estimated standard deviation by a factor of 4.1. Similarly the

t-test was also passed with, say, null p-values as shown in table 5.

In figure 7 a representation for the tracts after stochastic fiber tracking is shown before and

after filtering. It is clear from figure 7(b) that the tracts are smoother and that the algorithm

was able to follow the two paths in the crossing region with less jumps than for the noisy

data shown in figure 7(a). Figure 8 for the EARTH case allows to see how the anisotropic

version of the filter with bias correction is working. The colored glyphs within the ring in

figure 8(c) are of the same shape than figure 8(a): the bias effect of the Rician noise on the

tensor shape (shrinking effect) has been corrected. In addition, the orientation is recovered

and the regions are not mixed up due to the anisotropic nature of the filter applied, even

though the boundaries are not as simple as the ones shown in figure 1 and used to estimate

the parameters. To further analyze the bias correction performance of the filter in the tensor

shapes, we quantify the results achieved for the LOGARITHM experiment. In this case there

is no discontinuity and only one region is present, so it is possible to calculate scalar

measures and average the results. In figure 8 we show the original, noisy and filtered data

sets using the same glyph visualization. In this case the view is coronal. Table 6 shows the

averaged values for different scalar measures for the original, noisy, isotropic filtered and

anisotropic filtered data sets. In both filters the bias correction was applied. In particular, in

this table we show the linear, planar and spherical components [28], the FA value and the

three eigenvalues. It is clear that the Rician noise causes a shrinking effect in the tensor

shapes by looking at the second column (noisy data) and comparing it with the first one

(original data). The linear component has decreased its value from 0.7142 to 0.6098 and the

FA value has also decreased its value from 0.7577 to 0.7346. Concerning the eigenvalues,

the two larger ones have increased their values and the smaller one has decreased it. The

results after filtering clearly shows how these bias effects have been properly corrected

giving rise to values very close to the original ones. In this case, the difference between the

isotropic and the anisotropic versions of the filter are not very significant as the

LOGARITHM data set has no discontinuities.

In the last synthetic experiment, the anisotropic nature of the filter was further analyzed. To

better see the results, in this experiment we have increased the amount of Rician noise in the

data to levels which usually do not happen in real cases. In figure 10(c) we can see that the

isotropic version of the filter clearly fails close to the boundaries: some of the tensors are

wrong and the regions are clearly blurred close to the boundaries. The anisotropic version of

the filter shown in figure 10(d) gives a much better result and recovers the main direction

nearly perfect in all the cases. This is the reason why, though quantitative measures some
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times gives worse results for the anisotropic version than for the isotropic 8 we should

always use the anisotropic version in order not to mixed up different regions.

Concerning the experiment with the real imaging case, figures 11, 12, 13 and 14 show the

FA, the planar component, the spherical component and a color-coded representation of the

direction of the main eigenvalue, respectively. From these figures it is clear that the amount

of uncertainty within the DTI data has been considerably reduced. In particular, the

background noise was fairly removed as seen for instance in the FA value in figure 11. The

uncertainty of the original DTI data has a clearer effect at low FA values (isotropic areas).

Figure 11(b) shows a large improvement of the FA value thanks to the variance reduction

achieved by the filtering stage. Similar results could have been achieved looking at figures

12(b) and 13(b), for the planar and spherical components, respectively. The bias reduction is

also an important factor which makes the mentioned figures have larger black areas, i.e., low

SNR areas, which were speckled gray for the original noisy data. In our opinion the

achieved enhancement for this scalar measures is outstanding. The uncertainty for the main

diffusivity direction as shown in color in figure 14 was also largely reduced. A nicer

appearance is achieved for the color image in figure 14(b) when compared to figure 14(a).

Figures 15, 16 and 17, for the three regions of interest shown in figure 14(a), show in detail

how the filtering is working. The view is clearly smoother after filtering and both the shapes

and the colors are more regular allowing better interpretation and processing of the DTI.

This representation should be interpreted carefully as in each view always one of the colors

cannot be represented by the glyphs as it is orthogonal to the ellipse plane. For instance, in

figure 15 blue regions have circular shape as the diffusion in this case is orthogonal to the

image plane. The same happens to red in figure 16 and green in figure 17. To quantify how

the filter is able to cancel out the bias in the DTI (shrinking effect), in table 7 we can see the

linear component [28] in the 9 segmented subregions (see section 3.2 for details about how

these regions were determined). These subregions are known to have prolate tensors. In all

the 9 regions the averaged linear component has improved its value after filtering. In

particular, the linear component averaged in the 9 regions before filtering (averaged value of

figures in table 7 top) is 0.4027 and after filtering (averaged value of figures in table 7

bottom) is 0.6041 which means that the tensors are 50% more linear in those regions after

filtering.

Regarding the fiber tracking experiment, the fibers are smoother. To prove this, we can have

a look at the achieved results for the fiber smoothness parameter  as presented in section

3.2. These results mean that after filtering, the obtained fibers were, for the defined

smoothness parameter, 3 times smoother on the average.

Concerning the assumptions, as for the first order density function model used, the Rice

distribution is well-known to be an appropriate model for the type of data we deal with (see

for instance [10]). As for the second major assumption, i.e., the fact that data are assumed

voxelwise uncorrelated, it should be pointed out that in the worst case, that is, in the

presence of correlation, our design would only be a suboptimal version of a fully coupled

8Due to the smaller neighborhoods (oriented as shown in figure 1) to estimate the parameters.

Martin-Fernandez et al. Page 16

Med Image Anal. Author manuscript; available in PMC 2014 July 16.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Wiener filter. Therefore, this assumption is far from critical and does not deserve further

attention. Additionally, the fact that filter parameters are estimated using data from the

surroundings of each voxel under study imposes spatial coherence, as can be clearly seen

from the image experiments included in the paper. The anisotropic estimation was clearly

proved in the experiments which avoids blurring the boundaries. The bias correction

achieved in the experiments supports the fact that the DTI data should be filtered on the

DWI space and not directly on the DTI, otherwise the filter will not be able to correct for the

shrinking effect which is not due to the filtering itself but to the noise.

The reader is referred to our previous paper [16] to see the effect of the λ parameter on the

filtering result. In this paper, this free parameter was analyzed in depth. It concerns mainly

to the noise level estimation and the degree of regularization achieved. We have compared

the obtained valued of the noise covariance using λ = 0.5 for the real data set used and the

value obtained using a manually segmented region without signal 9. The corresponding

covariance matrices were of the same order of magnitude for the first iteration of the

algorithm and also converged to similar values in the subsequent iterations.

With respect to the property of positive-definiteness of the DTI data, we have to highlight

that our method does not impose any constraints to the DWI so as to achieved non-negative

eigenvalues. For this reason, tensors with negative eigenvalues may happen. However we

have seen that this is not a real problem. After filtering, all the negative eigenvalues

happened to occur in the regions outside the patient were no signal is present. No significant

impact on the results is thus found. As a result of the filtering process all the negative

eigenvalues happening in the brain region were corrected. Imposing this constraint in the

model would be a better solution, but it would make the filter more complicated, making its

real-time implementation impossible.

The described results have served as a testbed for the presented DWI filtering approach. In

summary, it can reduce the amount of noise and uncertainty not only for the original DWI

but also for the DTI to levels similar to current state-of-the-art approaches reviewed in the

introduction. These approaches are in general computationally very expensive. We here

propose an alternative solution which is much more simple albeit giving rise to very

acceptable results. The execution times for a compiled version of the filter in an averaged

state-of-the-art machine for the real data (whose volume size was 128 × 128 × 54) were 10.3

and 30.6 seconds per iteration for the isotropic and the anisotropic versions, respectively.

These figures make the filter useful for real-time applications.

5 Concluding remarks

The presented method makes proper use of the available DWI information before

determining the tensors. If more gradient directions were provided, the presented method is

designed to use the correlation between the signal components of the different DWI images

(optimally in the mean square error sense if the parameters were known). The anisotropic

approach presented for estimating the model parameters prevents the filter from mixing up

9Regions included in the DWI outside the patient.
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data coming from different regions. Additionally, we have included in the filtering process

information about the first order density function of the original data, which leads to a

decrease in the bias of the filter for non Gaussian data. Results both on synthetic and on real

images support the filtering methodology proposed in the paper.
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A Wiener Filtering Approach

We will assume the model Y = X + N, where X is the ground truth, i.e., the signal without

noise, and N is the noise. Our goal is to estimate X using the observation Y. We also assume

that the noise N has mean E{N} = 0 and covariance matrix CN = E{NNT}, which is a

symmetric and positive definite matrix. With respect to the signal X we will assume a vector

of means ηX = E{X} = E{Y} and covariance matrix , which is also

symmetric and positive definite. Finally, we will assume that the signal X and the noise N
are uncorrelated so E{XNT} = 0, due to the zero-mean condition of the noise.

The Wiener filter is the optimum linear filter in the mean square error (MSE) sense,

provided that the mean is known. Otherwise, more involved approaches are to be applied to

guarantee the unbiased condition in the filter output [23]. Let Z denote the filter output. The

linearity of the filter let us write

(A.1)

where W is a coefficient matrix to be determined. The filter output is commonly constrained

to be unbiased. This unbiased condition can be easily modeled by modifying equation (A.1)

to

(A.2)

Needless to say, the mean has to be estimated from data, so this expression in a real-world

application is only an approximation. In order to determine the coefficient matrix W, the

MSE has to be minimized. The solution is well-known [12] and given by

(A.3)

B On the SNR for Rayleigh and Rice Distributed Data

Let  be the pre-envelope of the received signal, where Yc and Ys are the in-phase

and quadrature components of the received signal, respectively. Due to noise during the

acquisition procedure both components are independent normal variables with the same

variance σ2 and means sc and ss, respectively. This is the same as to assume the model
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 for pre-envelopes, where  and  are the pre-envelopes of the noise and noise-free

signal components, respectively. The noise pre-envelope is , where Nc and Ns

are the in-phase and quadrature components of the noise, respectively. Both components are

independent normal variables with same variance σ2 and zero means, respectively. The noise

natural envelope is given by

(B.1)

It can be easily shown that this variable is Rayleigh-distribution and its probability density

function is given by

(B.2)

where u(·) is the step function. Its mean and mean-squared value are given by

(B.3)

Let define the signal-to-noise ratio (SNR) for a variable X as

(B.4)

Thus, it can be shown that for a Rayleigh variable the SNR is the constant

(B.5)

In the absence of noise, the pre-envelope  of the received signal has a natural

envelope given by

(B.6)

The goal is to estimate this natural envelope s out of the natural envelope of the received

signal  that can be written as

(B.7)

In this case, the this variable is Rician-distributed and its probability density function is

given by

(B.8)
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where In(·) is the modified Bessel function of first kind and order n. It is worth mentioning

the dependence of this distribution on the noise-free component s. Inference on this

component s out the observed data Y is possible in a closed manner as we will show next.

The mean of this distribution is given by

(B.9)

and its mean-squared value

(B.10)

By using equations (B.4), (B.9) and (B.10) the SNR for a Rice variable can be written as

(B.11)

where γ = s/σ is known as the coherent to non-coherent ratio. In equation (B.11) the

dependence of the SNR on the γ parameter was made explicit by the use of function B(·). It

is worth noting that the SNR has only one degree of freedom as the dependence on the

parameters s and σ is exclusively through the parameter γ. We have the following limiting

values for this SNR

(B.12)

(B.13)

Equation (B.12) corresponds to the low SNR case (Rayleigh distribution) and equation (B.

13) to the high SNR case (normal distribution). The bias effect has to be considered mainly

for low SNR. For high SNR as the Rice distribution approaches a Gaussian distribution, the

Wiener solution is the general optimum solution with no bias. In figure 2 we can see the

SNR as a function of the γ parameter.

C Synthetic Tensor Data Generation

C.1 Earth

Consider the parametric family (x, y, z) = (ρ cos(θ), ρ sin(θ), α), where θ ∈ (−π, π) is the

curve parameter and ρ > 0 and α are constant for each curve. Setting ρ and α and varying θ a

curve is generated. The tangent vector for this curve is given by the first derivative of the

curve with respect to the free parameter θ as
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(C.1)

The unitary eigenvectors for the tensor field are given by

(C.2)

where v1 follows the tangent field given by equation (C.1). The other two eigenvectors are

chosen so as to form an orthonormal set.

C.2 Logarithm

The parametric family for the curve is (x, y, z) = (ρcos(θ), ρ sin(θ), ln ρ + α), where ρ > 0 is

the curve parameter and θ ∈ (−π, π) and α are constant for each curve. Setting θ and α and

varying ρ a curve is generated. The tangent vector for this curve is given by the first

derivative of the curve with respect to the free parameter ρ as

(C.3)

The unitary eigenvectors for the tensor field are given by

(C.4)

where v1 follows the tangent field given by equation (C.3). The other two eigenvectors are

chosen so as to form an orthonormal set.

C.3 Cross

In this case the eigenvectors are defined by

(C.5)

where α is a constant representing the size of the crossing region. The corresponding

eigenvalues are given by
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(C.6)

(C.7)

where γ is a constant representing the height (along the z component) of the cross.

D Smoothness along Fibers

A fiber F is given by a sorted collection of K points

(D.1)

where each Fk = (xk, yk, zk) is a point in the Euclidean 3D space. A collection of tangent

vectors to the fiber F can be defined by taking the first difference dF as

(D.2)

where dF has K − 1 elements. The angle θ between two given vectors a and b is known to

be

(D.3)

where < ·,· > and ∥·∥ stand for the scalar product and the norm, respectively. Using matrix

operations we can determine the angles θ

(D.4)

spanned by adjacent tangent vectors to the fiber as

(D.5)

for 1 ≤ k ≤ K − 2, where (·)ij stands for the element at position (i, j) and dF1 and dF2 are the

first K − 2 and the last K − 2 elements of dF respectively.

We define the smoothness μ for a fiber by
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(D.6)

with 0 ≤ μ ≤ 1. Parallel vectors give rise to a cos(θk) value of 1, anti-parallel vectors a value

of −1 and orthogonal vectors a value of 0. Consequently, the lower the μ value, the smoother

the fiber.
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Fig. 1.
Oriented neighborhood subsystems with L = 27 encoding 6 different orientations (red sites).
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Fig. 2.
SNR as a function of the γ parameter.
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Fig. 3.
γ parameter as a function of the SNR.
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Fig. 4.
Tractography for the synthetic images: (a) EARTH, (b) LOGARITHM and (c) CROSS.

Martin-Fernandez et al. Page 28

Med Image Anal. Author manuscript; available in PMC 2014 July 16.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 5.
Experimental distribution for the total variance for the EARTH data set: (a) noisy and (b)

filtered.
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Fig. 6.
Experimental distribution for the cone of uncertainty CI for the LOGARITHM data set: (a)

noisy and (b) filtered. Angles are measured in radians. The maximum allowed value is π/2.
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Fig. 7.
Tractography results for the CROSS synthetic image: (a) noisy and (b) filtered for λ = 0.5

and N = 5 iterations.
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Fig. 8.
Glyph representation for the EARTH experiment. (a) original, (b) noisy and (c) filtered.
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Fig. 9.
Glyph representation for the LOGARITHM experiment. (a) original, (b) noisy and (c)

filtered.
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Fig. 10.
Glyph representation for the last synthetic experiment. (a) original, (b) noisy, (c) isotropic

filtered and (d) anisotropic filtered.
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Fig. 11.
FA value for the (a) original dataset and (b) after filtering.
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Fig. 12.
Planar component for the (a) original dataset and (b) after filtering.
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Fig. 13.
Spherical component for the (a) original dataset and (b) after filtering.
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Fig. 14.
Color representation of the orientation for the (a) original dataset and (b) after filtering.
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Fig. 15.
Glyph representation for an axial region of interest. (a) original and (b) filtered.
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Fig. 16.
Glyph representation for an sagittal region of interest. (a) original and (b) filtered.
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Fig. 17.
Glyph representation for an coronal region of interest. (a) original and (b) filtered.
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Fig. 18.
Selected areas with inferior-superior diffusion (blue areas) in the coronal view.
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Table 1

Original data corrupted by noise: bias, variance and MSE.

MEASURE CROSS LOGARITHM EARTH

Bsq 0.0309 0.1376 0.0824

Var 0.8357 3.8455 1.5228

MSE 0.8666 3.9831 1.6052
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Table 2

Results for the estimation of the s parameter with no filtering. Minimum attained values highlighted for each

measurement and synthetic case.

MEASURE CROSS LOGARITHM EARTH ESTIMATOR TYPE

Bsq 0.0088 0.0028 0.0885

ISOTROPICVar 1.1576 4.0046 2.3811

MSE 1.1664 4.0074 2.4695

Bsq 0.0027 0.0146 0.0003

ANISOTROPICVar 0.8537 3.8704 1.7208

MSE 0.8564 3.8850 1.7211
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Table 3

Results after filtering for λ = 0.5 and N = 5 iterations. Minimum attained values highlighted for each

measurement and synthetic case.

MEASURE CROSS LOGARITHM EARTH FILTER TYPE

Bsq 0.0311 0.1387 0.0839

ISOTROPICVar 0.0302 0.2288 0.1024

MSE 0.0613 0.3675 0.1863

Bsq 0.0093 0.0027 0.1038

NO-BIAS
ISOTROPICVar 0.2778 0.2734 0.5659

MSE 0.2871 0.2762 0.6697

Bsq 0.0286 0.1321 0.0755

ANISOTROPICVar 0.0397 0.2055 0.0791

MSE 0.0683 0.3376 0.1546

Bsq 0.0023 0.0138 0.0001

NO-BIAS
ANISOTROPICVar 0.0525 0.2055 0.1589

MSE 0.0548 0.2193 0.1590
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Table 4

Results after filtering for λ = 0.5 and N = 10 iterations. Minimum attained values highlighted for each

measurement and synthetic case.

MEASURE CROSS LOGARITHM EARTH FILTER TYPE

Bsq 0.0314 0.1400 0.0855

ISOTROPICVar 0.0195 0.0943 0.0983

MSE 0.0509 0.2343 0.1838

Bsq 0.0091 0.0027 0.1162

NO-BIAS
ISOTROPICVar 0.2342 0.1133 0.4839

MSE 0.2433 0.1160 0.6001

Bsq 0.0284 0.1322 0.0750

ANISOTROPICVar 0.0154 0.1046 0.0556

MSE 0.0437 0.2368 0.1307

Bsq 0.0023 0.0140 0.0001

NO-BIAS
ANISOTROPICVar 0.0263 0.0967 0.1191

MSE 0.0286 0.1107 0.1192
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Table 5

Statistical results for the reconstructed tensor data sets (see the main text for the details).

SYNTHETIC
DATA SET MEASURE NOISY /

FILTERED MEAN±STD t-TEST
α = 0.05

LOGARITHM

TV×108
NOISY 30.6133 ± 3.6216

p = 0.0
FILTERED 1.5564 ± 0.4809

CONE CI
NOISY 1.0233 ± 0.1734

p = 0.0
FILTERED 0.2027 ± 0.0343

EARTH

TV×108
NOISY 12.6826 ± 1.4268

p = 0.0
FILTERED 0.3575 ± 0.3892

CONE CI
NOISY 0.5933 ± 0.0854

p = 0.0
FILTERED 0.1033 ± 0.0551
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Table 6

Anisotropy measurements for the LOGARITHM data set.

MEASURE
(average)

ORIGINAL
DATA

NOISY
DATA

ISOTROPIC
FILTERING

ANISOTROPIC
FILTERING

Linear Comp. 0.7142 0.6098 0.7101 0.6933

Planar Comp. 0.1429 0.2673 0.1281 0.1551

Spherical Comp. 0.1429 0.1230 0.1618 0.1516

FA 0.7577 0.7346 0.7441 0.7424

First Eig. 7 7.5 6.9 6.8

Second Eig. 2 2.7 2.0 2.0

Third Eig. 1 0.9 1.1 1.0
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Table 7

Averaged linear component in the 9 regions of interest.

ORIGINAL DATA

VIEW LEFT-RIGHT ANTER.-POSTER. INFER.-SUPER.

Axial 0.5458 0.4333 0.3961

Sagittal 0.4847 0.4502 0.4634

Coronal 0.4893 0.3795 0.4318

AFTER FILTERING

VIEW LEFT-RIGHT ANTER.-POSTER. INFER.-SUPER.

Axial 0.7123 0.5751 0.5386

Sagittal 0.6525 0.5932 0.6292

Coronal 0.6815 0.4800 0.5749
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