
©
20

14
 L

an
de

s 
B

io
sc

ie
nc

e.
 D

o 
no

t d
is

tri
bu

te
.

Cancer Biology & Therapy 15:7, 930–937; July 2014; © 2014 Landes Bioscience

 Research Paper

930	 Cancer Biology & Therapy	 Volume 15 Issue 7

Research Paper

Introduction

The effectiveness of radiotherapy for thoracic malignancies 
is limited by the low tolerance of normal lung parenchyma to 
ionizing radiation.1,2 Clinically significant radiation-induced 
lung injury occurs in 30% of patients irradiated for lung 
cancer3 and 10–15% of other thoracic oncology patients.4 A 
greater proportion of patients have subclinical adverse effects 
from radiation of the lung, identifiable by imaging and/or 
physiological testing.5 Highly reactive oxygen species (ROS) and 
reactive nitrogen species (RNS) are induced in large quantities 
by radiation therapy (XRT) and have been implicated in this 
form of lung injury.6

There is currently no known effective pharmacologic therapy 
for the prevention of acute or chronic radiation pneumonopathy. 
To date, the only means to avoid life-threatening radiation pneu-
monopathy is to modify the irradiation technique to minimize 
the volume of normal lung that receives a significant radiation 
dose. A safe and effective biologic radioprotector would thus 
be extremely useful. Preclinical data suggest that antioxidant 
molecules and/or enzymes might offer protection of the lung.7-9 
Our group has shown that systemic administration of polyethyl-
ene glycol conjugated antioxidant enzymes at the time of XRT 
alters several early biomarkers of lung injury, decreases apopto-
sis, and ameliorates late pulmonary fibrosis in a murine model.10 
Although encouraging, this potential therapeutic is far from 
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Introduction: Dietary flaxseed (FS) displays antioxidant and anti-inflammatory properties in preclinical models of 
lung disease including radiation-induced pneumonopathy, however the mechanisms of lung radioprotection are incom-
pletely understood. MicroRNAs (miRNAs) are short oligonucleotides that act as important posttranscriptional regulators 
of diverse networks including inflammatory response networks. Responses of miRNA profiles to diet and radiation expo-
sure have been reported, but the potential contribution of miRNAs to diet-related radioprotection has never been tested.

Methods: In this exploratory pilot study, mice were fed 10% FS or a 0% FS isocaloric control diet and exposed to a 
single-fraction 13.5 Gy thoracic X-ray radiation treatment (XRT). Lung RNA was extracted 48 h post-XRT and small RNAs 
profiled by OpenArray.

Results: FS significantly modulated expression of multiple miRNAs, including 7 with P < 0.001. miR-150 was down-
regulated approximately 2.9-fold in the FS groups and is disproportionately integrated into immune response-related 
networks. Although few miRNAs were significantly changed by radiation, interaction between diet and radiation was 
observed. For example, miR-29c was greatly downregulated in the FS/Control group (10- to 50-fold) but slightly upregu-
lated in the FS/radiation group. Compared with FS/control, the FS/radiation group experienced a 50% decrease of the 
p53-responsive miR-34a, which regulates senescence- and apoptosis-related factors.

Conclusions: FS induced significant changes in lung miRNA profile suggesting that modulation of small RNA by 
dietary supplements may represent a novel strategy to prevent adverse side-effects of thoracic radiotherapy. This pilot 
study provides insight into a potential mechanism of flaxseed’s radioprotection and provides a useful model-system to 
further explore and optimize such small RNA-based therapies.
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human clinical trials, and a safe, more accessible radioprotector 
is therefore needed.

Our group has identified dietary flaxseed (FS) as a potential 
radioprotector against radiation-induced lung injury in a murine 
model of thoracic XRT. FS is a non-toxic whole grain composed 
of high concentrations of omega-3 fatty acids and lignans. While 
omega-3 fatty acids reduce inflammation, lignans possess potent 
antioxidant properties. Specifically, secoisolariciresinol digluco-
side (SDG) is the most abundant lignan present in FS and was 
shown in vitro to have direct hydroxyl radical scavenging proper-
ties and to inhibit lipid peroxidation11-13 as verified recently by our 
group in the context of oxidative lung injury.14,15 We confirmed 
the cell and tissue protective effects of the lignan precursor SDG 
on the abrogation of radiation-induced ROS generation in vitro. 
In addition, we provided evidence of radioprotection of FS and 
of dietary SDG formulations. Importantly, both FS and SDG 
formulations protected normal tissue damage from radiation and 
inflammation, while not decreasing lung tumor response to XRT 
using an orthotopic model.

In this pilot study, we investigated another potential mechanism 
of FS-induced radioprotection by examining modulation of 
microRNAs (miRNAs) in the lung in response to FS diet and 
radiation. miRNAs are short (approximately 22 nucleotides) 
RNA molecules which contribute to posttranscriptional gene 
regulation. As biomarkers, miRNAs hold tremendous clinical 
promise as diagnostics, prognostics, and predictors of response 
to therapy. The normal miRNA profile of a given cell or 
tissue type is often dysregulated in cancers and in response to 
inflammation. Beyond “bystander” effects, miRNAs may also 
be intimately involved in pathogenesis and thus represent targets 
of molecular therapies: expression enhancement strategies that 
replace a missing miRNA or antagomir approaches that block the 
actions of a specific miRNA. The latter has proven successful, for 
example, in a phase 2 trial of miraversen, an antisense inhibitor 
of the liver-enriched miR-122 that functions in the replication 
cycle of Hepatitis C virus. The ability to modulate endogenous 
miRNAs by dietary interventions would be a new and exciting 
therapeutic option.

Results

In this pilot study, we pre-fed mice 10% FS diet as compared 
with an isocaloric control for 3 wk prior to a single dose radiation 
challenge to the thorax16,17 and evaluated lung tissues 48 h post-
exposure (Fig. 1). The time post radiation exposure was based 
on previous studies where we determined that acute, damage-
response genes are upregulated in lung tissues and abrogated by 
the FS diet.18 The dose of FS and the duration of pre-feeding was 
selected based on the kinetics of expression of antioxidant and 
cytoprotective genes15 which we determined to increase over con-
trol and reach a plateau by 2–3 wk on the diet. Comparisons were 
made between irradiated and non-irradiated lung tissues from 
flaxseed- or control diet-fed mice with respect to their miRNA 
profile.

miRNA profiling: evaluation and quality control
miRNA profiling was conducted using the medium-

throughput rodent miRNA “OpenArray” platform from Life 
Technologies. This platform includes TaqMan probes for 750 
rodent miRNAs along with several small RNA control features. 
In contrast with the predecessor “TaqMan Low Density Array” 
(TLDA) platform, which requires the use of two 384-well PCR 
cards with 1 μL reaction vessels to profile one sample, OpenArray 
reactions are performed in 30 nL hydrophobic through-hole reac-
tion vessels. Three thousand and seventy-four of these vessels are 
contained in each array, and three samples may be profiled per 
array. Four arrays may be processed simultaneously, allowing a 
24-fold increase in throughput over the TLDA platform. At the 
same time, the ~30-fold decrease in reaction volume may result 
in lower sensitivity and greater variability, particularly at the 
low end of the abundance spectrum. Accordingly, we tested six 
samples in technical duplicate during different instrument runs 
to assess reproducibility. With the exception of several minor 
loading problems that were occasionally observed from sample to 
sample—a variable and small percentage of wells that were not 
filled and thus unreliable—the majority of features that were 
consistently detected in each duplicate sample were separated 
by 0.5 cycles or less. Only features that exceeded a minimum 
“amplification score” (assigned by the manufacturer’s software) 
were included in subsequent analysis. Most detected miRNAs 
amplified before 28 PCR cycles.

The number of features—miRNA or other small RNA—
detected in each lung sample ranged from 294 to 326. Animals 
on a flaxseed diet and no radiation exposure had slightly fewer 
detected features (294 to 309) than were found in samples from 
other experimental groups (321 to 326). 274 miRNAs were con-
sistently detected in all samples, along with all structural small 
RNA controls, while a negative control feature (a plant miRNA) 
was not detected. Unsupervised hierarchical clustering roughly 
recapitulated the experimental groupings (Fig. 2).

Figure 1. Thoracic radiation model and experimental plan. Mice are sub-
jected to a single fraction thoracic radiation (13.5 Gy). Mice (n = 3 per 
group) were fed with 0% or 10% FS diet initiated prior (−3 wk) to single 
fraction X-ray radiation treatment (XRT). Mice were sacrificed at 48 h 
post-XRT and lung miRNA profile evaluated.
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miRNA profile in lung tissues of flaxseed-fed mice
miRNAs and other features with expression differences 

between experimental conditions (as determined by two-way 
analysis of variance with a P value cutoff of 0.05) were used to 
hierarchically cluster samples. More than 20 features appeared 
to distinguish FS-fed mice from those on a control diet (Fig. 3). 
In contrast, few features were differentially expressed between 
irradiated and unexposed mice (Fig. 4). Several of these features 

were also detected in fewer than 100% of samples (Fig.  4), 
emphasizing a lack of reliable differences.

qPCR validation of miRNA profile in lung tissues of irradi-
ated flaxseed-fed mice

Selected miRNAs were assayed using individual qRT-PCR 
hydrolysis probe-based tests. These reactions differ from those 
performed with the OpenArray platform in that reverse transcrip-
tion is conducted for only one to five miRNAs at a time, in con-
trast with the hundreds of miRNAs in the OpenArray system. 
Furthermore, there is no pre-amplification step. Because individ-
ual assays are less expensive, technical repeats and larger numbers 
of controls can be performed. Individual miRNA assays largely 
validated the profiling results. As indicated by the arrays, there 
was little modulation of the examined miRNAs in response to 
radiation, but significant differences were associated with FS diet.

Specifically, individual qPCR assays confirmed the response 
to diet of miRs-34a, -142-3p, and -150. miRs-142-3p and 
-150, which were significantly downmodulated by 2- to 4-fold 
in animals with FS diet, irrespective of radiation exposure 
(Fig. 5). In contrast, miR-34a was significantly upregulated by 
approximately 2-fold. One miRNA, miR-143, had a nominally 
significant P value for a slightfold-downregulation (Fig.  5). 
While this finding was of potential interest, the magnitude 
of downregulation and the small number of repeats reduced 
confidence in the result.

Figure 3. Heatmap of miRNA profile in response to dietary flaxseed administration in mice Significantly differentially expressed, diet-associated miRNAs 
as identified by two-way ANOVA (P < 0.05) were used to cluster samples and features (Euclidean distance, average linkage). The expression heatmap 
legend (top) indicates relative abundance of median-centered expression values on a log2 scale. Yellow indicates reduced expression and blue indicates 
increased expression of the selected miRNAs for the given diets. In the heatmap, gray indicates failed detection. CC, control diet, no radiation; CR, con-
trol diet, radiation; FC, flaxseed, no radiation; FR, flaxseed, radiation.

Figure 2. Unsupervised hierarchical clustering of miRNAs reveals rela-
tionship of groups. Experimental groups were largely recapitulated 
by unsupervised hierarchical clustering of all results from OpenArray 
miRNA profiling. Clustering was performed by Pearson correlation with 
average linkage. CC, control diet, no radiation; CR, control diet, radiation; 
FC, flaxseed, no radiation; FR, flaxseed, radiation.
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Comparison/correlation with previous gene expression 
results18

To determine whether flaxseed-associated miR-34a upregu-
lation might contribute to downregulation of genes in murine 
lung tissue, we re-examined our previously published gene profil-
ing data of murine lung tissue fed 0 or 10% FS18 to find genes 
in common between these data and a list of miR-34a targets 
generated by the stringent TargetScan algorithm.19 We note sev-
eral inverse relationships between the upregulated miR-34a and 
downregulated genes, such as Pdgfra (downregulated −1.70 fold), 
Ubp1 (−1.57), Fgfr1 (−1.79), Bcl2 (−1.73), and Fbxo10 (−1.83).18 
Downregulation of Fgfr1 has been confirmed by qPCR.18 These 
observations provide insight into miRNA-specific effects on lung 
gene expression after feeding a 10% flaxseed diet. Further inves-
tigation of the direct or indirect nature of miR-34a mediated 
regulation of these and other genes is warranted.

Discussion

miRNAs play significant roles in maintaining cellular func-
tion and tissue homeostasis, however, few reports have inves-
tigated diet-induced changes of the miRNA profile in normal 
tissue. Although just a pilot study, our approach integrates mul-
tiple innovations, beginning with novel uses of a mouse model 
of radiosensitization/radioprotection to investigate newly discov-
ered, small RNA-mediated mechanisms of the effects of flax-
seed diet. OpenArray is a state-of-the-art medium-throughput 
system that has a 24-fold improvement in throughput over the 
previous TaqMan low density array platform.20 Our findings 
are the first to report on miRNA changes in normal lung tissue 
of FS-fed mice in the presence or absence of radiation. Robust 

decreases in miR-142-3p and miR-150 and increases in miR-34a 
levels were detected by array and confirmed by qPCR. Previous 
studies have reported miRNA profile alterations of lung cancer 
cells exposed to ionizing radiation (for example, ref. 21). Our 
results show at 48 h post-radiation exposure few changes in irra-
diated, non-malignant lung as compared with non-irradiated 

Figure 4. Heatmap of miRNA profile in irradiated mouse lungs. Significantly differentially expressed, diet-associated miRNAs as identified by two-way 
ANOVA (P < 0.05) were used to cluster samples and features (Euclidean distance, average linkage). The expression heatmap legend (top) indicates rela-
tive abundance of median-centered expression values on a log2 scale. Yellow indicates reduced expression and blue indicates increased expression of 
the selected miRNAs for the given diets. In the heatmap, gray indicates failed detection. There was comparatively little response of lung miRNA expres-
sion to radiation when apparent radiation-associated changes were identified. CC, control diet, no radiation; CR, control diet, radiation; FC, flaxseed, no 
radiation; FR, flaxseed, radiation.

Figure 5. qRT-PCR confirmation: flaxseed alters the “set point” of several 
miRNAs. Mature miRNAs and two structural small RNA controls (U6 and 
sno-135) were quantitated by qRT-PCR for samples from the four indi-
cated groups. Data were processed by relative Cq method, with normal-
ization to the geometric mean of all assayed RNAs. Kruskal–Wallis tests 
were performed with the Dunn post-hoc test. Statistical tests were done 
with relative Cq-level data before transformation to fold change relative 
to the control/control condition (control diet and no radiation). Shown 
are the resulting fold change values for five mature miRNAs. Indicated 
comparisons (*) were significant at α of 0.05.
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lung. Examination of earlier or later time points or even differ-
ent radiation doses might identify a different miRNA profile. 
An exciting finding of the study was the change of the miRNA 
profile by FS feeding which changed the “set point” of expres-
sion of several miRNAs in the lung, with or without radiation 
exposure. Importantly, this is supported by previous work with 
the model, showing differential regulation of several target genes 
of the upregulated miR-34a.18

Involvement of miRNAs in pathogenesis of lung disease
The identities and direction of regulation of FS-associated 

miRNAs are consistent with contributions to the previously 
reported effects of FS. The lung is highly susceptible to changes 
in gene expression that result from environmental exposures.22 
miRNAs fulfill a modulatory role in lung pathogenesis.23 
Significant loss of miRNAs associates with increased pulmonary 
inflammation.24 Noxious challenges, such as radiation exposure, 
sepsis, and environmental pollutants alter the expression of cer-
tain miRNAs and are correlated with specific lung disease pro-
cesses.25 Modulating miRNA levels prior to exposure, as we have 
done here through a dietary intervention, might well moderate 
the damage of environmental insults.

Downregulation of miRs-142-3p and -150 by FS
miR-142-3p appears to have important functions in lung 

development, inflammation, and carcinogenesis. Contributions 
to lung development and functioning are supported by high levels 
of expression in the human adult lung and significant differential 
expression in lung of neonate and adult mice.26,27 miR-142-3p has 
also been implicated in inflammatory responses,28,29 with signifi-
cant upregulation at 3 and 6 h post-exposure in an lipopolysac-
charide (LPS)-induced model.29 Bronchoalveolar lavage (BAL) 
fluid revealed an increase in polymorphonuclear (PMN) cell con-
tent. In light of previous reports that FS reduced BAL fluid white 
blood cell count and PMN content in a mouse model of radia-
tion pneumonitis,17,30 our findings suggest a beneficial role of 
FS in reducing lung inflammation by reducing miR-142-3p. Of 
additional interest are associations of both of FS-downregulated 
miRNAs—miRs-142-3p and -150—and cancer: a positive corre-
lation of miR-142-3p and lung carcinogenesis,31,32 as well as a role 
of increased miR-150 through deregulation of cell cycle control.33

FS increases miR-34a in lung; role in cell-cycle control and 
apoptosis

miR-34a, increased 2-fold by FS in this study, is significantly 
downregulated or undetectable in many cancers, including 
human lung cancer, and microarray analyses have identified a 
role for miR-34 family members in response to radiation dam-
age.34,35 miR-34a exerts its effects through modulation of cell 
cycle control and apoptosis.36,37 Transactivated by p53, miR-34a 
declines with p53 dysregulation. Targets of miR-34a are dispro-
portionately involved in cell cycle control.37,38 Interestingly, a 
recent report also implicates miR-150 as a suppressive agent in 
the p53/miR-34a regulatory network, with lower miR-150 activ-
ity associated with increased levels of miR-34a,39 similar to what 
we report here. The effects of miR-34a on the p53 network have 
made this miRNA an attractive therapeutic target in cancers.40,41 
FS-enhanced lung levels of miR-34a may boost tissue defenses in 

response to radiation damage, cell cycle arrest and apoptotic cell 
death as shown in our earlier work.17

Flaxseed and other botanicals alter microRNA profile
Modulation of miRNAs by other botanicals and polyphenols 

has been the subject of notable investigations. Izzotti and cowork-
ers were the first to report on miRNA regulation by chemopre-
ventive agents in cigarette-exposed rat lung tissue.42 miRNAs can 
be modulated by botanicals in lung cancer.43-46 The effects of cur-
cumin on a human retinal pigment epithelial cell line, ARPE-19, 
included downregulation of 20 and upregulation of 9 miRNAs.47 
Effects of resveratrol on miRNA have also been studied.48 miR-
34a was modulated by resveratrol in A549 human non-small cell 
lung cancer (NSCLC) cells.49 This treatment reduced the expres-
sion of oncogenic miRNAs and induced pro-apoptotic miRNAs 
in colon cancer cells.50,51 Two flavonoids, rhamnetin and cirsiliol, 
upregulated p53-dependent miR-34a expression in NSCLC cells, 
resulting in radiosensitization through increased apoptosis.52 
Our study adds to the accumulating evidence of natural product-
mediated miRNA control.

Downstream effects
Additional work is needed to identify the various targets of the 

miRNAs we found in this study, but several promising candidates 
of the upregulated miR-34a should be mentioned. A common 
theme in the miR-34a literature has been the reliable, multiply-
verified targeting of Bcl2 by miR-34a,53-55 both directly and indi-
rectly. Bcl2 was also downregulated in our model.18 Additionally, 
we found that miR-34a expression is negatively associated with 
FGFR1 following FS feeding. As a cellular receptor implicated 
in multiple cell signaling pathways, FGFR1 represents another 
potential target for inhibition in the treatment of malignancies 
that result via its cell signaling pathway.56

Taken together, our results as well as numerous reports in 
the literature suggest that FS-modulated miRNAs, miRs-34a, 
142-3p, and -150, may play different but complementary, roles 
in tumor suppression and cancer radiosensitization in addition 
to contributing to salutary effects of dietary FS in protecting 
normal tissue. The therapeutic potential of miR-34a in particu-
lar is illustrated by MRX34, an injectable, liposome-formulated 
miR-34a mimic currently being evaluated in a phase I clini-
cal trial in patients with liver cancer and liver metastases (trial 
NCT01829971).41 As results from our study and others show, 
modulation of miRNA levels by natural products such as FS may 
prove to be an additional avenue to explore in a variety of diseases 
linked to cell proliferation and apoptosis. We encourage and look 
forward to additional work in this area.

Materials and Methods

Animals
Our studies used female C57/BL6 mice, a strain well char-

acterized in the field of pulmonary radioprotection.10,16,17,30,57 
Mice were obtained from Charles River and irradiated at 6–8 wk 
of age under animal protocols approved by the Institutional 
Animal Care and Use Committee (IACUC) of the University of 
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Pennsylvania. Animals were housed in conventional cages under 
standardized conditions with controlled temperature and humid-
ity and a 12:12-h day–night light cycle. Animals had free access 
to water and formulated study diets. For this study we used n = 3 
mice for each irradiated (XRT, 13.5 Gy) or control group on test 
diets (0% FS, 10% FS).

Diet composition and dietary treatments
Two diets were used for this study, all based on a semi-

purified AIN-93G diet which was modified to contain the test 
ingredient as previously described.16 Importantly, control (no test 
ingredient added) and experimental diets were isocaloric, iso-
nitrogenous, and contained equal amounts of dietary lipid and 
carbohydrate. Mice were maintained on control (0% FS) or 10% 
FS-supplemented diet given ad libitum for three weeks prior to 
XRT and were maintained on the respective diets until conclu-
sion of the study and tissue harvest.

Radiation procedure
The Small Animal Radiation Research Platform (SARRP), 

(Xstrahl) was used to irradiate animals with a custom-made 
beam collimator. This system uses a Varian model NDI-225–
22 kV X-ray tube mounted on a gantry that rotates between 0 
and 120 degrees. The custom collimator creates a 12.5 cm cir-
cular field with well-defined borders and with animals arranged 
in a circular, “head in” arrangement using a single central shield 
which provides uniform irradiation to the thoracic portion of 
multiple mice simultaneously. This set-up consists of a single, 
anterior 225 kV, 15 mA X-ray beam with a 0.15 mm Cu at an 
SSD of 35 cm that is designed to accurately reproduce the inter-
nal radiation dose distribution in mice that were used in previous 
studies.16-18,30,57 The dosimetry and shielding of this system has 
been tested extensively.28 The dose of radiation is a single fraction 
delivered via single AP (anterior-posterior) approach. The dose 
used is 13.5 Gy (roughly corresponding to LD

50
) as described in 

our previous work.16,30,57 For quality assurance, thermolumines-
cent dosimeters are placed over selected mice, to verify correct 
dose administration.

RNA isolation
RNA was isolated and purified from mouse lung tissue 48 h 

post-radiation exposure (including non-irradiated controls) using 
a modified Trizol protocol with column clean-up. Twenty to 
thirty milligrams of frozen tissue was placed into 1 mL Trizol 
(Invitrogen) in 2 mL screw-cap tubes, and Lysing matrix D 
(MP Biomedicals) was added. Tissue was disrupted using a 
desktop bead beater for 2 times 30 s, with 5 min on ice inter-
spersed. Tubes were spun to collect beads and homogenate, and 
200 μL chloroform was added. Tubes were firmly capped and 
shaken vigorously for 1 min, then centrifuged at 12 000 × g in 
an Eppendorf C2415 centrifuge for 15 min at 4 °C. The aqueous 
phase was transferred to a new tube, with care taken not to dis-
turb the interphase. One hundred percent ethanol was added in a 
volume at least 1.25 times that of the recovered aqueous phase for 
each tube. Sample was then applied to columns from a mirVana 
miRNA isolation kit (Ambion) to obtain total RNA. Washing 
and elution was done per the manufacturer’s protocol. RNA 
concentration and purity was analyzed by NanoDrop. RNA was 
stored at −80 °C.

QuantStudio OpenArray profiling
Profiling was conducted as described previously.20 One hun-

dred nanograms of RNA per sample was reverse transcribed 
using the RT primers of rodent-specific primer pools A and 
B (Life Technologies). cDNA was pre-amplified for 12 cycles 
using Rodent Pre-Amp primer pools A and B, also per manu-
facturer’s protocol. Pre-amplified product was diluted 1:40 with 
0.1× TE, pH 8.0. After mixing 1:1 with TaqMan OpenArray 
master mix, sample was loaded onto OpenArray plates by robot 
and amplified with the QuantStudio system. For six samples, 
technical duplicates were performed.

OpenArray data processing and analysis
Threshold cycles were assigned to each amplification reac-

tion using ExpressionSuite software (Life Technologies). This 
software uses a proprietary algorithm to calculate a “relative 
threshold cycle” or Crt, similar to the Cycle of quantitation 
(Cq) or threshold cycle (Ct) assigned by other platforms but 
taking amplification efficiency into account for each individual 
reaction.. Additionally, the software assigns an “amplification 
score” to each reaction for rapid assessment of data reliability. 
Data were filtered to exclude reactions with a minimum ampli-
fication score and maximum Crt of 1.24 and 32, respectively 
(almost all features had Crt < 28). Several features with abnor-
mally early Crt values were discarded after amplification curve 
inspection; these included mmu-miRs-1894-3p, -1896, and 
-1942, and hsa-miRs-188-3p and -5p. Data were exported to 
Microsoft Excel. Features detected in fewer than 14 of 18 runs 
(12 samples, 6 replicates) were excluded from further consider-
ation, with the exception of miR-122, which was detected in all 
f laxseed-fed samples but in only two others. Following applica-
tion of this detection filter, replicate values were averaged.

Data normalization by quantiles, as well as analysis, was 
performed with R/Bioconductor tools including affy/prepro-
cesscore; the MultiExperiment Viewer (MeV; http://www.tm4.
org/mev.html); and Microsoft Excel as described previously.58,59 
Mean-centered normalized data were used to cluster samples 
hierarchically (Pearson distance, average linkage). Differences 
between treatment groups were assessed by two-way ANOVA, 
and features displaying differential regulation (P < 0.005) as 
assessed by diet or radiation exposure comparisons were used 
for clustering analysis. Interaction of diet and radiation was also 
assessed.

Validation by individual stem-loop qPCR assays
Individual stem-loop primer reverse transcription/hydrolysis 

probe qPCR assays (Life Technologies) were used to quanti-
tate 12 mature miRNAs (miRs-10a, -16, -21, -25, -26a, -34a, 
142-3p, -143, -150, -181c, -340, and -375) and two structural 
small RNAs, snoRNA-135 and snRNA U6, following manu-
facturer’s recommendations and with minor modifications as 
described previously.60,61 Data were normalized to the geometric 
mean of all measured RNAs using the delta-delta Cq method. 
Differences between groups were assessed by the Kruskal-Wallis 
test followed by Dunn post-test for multiple comparisons.

miRNA target prediction
TargetScan19 was used to predict targets of the significantly 

upregulated miR-34a.
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Data availability
Raw and normalized data have been deposited with the Gene 

Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/) under 
accession number GSE57123.
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