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Rémi Louf1, Camille Roth2,3, Marc Barthelemy1,3*
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Abstract

Subway systems span most large cities, and railway networks most countries in the world. These networks are fundamental
in the development of countries and their cities, and it is therefore crucial to understand their formation and evolution.
However, if the topological properties of these networks are fairly well understood, how they relate to population and
socio-economical properties remains an open question. We propose here a general coarse-grained approach, based on a
cost-benefit analysis that accounts for the scaling properties of the main quantities characterizing these systems (the
number of stations, the total length, and the ridership) with the substrate’s population, area and wealth. More precisely, we
show that the length, number of stations and ridership of subways and rail networks can be estimated knowing the area,
population and wealth of the underlying region. These predictions are in good agreement with data gathered for about 140
subway systems and more than 50 railway networks in the world. We also show that train networks and subway systems
can be described within the same framework, but with a fundamental difference: while the interstation distance seems to
be constant and determined by the typical walking distance for subways, the interstation distance for railways scales with
the number of stations.
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Introduction

Almost 200 subway systems run through the largest agglomer-

ations in the world and offer an efficient alternative to congested

road networks in urban areas. Previous studies have explored the

topological and geometrical static properties of these transit

systems [1–5], as well as their evolution in time [6–8]. However,

subways are not mere geometrical structures growing in empty

space: they are usually embedded in large, highly congested urban

areas and it seems plausible that some properties of these systems

find their origin in the interaction with the city they are in.

Previous studies [9,10] have indeed shown that the growth and

properties of transportation networks are tightly linked to the

characteristics of urban environment. Levinson [9] for instance,

showed that rail development in London followed a logic of both

‘induced supply’ and ‘induced demand’. In other words, while the

development of rail systems within cities answers a need for

transportation between different areas, this development also has

an impact on the organisation of the city. Therefore, while the

growth of transportation systems cannot be understood without

considering the underlying city, the development of the city cannot

be understood without considering the transportation networks

that run through it. As a result, the subway system and the city can

be thought as two systems exhibiting a symbiotic behaviour.

Understanding this behaviour is crucial if we want to gain deeper

insights into the growth of cities and how the mobility patterns

organise themselves in urban environments.

At a different scale, railway networks answer a need for fast

transportation between different urban centers, and we therefore

expect their properties to be linked to the characteristics of the

underlying country. A model of growth has been recently

proposed [11], and relates the existence of a given line to the

economical and geographical features of the environment. An

interesting question is thus to know whether subways and railway

networks behave in the same way, but at different scales. In other

words, we are interested to know whether subways are merely

scaled down railway networks, or whether they are fundamentally

different objects, following different growth mechanisms. Also, the

existence of scaling between the system’s output and its size is

important as it suggests that very general processes are governing

the growth of these networks [12,13].

Although many studies [3,5,14] explore the interplay between

regional characteristics and the structure of transportation

networks, a simple picture relating the network’s most basic

quantities and the region’s properties is still lacking. In the spirit of

what has recently been done for cities [13] and for railway

networks [11,15], we propose here a large-scale framework and try

to understand how subways and railway networks scale with some

of the substrates’ most basic attributes: population, surface area

and wealth. As a result, we are able to relate the total ridership, the

number of stations, the length of the network to socio-economical

features of the environment. We find that these relations are in

good agreement with the data gathered for 138 subway systems

and 58 railway networks accross the world. In particular, we show

that even if the main mechanisms are the same, the fact that both

systems operate at different scales is responsible for their different

behaviors. We believe this should lay the foundations for more

specific and involved discussions.
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Results

Framework
A transportation network is at least characterized by its total

number of nodes (which are here train or subway stations), its total

length, and the total (yearly) ridership. On the other hand, a city

(or a country in the railway case) is characterized by its area, its

population and its Gross Domestic Product (GDP). Because

transportation systems do not grow in empty space, but result from

multiple interactions with the substrate, an important question is

how network characteristics and socio-economical indicators relate

to one another. Naturally, a cost-benefit analysis seems to be the

appropriate theoretical framework. This approach has been

developed in the context of the growth of railway networks

[11,15], and in these studies an iterative growth was considered: at

each step an edge e is built such that the cost function

Ze~Be{Ce ð1Þ

is maximum. The quantity Be is the expected benefit and Ce the

expected cost of edge e. In the following, we consider networks

after they have been built, and we assume that they are in a

‘steady-state’ for which we can write a cost function of the form

Z~
X

e

Ze~B{C ð2Þ

where B is the total expected benefits and C the total expected

costs, mainly due to maintenance (in the steady state regime). We

further assume that, during this steady-state, operating costs are

balanced by benefits. In other words

Z&0 ð3Þ

Indeed, because lines and stations cost money to be maintained,

we expect the network to adapt to the way it is being used.

Therefore we can reasonably expect that at first order the cost of

operating the system is compensated by the benefits gained from

its use. In the following we will apply this general framework to

subway and railway networks in order to determine the behavior

of various quantities with respect to population and GDP.

Subways
In the case of subways, the total benefits in the steady-state are

simply connected to the total ridership R and the ticket price f
over a given period of time. The costs, on the other hand, are due

to the maintenance costs of the lines and stations, so that we can

write (for a given period of time)

Zsub~Rf {ELL{ESNs ð4Þ

where L is the total length of the network, EL the maintenance cost

of a line per unit of length, NS the total number of stations and ES

the maintenance cost of a station (for a given period time).

It is usually difficult to estimate the ridership of a system given

its characteristics and those of the underlying city. Due to the

importance of such estimates for planning purposes, the problem

of estimating the number of boardings per station given the

properties of the area surrounding the stations has been the subject

of numerous studies [16,17]. Here we are interested in the

dependence of global, average behavior of the ridership on the

network and the underlying city. Very generally, we write that the

number Ri of people using the station i will be a function of the

area Ci serviced by this station–the ‘coverage’ [3]–and of the

population density r~ P
A

in the city

Ri~ji Ci r ð5Þ

where ji is a random number of order one representing the

fraction of people that are in the area serviced by the station and

who use the subway. The main difficulty is in finding the

expression of the coverage. It depends, a priori, on local

particularities such as the accessibility of the station, and should

thus vary from one station to another. We take here a simple

approach and assume that on average

Ci*pd 2
0 ð6Þ

where d0 is the typical size of the attraction basin of a given station.

If we assume that it is constant, the total ridership can be written as

R~
X

i

Ri*jpd2
0 r Ns ð7Þ

where j~ 1
Ns

P
i ji is of the order of 1.

We gathered the relevant data for 138 metro systems across the

world (see Materials and Methods), which we cross-verified when

possible with the data given by network operators. We plot the

ridership R as a function of Ns r on Fig. 1 (left) and observe that

the data is consistent with a linear behavior. We measure a slope of

800 km2=year which gives an estimate for d0

d0&500 m ð8Þ

We illustrate this result on Fig. 1 (right) by representing each

subway stations of Paris with a circle of radius 500 m. So far, the

distance d0 appears here an intrinsic feature of user’s behaviors: it

is the maximal distance that an individual would walk to go to a

subway station.

The average interstation distance ‘1 is another distance

characteristic of the subway system. Rigorously, this distance

depends on the average degree vkw of the network so that

‘1~
2L

Nsvkw

. It has however been found [7] that for the 13

largest subway systems in the world, vkw[ 2:1,2:4½ �, so that we

can reasonably take vkw=2&1 and thus

‘1^
L

Ns

ð9Þ

The interstation distance depends in general on many

technological and economical parameters, but we expect that for

a properly designed system it will match human constraints.

Indeed, if d0%‘1, the network is not dense enough and in the

opposite case d0&‘1, the system is not economically interesting.

We can thus reasonably expect that the interstation distance

fluctuates slightly around an average value given by twice the

typical station attraction distance d0

Scaling in Transportation Networks
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d0~
‘1

2
~

L

2Ns

ð10Þ

It follows from this assumption that the interstation distance is

constant and independent from the population size. In order to

test our assumption, we plot on Fig. 2 (left) the total length of

subway networks as a function of the number of stations. The data

agrees well with a linear fit L*1:13NS (r2~0:93). We also plot on

Fig. 2 (right) the normalized histogram of the inter-station length,

showing that the interstation distance is indeed narrowly

distributed around an average value ‘1&1:2 km with a variance

s&400 m, consistently with the value found above for

d0&500 m. The outliers are San Francisco, whose subway system

is more of a suburban rail service and Dalian, a very large chinese

city whose metro system is very young and still under develop-

ment.

As a result of the previous argument, we can express ‘1 in terms

of the systems characteristics. Indeed, the total ridership now reads

R*jpr
L2

Ns

ð11Þ

If we assume to be in the steady-state Zsub&0, using the results

from Eqs. (4,11), we find that the total length of the network and

the number of stations are linked at first order in Es=EL by

L*
4EL

pj f r
z

Es

EL

� �
Ns ð12Þ

Figure 1. (Subway) Relationship between ridership and coverage. (Left) We plot the total yearly ridership R as a function of rNs. A linear fit
on the 138 data points gives R&800 rNs (R2~0:76) which leads to a typical effective length of attraction d0&500 m per station. (Right) Map of Paris
(France) with each subway station represented by a red circle of radius 500 m.
doi:10.1371/journal.pone.0102007.g001

Figure 2. (Subway) Relation between the length and the number of stations. (Left) Length of 138 subway networks in the world as a
function of the number of stations. A linear fit gives L*1:13NS (R2~0:93) (Right) Empirical distribution of the inter-station length. The average

interstation distance is found to be ‘1&1:2 km and the relative standard deviation is approximately 440 m.
doi:10.1371/journal.pone.0102007.g002
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and that the interstation distance reads

‘1~
4EL

pj f r
z

Es

EL

ð13Þ

This relation implies that the interstation distance increases with

the station maintenance cost, and decreases with increasing line

maintenance costs, density and fare. We thus see that the

adjustment of ‘1 to match 2 d0 can be made through the fare

price (or subsidies by the local authorities or national government).

At this point, it would be interesting to get reliable data about the

maintenance costs and fares for subway systems in order to pursue

in this direction and to test the accuracy of this prediction.

So far, we have a relation between the total length and the

number of stations, but we need another equation in order to

compute their value. Intuitively, it is clear that the number of

stations – or equivalently the total length – of a subway system is

an increasing function of the wealth of the city. We assume a

simple, linear relation of the form

Ns~b
G

Es

ð14Þ

where G is the city’s Gross Metropolitan Product (GMP), and b
the fraction of the city’s wealth invested in public transportation.

This relation can equivalently be interpreted as the proportional

relation between the number of station per person and the city’s

development, as measured by its GMP per capita. On Fig. 3 (left)

we plot the number of stations of different metro systems around

the world as a function of the Gross Metropolitan Product of the

corresponding city. A linear fit agrees relatively well with the data

(R2~0:73, dashed line), and gives
Es

b
&1010 dollars=station.

However, the dispersion around the linear average behaviour is

important: more specific data is needed in order to investigate

whether differences in the construction costs and investments (or

the age of the system) can explain the dispersion, or if other

important parameters need to be taken into account. Incidentally,

another possibility would be to assume that the size of the system

depends on the age of the system or the development of the city

(measured by the GMP per capita). However, in both cases, we

found poor correlations. At this stage, we thus conclude that the

number of stations (respectively the density of stations) mostly

depends on the total GMP (respectively the GMP per capita).

Finally, we consider the number of different lines with distinct

tracks. A natural question is how the number of lines Nlines scales

with the number stations Ns, that is to say whether lines get

proportionally smaller, larger or the same with the size of the

whole system. We plot the number of lines as a number of stations

on Fig. 3 (right) and find that the data agree with a linear

relationship between both quantities (R2~0:93). In other words,

the number of stations per line is distributed around a typical value

of 19, whatever the size of the system.

Railway networks
We first discuss an important difference between railway and

subway networks. In the subway case, the interstation distance ‘1 is

such that it matches human constraints: ‘1*2d0 where d0 is the

typical distance that one would walk to reach a subway station. For

the railway network, the logic is however different: while subways

are built to allow people to move within a dense urban

environment, the purpose of building a railway is to connect

different cities in a country. In addition, due to the long distance

and hence high costs, it seems reasonable to assume that each city

is connected to its closest neighbouring city. In this respect, the

railway network appears as a planar graph connecting in an

economical way, randomly distributed nodes (cities) in the plane. If

we assume that a country has an area A and Ns train stations, the

typical distance between nearest stations is

‘N~

ffiffiffiffiffiffi
A

Ns

s
ð15Þ

Figure 3. (Subway) Size of the subway system and city’s wealth. (Left) We plot the number of stations for the different subway systems in the
dataset as a function of the Gross Metropolitan Product of the corresponding cities (obtained for 106 subway systems). A linear fit (dashed line) gives
Ns~2:5110{10 G (R2~0:73). (Subway) Number of lines and number of stations (Right) We plot the number of metro lines Nlines as a function
of the number of stations Ns. A linear fit on the 138 data points gives Nlines&0:053Ns (R2~0:93), or, in other words, metro lines comprise on average
19 stations.
doi:10.1371/journal.pone.0102007.g003
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The total length L*Ns ‘N is then given by

L*
ffiffiffiffiffiffiffiffiffiffi
ANs

p
ð16Þ

In order to test this relation for different countries, we plot the

adimensional quantity
Lffiffiffiffi
A
p as a function of the number of stations

Ns on Fig. 4. A power law fit gives an exponent

0:50+0:08 (R2~0:87), which is consistent with the previous

argument.

At this point, we have a relation between L and Ns, but we need

to find expressions for the other quantities. In contrast with

subway systems, due to distances involved, the ticket price usually

depends on the distance travelled and we denote by fL the ticket

price per unit distance. The relevant quantity for benefits is

therefore not the raw number of passengers – as in subways – but

rather the total distance travelled on the network T . Also, again

due to the long distances spanned by the network, the costs of

stations can be neglected as a first approximation, and we get for

the budget the following expression

Ztrain^T fL{EL L ð17Þ

In the steady-state regime Ztrain&0, or in other words the

revenue generated by the network use must be of the order of the

total maintenance costs [11], which leads to

T*
EL

fL

L ð18Þ

In addition, if we assume that the order of magnitude of a trip is

given by ‘N , the total travelled length is simply proportional to the

ridership T*‘NR leading to

R*
ELNs

fL

ð19Þ

We thus plot the total daily ridership R as a function of the total

number of stations Ns (figure 5), and despite the small number of

available data points, a linear relationship between these both

Figure 4. (Train) Total length and number of stations. Total length of the national railway network L rescaled by the typical size of the countryffiffiffiffi
A
p

as a function of the number of stations Ns . The dashed line shows the best power-law fit on the 50 data points with an exponent
0:50+0:08 (R2~0:87).
doi:10.1371/journal.pone.0102007.g004
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quantities seems to agree with empirical data on average

(R2~0:86). This result should be taken with caution, however,

due to the important dispersion that is observed around the

average behaviour, and the small number of observations.

According to the previous result, the total length and the

number of stations are related to each other. We now would like to

understand what property of the underlying country determines

the total length of the network. That is to say, why networks are

longer in some countries than in others. As in subway systems,

economical reasons seem appealing. Indeed, the railway networks

of some large african countries such as Nigeria are way smaller

than that of countries such as France or the UK of similar surface

areas. A priori, when estimating the cost of a railway network, one

should take into account both the costs of building lines and the

stations. However, as stated above, considering the distances

involved, the cost of building a station is negligible compared to

that of building the actual lines. We thus can reasonably expect to

have

L*
aG

EL

ð20Þ

where G is here the country’s Gross Domestic Product (GDP) used

as an indicator of the country’s wealth, and av1 the ratio of the

GDP invested in railway transportation. We plot L as a function of

G on Fig. 6 and the data agree well (R2~0:91) with a linear

dependence between L and G (note that we have more points here

due to the fact that the data about the total length of a railway

network is easier to get). Again, the dispersion indicates that the

linear trend should only be understood as an average behaviour

and that local particularities can have a strong impact on the

important deviations observed. For instance, the United Arab

Emirates are far from the average behaviour, with a 52 km

network and a GDP of roughly 3|105 million dollars. Yet, the

construction of a 1,200 km railway network has been decided in

2010, which would bring the country closer to the average

behaviour. As in the case of subways, we also tried to see whether

L could better be explained by the development of the country, as

measured by its GDP per capita, but we didn’t find any significant

correlations.

Discussion

We observed scaling relations for global properties of railways

and subways and the existence of such relations suggests that basic,

common mechanisms are at play during their evolution. A

probable reason for the presence of these systems is the mobility

demand and their structure is driven by economical mechanisms

that seem to be the same for all countries, independently from any

cultural, or historical considerations. The fact that macroscopic

Figure 5. (Train) Ridership and number of stations. The total yearly ridership R of the railway networks as a function of the number of stations.
A linear fit on the 47 data points gives R*7:0108 Ns (R2~0:86)
doi:10.1371/journal.pone.0102007.g005
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properties seem to be independent from specific details opens the

possibility for simple modelling, and in this spirit, we have

proposed a general framework to connect the properties of railway

and subway systems (ridership, total length and number of stations)

to the socio-economic and spatial characteristics (population, area,

GDP) of the country or city where they are built. Despite their

simplicity, our arguments agree satisfactorily with data we

gathered for almost 140 subway systems and 50 railway networks

accross the world. As a result, and maybe surprisingly, the

knowledge of simple characteristics of a country or a city are

enough to give an estimate of the size and use of its transportation

system.

It should be noted that the noise associated with the data (and

sometimes their definition, see Material and Methods) makes it

difficult to infer behaviours from the empirical analysis alone.

Therefore, the most appropriate way to proceed, we believe, is to

make assumptions about the systems and build a model whose

predictions can then be tested against data.

This study suggests that the fundamental difference between

railways and subways comes from the determination of the

interstation distance. While it is imposed by human constraints in

the subway case, the railway network has to adapt to the spatial

distribution of cities in a country. This remark is at the heart of the

different behaviors observed for railways and subways (see Table 1

for a summary of these differences).

The previous arguments are able to explain the average

behaviour of various quantities. Nevertheless, it would be

interesting to identify deviations from these behaviours, and see

as suggested in [3] whether they are correlated with topological

properties of the system, or other properties of the network and the

region. We think that the relations presented here provide

however a simple framework within which local particularities

can be discussed and understood. We also think that this

framework could serve as a useful null-model to quantify the

efficiency of individual transportation networks, and compare

them to each other. This would however require more specific

data than those that were available to us.

While we have focused on an average, static description of

metro systems, we believe that our study provides a better

understanding of how these systems interact with the region they

serve. This new insight is a necessary step towards a model for the

growth of subway systems that takes the characteristics of the city

into account. Indeed, although models of network growth exist,

the length of networks and nodes at a given time is usually imposed

exogeneously, instead of being linked to the socio-economic

properties of the substrate. This study provides a simple approach

Figure 6. (Train) Total length of the network and wealth. Total length of the railway network L as a function of the country GDP G. The
dashed line shows the linear fit on the 138 data points which gives EL=a&104 dollars:km{1 (R2~0:91).
doi:10.1371/journal.pone.0102007.g006
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to these complex problems and could help in building more

realistic models, with less exogeneous parameters.

It would also be interesting to gather data about the exact

structure of all the networks, to study whether there is a

relationship between their topology (degree distribution, detour

index, etc.) and properties of the substrate, as was done for the

road network in [5].

Finally, gathering historical data should allow to address the

problem of the conditions for the appearance of a subway in a city.

Indeed, we observe empirically that the GDP of the cities that

have a subway system is always larger than about 1010 dollars, a

fact that calls for a theoretical explanation.

Materials and Methods

Data for 138 subways accross the world were mainly collected

on Wikipedia [18], and cross-referenced with the operators’ data

when possible. The cities’ GDP per capita was retrieved for 114
cities from Brooking’s Global MetroMonitor [19]. The choice of

population and city area was more subtle. Indeed, most subway

systems span an area greater than the city core, and the relevant

area therefore lies somewhere between the city core’s area and the

total urbanized area. We chose to use the population and surface

area data for urbanized areas provided by Demographia [20].

While data about ridership, network length were easily

retrievable for more than 100 countries from the UIC Railisa

2011 database [21], data about the number of stations were more

difficult to find. We had to use various data sources, mainly

scrapping the operators’ ticket booking websites. Data about the

GDP, population and surface areas of different countries were

obtained from the World Bank [22], and the United Nations

Statistics Division [23].

All the data used for this study are publicly available in tsv

format at [24].
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discussions at an early stage of this project.

Author Contributions

Analyzed the data: RL CR MB. Contributed to the writing of the

manuscript: RL CR MB.

References

1. Benguigui L (1992) The fractal dimension of some railway networks. Journal de

Physique I 2: 385–388.

2. Benguigui L (1995) A fractal analysis of the public transportation system of paris.
Environment and Planning A 27: 1147–1161.

3. Derrible S, Kennedy C (2009) Network analysis of world subway systems using
updated graph theory. Transportation Research Record: Journal of the

Transportation Research Board 2112: 17–25.

4. Sienkiewicz J, Holyst JA (2005) Statistical analysis of 22 public transport
networks in poland. Physical Review E 72: 046127.

5. Levinson D (2012) Network structure and city size. PLoS ONE 7: e29721.
6. Von Ferber C, Holovatch T, Holovatch Y, Palchykov V (2009) Modeling

metropolis public transport. In: Traffic and Granular Flow, Springer. pp.
709719.

7. Roth C, Kang SM, Batty M, Barthelemy M (2012) A long-time limit for world

subway networks. Journal of The Royal Society Interface 9: 25402550.
8. Leng B, Zhao X, Xiong Z (2014) Evaluating the evolution of subway networks:

Evidence from beijing subway network. EPL (Europhysics Letters) 105: 58004.
9. Levinson D (2008) Density and dispersion: the co-development of land use and

rail in london. Journal of Economic Geography 8: 5577.

10. Xie F, Levinson D (2009) Topological evolution of surface transportation
networks. Computers, Environment and Urban Systems 33: 211–223.

11. Louf R, Jensen P, Barthelemy M (2013) Emergence of hierarchy in cost-driven
growth of spatial networks. Proceedings of the National Academy of Sciences

110: 8824–8829.
12. Banavar JR, Maritan A, Rinaldo A (1999) Size and form in efficient

transportation networks. Nature 399: 130–132.

13. Louf R, Barthelemy M (2014) How congestion shapes cities: from mobility
patterns to scaling. Scientific Reports, in press. ArXiv:14018200.

14. Kansky KJ (1963) Structure of transportation networks: relationships between

network geometry and regional characteristics. PhD Thesis.

15. Black WR (1971) An iterative model for generating transportation networks.

Geographical Analysis 3: 283288.

16. Matsunaka R, Oba T, Nakagawa D, Nagao M, Nawrocki J (2013) International

comparison of the relationship between urban structure and the service level of

urban public transportation: A comprehensive analysis in local cities in japan,

france and germany. Transport Policy 30: 26–39.

17. Kuby M, Barranda A, Upchurch C (2004) Factors influencing light-rail station

boardings in the united states. Transportation Research Part A: Policy and

Practice 38: 223–247.

18. Data about subway length, number of stations are available on the wikipedia

website http://www.wikipedia.org.

19. GMP per capita data for different cities accross the world are available on

Brookings Global Metromonitor website http://www.brookings.edu/research/

interactives/global-metro-monitor-3.

20. Surface area and population data for urbanized areas accross the world are

available on the Demographia website http://www.demographia.com.

21. The Railisa database is available on the UICs website http://www.uic.org/spip.

php?article1353.

22. Data about the gdp of countries were taken from the World Banks website

http://data.worldbank.org/indicator/NY.GDP.MKTP.CD.

23. Population and surface areas of countries were taken from the Demographic

Yearbook, available on the United Nation Statistical Divisions website http://

unstats.un.org/unsd/demographic/products/dyb/dyb2.htm.

24. All the data used for this study are available in tsv format at http://github.com/

rlouf/data/tree/master/scaling_transportation.

Table 1. Summary of the differences between subways and
railways.

Subway Train
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ffiffiffiffiffiffi
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We summarize the difference of behaviour between subways and railways. The
scaling of the average interstation length L=Ns of the network with the number
of stations Ns reveals the different logics behind the growth of these systems.
Another difference lies in the total ridership R: while it depends also on the
population density P=A for subways, it only depends on the number of stations
Ns for train networks. Finally, the size of both types of networks can be
expressed as a function of the wealth of the region, represented here by the
GDP G. However, because the interstation length is constant for subways, the
size can be expressed in terms of the number of stations Ns or the length. In
the railway networks case, the cost of stations is negligible compared to the
building cost of lines, and the size is expressed in terms of the total length L.
doi:10.1371/journal.pone.0102007.t001
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