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Introduction

Chronic myelogenous leukemia (CML) is a type of hemato-
poietic stem cell disorder arising from chromosomal aberration 
between chromosomes 9 and 22.1 This chromosomal abnormal-
ity, known as the Philadelphia chromosome, leads to myelo-
proliferation.2 The balanced and reciprocal translocation of the 
chromosomes results in the creation of Bcr-Abl gene, which 
encodes a Bcr-Abl protein with enhanced tyrosine kinase activ-
ity.3 Bcr-Abl is able to activate a wide range of signaling pathways. 
For example, Bcr-Abl increases the activation and/or expression 
of a series of anti-apoptotic proteins such as STATs,4 Akt,5 PI3K,6 
Mcl-1,7 and Bcl-X

L
.8 Imatinib is a well-established small molecule 

tyrosine kinase inhibitor that specifically targets the ATP-binding 
site of Bcr-Abl to prevent the autophosphorylation of Bcr-Abl 

itself.9 Despite the specific and remarkable effect of imatinib, 
an increasing number of CML patients resistant to imatinib are 
emerging in clinic.10 A frequent cause of the imatinib-resistance is 
point mutations in the Bcr-Abl relevant domains. There are more 
than 100 reported mutations11-13 of which most can be conquered 
by the second-generation tyrosine kinase inhibitors (e.g., nilo-
tinib, dasatinib), with the exception of the gate-keeper mutation 
T315I.14-16 Ponatinib, a third-generation of tyrosine kinase inhibi-
tor, has shown activity against refractory CML patients including 
those harboring T315I Bcr-Abl. However, the long-term benefit 
of ponatinib has to be balanced against the risk of deleterious side 
effects in these patients.

S116836 was originally designed and synthesized against 
T315I Bcr-Abl (Fig.  1A). The kinase assay showed that it 
blocked multiple tyrosine kinases including both wild-type 
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Limited treatment options are available for chronic myelogenous leukemia (CML) patients who develop imatinib 
mesylate (IM) resistance. Here we proposed a novel combination regimen, a co-administration of S116836, a novel small 
molecule multi-targeted tyrosine kinase inhibitor that was synthesized by rational design, and histone deacetylases 
inhibitor (HDACi) suberoylanilide hydroxamic acid (SAHA), to overcome IM resistance in CML. S116836 at low concentra-
tions used in the present study mildly downregulates auto-tyrosine phosphorylation of Bcr-Abl. SAHA, an FDA-approved 
HDACi drug, at 1 μM has modest anti-tumor activity in treating CML. However, we found a synergistic interaction 
between SAHA and S116836 in Bcr-Abl-positive CML cells that were sensitive or resistant to IM. Exposure of KBM5 and 
KBM5-T315I cells to minimal or non-toxic concentrations of SAHA and S116836 synergistically reduced cell viability and 
induced cell death. Co-treatment with SAHA and S116838 repressed the expressions of anti-apoptosis proteins, such as 
Mcl-1 and XIAP, but promoted Bim expression and mitochondrial damage. Of importance, treatment with both drugs 
significantly reduced cell viability of primary human CML cells, as compared with either agent alone. Taken together, our 
findings suggest that SAHA exerts synergistically with S116836 at a non-toxic concentration to promote apoptosis in the 
CML, including those resistant to imatinib or dasatinib.
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as well as T315I Bcr-Abl. In addition, S116836 showed potent 
inhibitory effect on the SRC family kinases SRC, LYN, HCK, 
LCK, and BLK, and receptor tyrosine kinase such as FLT3, 
TIE2, KIT, PDGFRβ (Pan J et al., unpublished data). The les-
son taken from imatinib and the second-generation of small 
molecule inhibitors (nilotinib and dasatinib) is that resistance 
will most likely arise after attenuating the function of one tar-
get. Disrupting a single pathway will likely be insufficient to 
eliminate the abnormal myeloid cells. The lack of efficacious 

and safe therapeutic regimen for the patients with cross-resis-
tance to imatinib and dasatinib calls for a novel therapeutic 
strategy. The administration of multiple drugs simultaneously, 
as compared with single agent, exhibits greater anti-tumor 
activities and overcomes the drug resistance problems. It has 
been reported that combinations of histone deacetylase inhibi-
tor (HDACi) with a series of small molecule inhibitors show 
synergistic effects in inducing apoptosis of various cancer cell 
lines.17-19

Figure 1. Treatment with S116836 inhibits growth and induces apoptosis of chronic myelogenous leukemia (CML) cells. (A) Chemical structure of com-
pound S116836. (B) Cells were treated with S116836 for 72 h, cells viability was evaluated by using MTS assay. (C) KBM5 or KBM-T315I cells were exposed 
to increasing concentrations of S116836 for 24 h; western blotting analysis was performed with the indicated antibodies. (D) The CML cells were exposed 
to escalating concentrations of S116836 for 24 h, the percentages of apoptotic cells were detected by flow cytometry after dual labeling with FITC-
Annexin V and propidium iodide (PI).
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Histone acetylation plays a pivotal role in the regulation of 
gene expression. Histone acetyltrasferases transfer the acetyl moi-
eties to the lysine residues of histones to form a relaxed chromatin 
state. In contrast, histone deacetylases (HDACs) remove the ace-
tyl modification from lysine residues of histone, leading to a con-
densed chromatin state.20 The balance between acetylation and 
deacetylation of the chromatin serves as a key epigenetic mecha-
nism for transcription factor-dependent gene expression, which 
are consequently crucial for numerous fundamental cellular pro-
cesses including cell cycle,21 apoptosis,22 DNA repair,23 and dif-
ferentiation.24 However, the abnormal recruitments of HDAC to 
the promoter of the anti-tumor genes are closely associated with 
the onset and progression of tumor.25-29 HDACi have been shown 
to display anti-tumor ability by triggering apoptosis,30 inducing 
differentiation,31 suppressing cell proliferation,32 and arresting 
cell cycle.33,34 An additional advantage of HDACi is their low 
toxicity to the normal tissues.35

Suberoylanilide hydroxamic acid (SAHA), also known as vori-
nostat, is the first HDACi approved by US FDA for the treatment 
of cutaneous manifestations in patients with T-cell lymphoma.36 
SAHA represses HDACs by directly binding to the catalytic 
domain of the HDACs, ultimately causing overexpression of pro-
apoptosis proteins (e.g., BAX, BAK, and Bim),37,38 and reduced 
expression of the anti-apoptosis proteins such as XIAP,39 Bcl-2,40 
Bcl-X

L
,41 and Mcl-1.42 In addition, SAHA is able to raise the level 

of reactive oxygen species and promote the acetylation of non-
histone proteins (e.g., p53 and heat shock protein 90, Hsp90).43-45 
When HDAC6 is inhibited by SAHA treatment, the chaperone 
function of Hsp90 was shown to be disrupted through acetyla-
tion itself,46 which finally results in the depletion of Bcr-Abl, Akt, 
and c-Raf. It is of interest that SAHA can work synergistically 
with various drugs, including the tyrosine kinase inhibitor (ima-
tinib, dasatinib),47 Hsp90 antagonist (7-AAG),48 MEK1/2 inhib-
itor (PD184352),49 and aurora kinase inhibitor (MK-0457),50 to 
induce apoptosis of imatinib-resistant leukemia cells.

We hypothesized that SAHA had synergistic effect with 
S116836 on T315I Bcr-Abl CML cells. This study was to test 
the hypothesis. We discovered that combination of SAHA and 
S116836 has synergistic anti-leukemic activity in both wild-type 
and T315I Bcr-Abl CML cells. Our findings supported that 
combination of SAHA and S116836 hold promise to overcome 
imatinib-resistance in CML cells.

Results

S116836 inhibits cell growth and induces apoptosis in ima-
tinib-sensitive and imatinib-resistant CML cells

S116836 is a novel compound to inhibit tyrosine kinase activ-
ity (Fig.  1A). To determine its effect on CML cells, we first 
investigated the cell viability of KBM5 and KBM5-T315I under 
the treatment of S116836. Cells were cultured with escalating 
concentrations of S116836 for 72 h. MTS assay were performed 
to detect cell viability. S116836 inhibited growth in KBM5 and 
KBM5-T315I in a dose-dependent fashion with IC

50
 values of 

15.73 and 407.96 nM, respectively (Fig. 1B). Similarly, S116836 

dose-dependently inhibited growth in 32D-P210-WT and 
32D-P210-T315I with IC

50
 values of 7.1 and 362 nM, respec-

tively (Fig. 1B).
S116836 at lower concentrations (~0.3 μM) appreciably 

blocked the phosphorylation of Bcr-Abl, but induced limited 
apoptosis in CML cells, particularly in imatinib-resistant KBM5-
T315I, which was supported by the limited PARP cleavage and 
Annexin V-positive cells (Fig. 1C and D).

Combination of SAHA and S116836 induces increased acet-
ylated p53 and blockade of Bcr-Abl in CML cells

Insurgence of resistance or poor efficacy is a common prob-
lem of tyrosine kinase inhibitors in CML. Because many cases of 
resistance to tyrosine kinase inhibitors can be acquired through 
the activation of other tyrosine kinases,51 growing attention has 
been focused on developing combinational approaches to inter-
rupt different pathways. Because HDACi was reported to facili-
tate the ability of small molecule tyrosine kinase inhibitors,47 
we therefore examined the combinational effect of SAHA and 
S116836. KBM5 or KBM5-T315I cells were exposed to sublethal 
concentrations of SAHA and S116836 for 24 h, western blot-
ting analysis showed that an increase in acetylation in histone 
H3 and H4, and representative molecule p53 in SAHA-treated 
or SAHA plus S116836-treated CML cells (Fig. 2). The phos-
phorylation of Bcr-Abl and its downstream molecules (e.g., 
STAT5 and Akt) was completely blocked in S116836-treated or 
SAHA plus S116836-treated CML cells (Fig. 2A). No alteration 
of the levels of Bcr-Abl was noted. Of interest, further decreases 
in the phosphorylated Erk1/2 levels were observed in SAHA 
plus S116836-treated CML cells when compared with each drug 
alone (Fig. 2A), suggesting that SAHA may be involved in the 
inactivation of Erk1/2. Additionally, the levels of STAT5 and Akt 
were dramatically reduced in the combination-treated CML cells 
in comparison with the single drug treated CML cells (Fig. 2A). 
The acetylation in histone H3 and H4 and acetylated p53 were 
increased in SAHA-treated or SAHA plus S116836-treated CML 
cells (Fig. 2B). Thus, it appears that the combination blocked the 
Bcr-Abl signaling and pro-survival signaling molecules.

SAHA and S116836 are synergistic to inhibit cell prolifera-
tion of imatinib-resistant CML cells

We next examined the combinational effect of SAHA, a broad 
spectrum of HDAC inhibitor, and S116836. We discovered that 
co-treatment of S116836 and SAHA synergistically reduced the 
cell growth of KBM5 and KBM-T315I cells when compared with 
SAHA or S116836 alone (Fig. 3A). The synergistic suppression of 
SAHA and S116836 on the proliferation capacity of KBM5 and 
KBM-T315I cells was further confirmed by colony formation 
assay. Although S116836 itself was able to lower the cell prolif-
erative activity, SAHA greatly augmented its capacity in reducing 
anchorage-independent growth (Fig. 3B).

We profiled the cell-cycle distribution of CML cells treated 
with SAHA and S116836 (Fig. 3B). SAHA alone had a limited 
effect on the cell cycle of KBM5 and KBM5-T315I cells. S116836 
for 24 h induced a pronounced decline in the S phase propor-
tion and an accumulation of the G

1
 phase proportion in ima-

tinib-resistant KBM5-T315I cells. However, addition of SAHA 
to S116836 culture attenuated the change of G

1
 and S phase 
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proportion in KBM5-T315I cells. SAHA induced significant 
increase in apoptosis in both KBM5 and KBM-T315I cells. These 
data suggest that SAHA may interrupt the cell cycle profile in 
imatinib-sensitive and imatinib-resistant CML cells.

SAHA enhances S116836-induced lethality in imatinib-
sensitive and imatinib-resistant CML cells

We next explored the apoptosis in CML cells exposed to 
SAHA and S116836. KBM5 and KBM5-T315I cells were treated 
with the indicated concentrations of S116836 and SAHA alone 
or in combination for 24 h. The apoptotic cells were stained with 
Annexin V/PI, and detected by the flow cytometry. As shown in 
Figure 3A, SAHA (0 μM–1 μM) exhibited no toxicity to CML 
cells, and S116836 (0 μM–0.1 μM) induced minimal lethality 
either. However, when KBM5 cells or KBM5-T315I cells were 
exposed to combinational treatment, a substantial amount of 
apoptotic cells were observed (Fig.  4A and B). It’s worth not-
ing that the proapoptotic effect was much more significant in 

KBM5-T315I cells than that in KBM5 cells, 
indicating the combinational treatment may 
work in a Bcr-Abl-independent manner.

To draw a rigorous conclusion of synergistic 
effect, we used the widely-accepted CalcuSyn 
software to assess. The combination index 
(CI) < 1, = 1, and > 1, represent synergistic, 
additive, and antagonistic effects, respectively. 
Median dose effect analysis of apoptosis over 
various concentrations of S116836 and SAHA 
showed that the CI values of KBM5 cells were 
0.126, 0.138, 0.167, and 0.168. The CI val-
ues of KBM5-T315I cells were 0.526, 0.541, 
0.666, and 0.845 (Fig. 4C), indicating a syn-
ergism between SAHA and S116836 (note: CI 
< 1.0 indicates synergism).

Additional attempts were made to define 
the pathway of apoptosis. We employed sep-
arate or combined treatments of SAHA (1 
μM) and S116836 (0.1 μM) to KBM5 or 
KBM5-T315I cells, and monitored the cyto-
solic fractions of cytochrome c by western 
blotting analysis. Although the individual 
effects of either SAHA or S116836 were 
minimal, the combination induced a striking 
increase in cytosolic cytochrome c (Fig. 4D). 
In accordance with the cytochrome c release, 
a considerable increases in cleavage of 
PARP procaspase-9, and pro-caspase-3 were 
observed. A substantial elevation in the lev-
els of activated caspase-3 was also detected by 
western blotting analysis of the total cell lysate 
(Fig.  4D). Furthermore, the combination of 
the two drugs also elicited an enhanced cleav-
age of pro-caspase-8, revealing a synergistic 
effect to extrinsic apoptotic pathway.

The combinatory effect of SAHA and 
S116836 were then examined in relation to 
changes on various proteins involved in apop-

tosis. As shown in Figure 4E, individual or combinatory treat-
ment did not alter the expressions of Bax and Bcl-X

L
 in both 

cell lines. In striking contrast, the levels of Mcl-1 and XIAP 
were dramatically reduced after co-treatment with SAHA and 
S116836 when compared with alone. In addition, the combined 
treatments led to a considerable upregulation of the pro-apoptosis 
protein Bim in both cell lines (Fig. 4E). S116836 alone or com-
bined with SAHA induced a slight or modest decrease in Bcl-2 
expression in KBM5 but not KBM5-T315I cells. Taken together, 
the combination of SAHA and S116836 disturbs the expression 
of Bcl-2 family members.

SAHA/S116836 regimens synergistically inhibits the 
growth of primary CML cells

The findings of synergistic effects of SAHA and S116836 sug-
gest a potential combination of two therapeutic agents against 
CML. In an attempt to translate our observations into a clinical 
model system, we investigated the effects of co-treatment with 

Figure 2. Co-treatment with SAHA and S116836 exerts enhanced activity in blocking down-
stream signaling of Bcr-Abl. (A) KBM5 or KBM5-T315I cells were cultured with histone deacety-
lases inhibitor suberoylanilide hydroxamic acid (SAHA) (1 μM), alone or in combination with 
S116836 (0.1 μM) for 24 h, after which cell lysates were subjected to western blotting analysis. 
Co-treatment reduces the expression and the phosphorylation of Bcr-Abl, STAT5, Akt, and Erk 
1/2. (B) Western blotting analysis was done to monitor the levels of acetylated (acetyl)-histone 
3, acetyl-H4 and acetyl-p53/p53 in the cell lysates from KBM5 or KBM5-T315I cells after the cells 
were treated with SAHA, plus S116836 or not for 24 h.
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both agents on the growth of primary cells from patients with 
CML. The primary cells isolated from the peripheral blood or 
bone marrow from 5 patients with CML (Table 1) were treated 
with drugs with indicated concentrations for 72 h, the cell viabil-
ity monitored by MTS assay revealed an inhibition of S116836 

on the growth of CML cells (Fig. 5A), and addition of SAHA 
enhanced this inhibition. The CI values of these 5 patients was 
calculated by using the CalcuSyn software further supported a 
synergistic effect of the combination of SAHA and S116836 on 
the growth of primary CML cells (Fig. 5B).

Figure 3. SAHA augments the activity of S116836 in inhibiting cell viability, colony formation, and inducing cell cycle disruptions. (A) After treatment 
with various concentrations of S116836 in the absence or presence of suberoylanilide hydroxamic acid (SAHA) for 72 h, viability of KBM5 or KBM-T315I 
cells was evaluated using the MTS assay. (B) KBM5 or KBM-T315I cells were exposed with SAHA, S116836 or the combination for 24 h, then the drugs were 
washed, the cells were seeded in soft agar for colony growth. The number of colony-forming in the absence of drug treatments (control) was defined as 
100%. Then the yields of colony from the drug-treated cells were normalized relative to control. The experiments were independently repeated twice. 
A statistically significant difference was observed. Results are means with SEM; **P < 0.01; ***P < 0.0001, one-way ANOVA, post hoc comparisons, Tukey 
test. (C) KBM5 or KBM-T315I cells were subjected to treatments of SAHA (1 μM) and S116836 (100 nM) alone or in combination for 24 h, after which flow 
cytometric analysis of the DNA content was performed to assess cell cycle distribution.
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Figure 4. For figure legend, see page 957.
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Discussion

Despite the success of imatinib in Bcr-Abl-positive CML,52 
the development of resistance to IM and dasatinib, especially for 
those in accelerated and blast phases, remains a major challenge 
for treatments.13,15,53 A promising approach to tackle the challenge 
is combining targeted drugs to interrupt multiple signaling path-
ways simultaneously. In this study, we demonstrate that combi-
nation of the multi-targeted tyrosine kinase inhibitor S116836 

and HDACi SAHA causes significant mitochondrial damage 
and apoptosis in IM-sensitive or -resistant CML cells. Our data 
show that using either agent alone causes none or very minimum 
apoptosis; however, combining these two drugs together induces 
an enhanced lethalty.

Our results were consistent with the findings of Fiskus et al., 
who reported that dasatinib and SAHA have synergism to kill 
imatinib-resistant cells.47 However, S116836 is a novel compound 
that is active against T315I Bcr-Abl. Based on the median-effect 

Figure 4 (See opposite page). Co-treatment of SAHA and S116836 leads to significant apoptosis in CML cells. (A and B) KBM5 or KBM-T315I cells were 
treated with various concentrations of S116836 in combination with different concentrations of SAHA for 24 h, after which they were stained with FITC-
Annexin V/propidium iodide. The percentages of the apoptosis cells were determined by the flow cytometry (A). Quantitative analysis of dead cells in 
3 independent experiments was shown (B). Columns represent triple respective experiments and the bars denote means with SEM. (C) KBM5 and KBM-
T315I cells were treated with various doses of SAHA (0.31 μM~1 μM), S116836 (0.031 μM~0.1 μM), or combination of the 2 drugs. Twenty-four hours later, 
apoptosis was measured by flow cytometry. Combination index (CI) was analyzed by using the CalcuSyn Software. CI < 1 represents synergism. (D) The 
CML cells were co-treated with SAHA (1 μM) and S116836 (0.1 μM) for 24 h. The cells were divided into two portions, the first portion was prepared the 
whole cell lysate with RIPA buffer for western blotting of the cleavage of PARP and the levels of caspase-8, pro-caspase-3, and active caspase-3 (upper). 
The second portion of the cells was prepared the mitochondria-free cytosolic fractions to monitor the levels of cytochrome c by western blotting (lower). 
(E) The expression of apoptosis-related proteins in whole cell lysates was detected by western blotting analysis. Actin was used as a loading control.

Figure 5. The combination of SAHA and S116836 synergistically inhibits the cell viability in primary CML cells. (A) Peripheral blood mononuclear cells 
from 5 CML patients were treated with various concentrations of SAHA in the presence or absence of S116836 for 72 h, after which the cell viability of 
each agent alone and of combination was analyzed by the MTS assay. (B) The combination index (CI) about the viability of the cells treated with SAHA 
and S116836 was calculated with CalcuSyn Software.

Table 1. Characteristics of patients with chronic myelogenous leukemia

Patient no. Age (y)/ sex Date of diagnosis Prior therapy
Date imatinib 

therapy began
WBC count (109/L) Bcr-Abl positive Bcr-Abl-Abl

1 32/M 11/2010 No treatment 11/2010 129 Yes 80%

2 33/M 11/2010 No treatment 12/2010 208.8 Yes 80%

3 28/M 3/2011 Hydroxyurea 3/2012 46.6 Yes 82.36%

4 55/M 2/2014 No treatment 3/2014 152.8 Yes 80.5%

5 23/F 3/2014 No treatment 3/2014 188.8 Yes 80%
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method of Chou and Talalay, we compared the synergistic effect 
of TKI and SAHA in a pair of human chronic myelogenous 
leukemia (CML) patient-derived imatinib-sensitive KBM5 cells 
expressing the 210 kDa native Bcr-Abl and imatinib-resistant 
KBM5-T315I cells harboring a threonine-to-isoleucine substi-
tution at position 315 of Abl. In addition, the synergism was 
observed with a pair of 32D myeloid cells stably expressing either 
210 kDa wild-type Bcr-Abl or T315I Bcr-Abl was the synergistic 
effect of TKI and SAHA.

The dual targeting strategy has been witnessed widely in many 
different types of cancers. A recent research in lung cancer model 
showed that interrupting a single pathway failed to induce cell 
death, and instead suppressing multiple pathways was essential 
to induce cell death as a consequence of inhibiting overlapping 
or redundant pathways.54 In the case of acute myeloid leukemia 
(AML), Gilliland and Griffin have laid out a two-hit concept 
of leukemogenesis which serves as a theoretical basis for com-
bining targeted agents for AML therapy. This theory posits that 
leukemogenesis acts through collaboration between two types of 
proteins: Type I, their dysfunction leads to disarranged cell dif-
ferentiation; Type II, their dysfunction promotes cell survival.55 
Thus, in the present study, one potential mechanism underly-
ing this S116836/SAHA-mediated apoptosis may be simultane-
ous suppressions on the dysregulated differentiation pathway 
and cell survival pathway. It is also possible that disrupting these 

pathways lowers the threshold for SAHA-mediated cell apopto-
sis. The precise mechanisms need to be further studied.

In our study, one key protein with a role in the synergistic 
process is Mcl-1. Inoue et al. has reported that HDACi mediated 
Mcl-1 upregulation and bring out the limited efficacy of apop-
tosis.56 However, either co-administration with a Mcl-1 inhibi-
tor or downregulation of Mcl-1 potentiates HDACi-mediated 
apoptosis in CML cells and CLL (chronic lymphocytic leuke-
mia) cells.56 SAHA will may upregulate Mcl-1 in CML cells, 
although our data show SAHA has no apparent effect on CML 
cells. S116836 has a modest effect in inhibiting Mcl-1. Thus, the 
synergistic effect of SAHA and S116836 may also work through 
the repression of Mcl-1 by S116836 and offset the side effect 
cause by SAHA.

While further studies are warranted to determine the mecha-
nism by which S116836 regulate Mcl-1, several different path-
ways have been documented to modulate the expression of 
Mcl-1, including PI3K/Akt, STAT5, and MEK/ERK. PI3K/Akt 
regulates the Mcl-1 through a transcription factor complex con-
taining CREB.57 In CLL, sustained activation of Akt led to the 
increased expression of Mcl-1, Bcl-X

L
, and XIAP, greatly increas-

ing leukemic cell viability.58 Our results showed that S116836 
attenuated the phosphorylation of Akt, and addition of SAHA 
reduced not only the activity but also the total expression of Akt. 
The expression level of total Akt is consistent with that of Mcl-
1. Therefore, a potential mechanism may be that, when treated 
with SAHA and S116836 together, downregulation of Akt con-
tributes to the reduction of Mcl-1, and further leads to the syn-
ergistic effect of apoptosis. In addition to Akt, recent evidence 
suggests STAT5 may also play an crucial role in regulating the 
expression of Mcl-1.59 In Bcr-Abl+ cells, abnormal activation 
of STAT5 elevated the expression of Mcl-1, while silencing of 
STAT5 resulted in a decrease in the expression level of Mcl-1.7,60 
In our results, expression and activation of STAT5 is similar to 
Akt and Mcl-1, suggesting that STAT may also play a role in the 
regulation of Mcl-1. We also observed that combined treatment 
with SAHA and S118936 led to a reduction of activated Erk1/2, 
which is related to downregulation of Mcl-1. It has been reported 
that actived Erk1/2 stabilizes Mcl-1 through phosporylating its 
PEST region.61 Sorafenib directly inhibited Erk1/2 to lower the 
expression of Mcl-1.62

In addition, XIAP and Bim also showed synergism as a result 
of SAHA/S116836 combined treatments. We speculate that 
all of these proteins contribute to the induction of mitochon-
drial damage, which is reflected on the increasing release of 
cytochrome c and the PARP cleavage. In summary, our find-
ing uncovered a new strategy of dual treatments that combining 
the S116836 and SAHA significantly induces apoptosis in CML 
cells. This synergistic effect may involve multiple mechanisms 
shown in Figure 6.

It is worthy to note that enhanced lethality of SAHA/S116836 
was not only seen in IM-sensitive cells, but also in the resistant 
ones. Several mechanisms often associated with IM resistance 
consist of Bcr-Abl overexpression, reduced uptake of IM, and 
acquisition of point mutation (e.g., T315I) in the Bcr-Abl kinase 

Figure 6. The proposed model of SAHA and S116836 to mediate apopto-
sis in CML cells. Co-treatment with SAHA and S116836 inhibits the activ-
ity of Bcr-Abl, Akt, Erk 1/2, and STAT5, which result in reduction of Mcl-1 
and XIAP, and upregulation of Bim. These effects may contribute to mito-
chondrial damage and subsequently induce the apoptosis of imatinib-
sensitive or resistant cells.
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domain known to be essential for IM binding.63 As showed in our 
results, S116836 is a potent compound in preventing the activa-
tion of Bcr-Abl no matter Bcr-Abl bears a T315I mutation or not. 
However, the effect of S116836 in inducing apoptosis of KBM5 
or KBM5-T315I cells is still mild, indicating that, apart from 
the inhibition of Bcr-Abl, other mechanisms may have a role in 
the synergistic effect. Donato et al. found undetectable expres-
sion of BCR-ABL protein in imabinib-resistant cells from CML 
patients, suggesting that IM resistance may stem from a Bcr-Abl-
independent manner.64 Some other aberrantly expressed proteins 
beside Bcr-Abl may also cause this resistance in IM-resistant 
CML. Although Src-related Lyn kinase and Erk1/2 has been 
demonstrated that associated with the Bcr-Abl-independent resis-
tance,65,66 it is still unclear whether any other proteins participate 
in this resistance. In this context, a multi-targets therapy is an 
ideal approach.

Although the precise mechanisms responsible for this phe-
nomenon are elusive, HDACi has been well accepted to make 
leukemia cells more susceptible to apoptosis, and there are several 
successful examples of combining tyrosine kinase inhibitors with 
HDACi to induce apoptosis of CML cells resistant to IM—for 
instance, SAHA and IM, SAHA and dasatinib, LBH589 and 
AMN107.47,67,68 Here we present the combination of SAHA and 
S116836 as a new therapy for treating IM-resistant CML.

Materials and Methods

Chemicals and antibodies
S116836 (structure shown in Fig. 1A) was dissolved in DMSO 

and 20 mM stock solution was stored at −20 °C. Antibodies 
against c-Abl (C-19), p53 (DO-7), Mcl-1 (S-19), Bcl-X

L
, histone 

H3, caspase-3, and Bax were from Santa Cruz Biotechnology. 
Antibodies against poly (ADP)-ribose polymerase (PARP; 
clone 4C10-5), cytochrome c, XIAP were from BD Biosciences. 
Antibodies against phospho-c-Abl (Y245), phospho-Erk 1/2 
(T202/Y204), Erk 1/2, Akt, acetyl-histone H3 (K9), acetyl-
histone H4 (K16), acetyl-p53 (K382), and caspase-8 were from 
Cell Signaling Technology. Antibodies against phospho-STAT5, 
STAT5, and Bcl-2 were from EMD Millipore Upstate.

Cell culture
KBM5 cells bearing 210 kDa wild-type Bcr-Abl were sensi-

tive to IM. KBM5-T315I cells bearing T315I mutation in Bcr-
Abl have the resistance to IM. Both of these cell lines were 
cultured in IMDM (Invitrogen) supplemented with 10% heat-
inactivated fetal calf serum (FCS), as described previously.69 In 
addition, KBM5-T315I cells were also grown with 1.0 μM IM. 
imatinib was removed before experiments followed by a wash-out 
period of 2–3 d. The 32D myeloid cells stably expressing either 
210 kDa wild-type Bcr-Abl (32D-P210-WT) or T315I Bcr-Abl 
(32D-P210-T315I) were maintained in RPMI 1640 with 10% 
FCS. Peripheral blood cells were obtained from 5 CML patients in 
the First Affiliated Hospital and Guangdong Provincial People’s 
Hospital (Table 1). The research is consistent with the institu-
tional guidelines and the Declaration of Helsinki principles. 

The isolation of mononuclear cells has been described in previ-
ous work.70,71 Cells were suspended in RPMI 1640 supplemented 
with 10% FCS.

Cell viability assay
Cell viability was determined by MTS assay (CellTiter 96 

Aqueous One Solution reagent; Promega).70,71 Cells were plated 
in quadruplicate onto the 96-well plates, and treated with the 
escalated concentrations of drugs for 72 h before performing the 
MTS assay. The optical density (O.D.) values for untreated group 
were set as 100% viability; the values of treated groups were nor-
malized against the control group. The drug concentration that 
induced 50% inhibition of cell growth (IC

50
) was calculated by 

regression fitting of a dose-response curve.
Flow cytometry analysis of cell cycle
Cells were exposed to various concentrations of drugs, and 

then the cells were collected and fixed in 66% (V/V) cold etha-
nol at −20 °C. After more than 16 h, cell were washed twice with 
cold PBS and suspended with propidium iodide and RNase A 
(0.5 mg/mL) (in the dark) for 1 h. Data of cell cycle distribu-
tion was collected by using FACSCalibur flow cytometer and 
CellQuestPro software.

Clonogenicity assay
Cells treated with the indicated concentrations of SAHA and 

S116836 for 24 h, were then collected and washed twice with 
PBS, then, cultured in drug-free Iscove’s medium containing 
0.3% agar and 20% FCS. After the ~10 d incubation, the num-
ber of colonies was counted.

Assessment of apoptosis
Apoptosis was evaluated by using of Annexin V/propidium 

iodide (PI) binding assay according to the instruction of the 
manufacturer (Sigma-Aldrich). Samples were analyzed by using 
of FACSCalibur flow cytometer and CellQuestPro software as 
previously described.72,73

Western blotting analysis
Western analyses were performed as previously described.74

Statistical analysis
Experiments were performed at least three times. GraphPad 

Prism 5.0 software (GraphPad Software) was used for statistical 
analysis. Combination Index was calculated by CalcuSyn soft-
ware 2.0 according to the software’s instruction.
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