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Summary

We propose an adaptive nuclear norm penalization approach for low-rank matrix approximation,
and use it to develop a new reduced rank estimation method for high-dimensional multivariate
regression. The adaptive nuclear norm is defined as the weighted sum of the singular values of the
matrix, and it is generally non-convex under the natural restriction that the weight decreases with
the singular value. However, we show that the proposed non-convex penalized regression method
has a global optimal solution obtained from an adaptively soft-thresholded singular value
decomposition. The method is computationally efficient, and the resulting solution path is
continuous. The rank consistency of and prediction/estimation performance bounds for the
estimator are established for a high-dimensional asymptotic regime. Simulation studies and an
application in genetics demonstrate its efficacy.

Keywords

Low-rank approximation; Nuclear norm penalization; Reduced rank regression; Singular value
decomposition

1. Introduction

Given n observations of the response yj € RY9 and predictor x; € RP, we consider the multi-
variate linear regression model

Y=XCo+E, @
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where Y = (yq, ..., Yn) T, X = (X1, ..., Xn) T, Cg is an p x q coefficient matrix, and E = (e, ...,
en) T is an n x q matrix of independently and identically distributed random errors with mean
zero and variance ¢2. Throughout, we write p A g = min(p, g), n A g = min(n, @), r" = r(Cyp)
and ry = r(X), where r(-) denotes the rank of a matrix.

We consider the scenario in which both the predictor dimension p and response dimension g
may depend on and even exceed the sample size n. Such high-dimensional regression
problems are increasingly encountered. Ordinary least squares estimation is equivalent to
separately regressing each response on the set of predictors, but this ignores the dependence
structure of the multivariate response and may be infeasible in high-dimensional settings.
The curse of dimensionality can be mitigated by assuming that the true coefficient matrix Cg
has some low-dimensional structure and employing regularization/penalization approaches
for model estimation. For Gaussian data, it is appropriate to estimate Cy by minimizing the
penalized least squares criterion

%/ (C)+25\(C) @

with respect to C € RP*4, where /(C):HY—XCHi is the sum of squared errors, with |||
denoting the Frobenius norm, 7:(-) is some penalty function measuring the complexity of the
enclosed matrix, and A is a non-negative tuning parameter controlling the penalty.

Within this general framework, an important model is reduced rank regression (Anderson,
1951, 1999, 2002; Izenman, 1975; Reinsel & Velu, 1998), in which dimension reduction is
achieved by constraining the coefficient matrix to have low rank. The classical small-p case
and maximum likelihood inference for the rank-constrained approach have been extensively
investigated. Recently, Bunea et al. (2011) proposed a rank selection criterion that is valid
for high dimensional settings, revealing that rank-constrained estimation can be viewed as a
penalized regression method (2) with a penalty proportional to the rank of C. The penalty
can also be cast as an I penalty in terms of the number of non-zero singular values of C, i.e.,

Q’A(C):M(C):AZZ:I{%(C) # 0}, where I(-) is the indicator function, and d;(")
represents the ith largest singular value of a matrix. This results in an estimator obtained by
hard-thresholded singular value decomposition; see Section 2. Yuan et al. (2007) proposed a
nuclear norm penalized least squares criterion, in which the penalty is defined as

c@x(C)=>\IICH*:)\ZZ;1di(C), where ||-||~ denotes the nuclear norm. This I, penalty
encourages sparsity among the singular values and achieves simultaneous rank reduction
and shrinkage estimation (Negahban & Wainwright, 2011; Bunea et al., 2011; Lu et al.,
2012). Rohde & Tsybakov (2011) investigated the theoretical properties of the Schatten-b

quasi-norm penalty, which is defined as %(C):AZfifd?(C)for 0 < b <1, and obtained
non-asymptotic bounds for prediction risk. Several other extensions and theoretical
developments related to reduced rank estimation exist; see, e.g., Aldrin (2000), Negahban &
Wainwright (2011), Mukherjee & Zhu (2011), and Chen et al. (2012). Reduced rank
methodology has connections with many popular tools including principal component
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analysis and canonical correlation analysis, and has been extensively studied in matrix
completion problems (Candes & Recht, 2009; Candes et al., 2011; Koltchinskii et al., 2011).

The aforementioned reduced rank approaches are closely related to the singular value
decomposition (Eckart & Young, 1936; Reinsel & Velu, 1998). It is intriguing that the rank
and nuclear norm penalization approaches can be viewed as lg and I, singular value
penalization methods, respectively. Moreover, the squared I, singular value penalty is in fact

. PAq . . .
a ridge penalty, because Zizld%(c):HCHi. Motivated by these connections and with a
desire to close the gap between the Iy and 11 penalization schemes, we propose the adaptive
nuclear norm regularization method. The adaptive nuclear norm of a matrix C € RP*4 is

defined as a weighted sum of its singular values:

PAqQ

€] =D _widi(C), (3
=1

where w;s are the non-negative weights; a similar idea can be found in an unpublished 2009
University of Illinois manuscript by Jiaming Xu. We show that the adaptive nuclear norm is
non-convex when the weight of the singular value decreases with the singular value, a
condition needed for a meaningful regularization; see Section 2. Despite the non-convexity,
we show below that the adaptive nuclear norm penalized estimator has a closed-form
solution in matrix approximation problems.

Based on the proposed adaptive nuclear norm, we develop a new method for conducting
simultaneous dimension reduction and coefficient estimation in high-dimensional
multivariate regression. Our proposal combines two main ideas. Firstly, the proposed
method builds a bridge between the Iy and 11 singular value penalization methods, and it can
be viewed as analogous to the adaptive lasso (Tibshirani, 1996; Zou, 2006; Huang et al.,
2008) developed for univariate regression. Secondly, we penalize XC rather than C, which
allows the reduced rank estimation problem to be solved explicitly and efficiently. This
setup was used by Klopp (2011) and Koltchinskii et al. (2011) in trace regression problems.
Compared to the computationally intensive |1 method (Yuan et al., 2007) which tends to
overestimate the rank, the proposed method with the aid of some well-chosen adaptive
weights may improve rank determination. Compared to the discontinuous Iy method (Bunea
et al., 2011), the proposed method results in a continuous solution path and allows a more
flexible bias-variance tradeoff in model fitting.

2. Adaptive nuclear norm penalty

The adaptive nuclear norm ||C||-,, forms a rich class of penalty functions indexed by the
weights. Clearly, it includes the nuclear norm as a special case with unit weights. Since the
nuclear norm is convex and is a matrix norm, an immediate question arises as to whether or
not its weighted extension (3) preserves the convexity, which is the case for the entrywise
lasso and adaptive lasso penalties (Zou, 2006). However, the following theorem shows that
the convexity of (3) depends on the ordering of the non-negative weights.
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Theorem 1—For any matrix C € RP*9, let f(C) = ||C||«, be defined in (3). Then f(:) is
convex in C if and only if wy = - > wp,q 2 0.

Hence, for the adaptive nuclear norm (3) to be a convex function, the weights must be
nondecreasing with the singular value. However, for penalized estimation, the opposite is
desirable, i.e., we would and shall henceforth impose the order constraint

nglg"'gwp/\qa 4)

which ensures that a larger singular value receives a lighter penalty to help reduce the bias
and a smaller singular value receives a heavier penalty to help promote sparsity. The non-
convexity of f(-) arises from the constraint (4), so f(-) is no longer a matrix norm. Here is an
example showing that (3) is neither convex nor concave under constraint (4). Consider p = q

=2, and
2 0 1 O
=(u1) =(52)

Let wy =1 and wy = 2. It can be verified that f(Cq) = f(C,) = f (-C») = 4, while f{(C; +
Cp)/2} = 4.5 > {f(Cq) + f(Cp)}2; also, f{(C1 — Cp)/2} = 1.5 < {f(Cy) + f(-Cy)}/2.

Consider the low-rank matrix approximation problem, Y = Cy + E, a special case of model
(1) where X is an identity matrix and Cq is n x g. This model provides a framework for
denoising the data matrix Y. Certain low-rank estimators of Cg can be derived from the
singular value decomposition of Y € R4,

Y=UDVT, D=diag{d(Y)}, )

where U and V are respectively n x (n A g) and g % (n A g) orthonormal matrices, d(Y) =
{d1(Y), ..., dn/\q(Y)}T consists of the singular values of Y in descending order, and diag(-)
denotes a diagonal matrix with the enclosed vector on its diagonal. Consider the following
two kinds of estimators of Cy,

HA(Y)=UIRDWVTY,  JA(D)=diag[di(Y)I{d;(Y)>A},i=1,...,nAq], (6)

AW)=USD)WVE,  FA(D)=diag [{d;(Y)-A},,i=1,....,nAq], (@)

where A= 0 and x4+ = max(0, x). The following proposition shows that the hard-thresholding
estimator in (6) yields the I rank penalized estimator (Eckart & Young, 1936), and the soft-
thresholding estimator in (7) yields the 1; nuclear norm penalized estimator (Cai et al.,
2010).
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Proposition 1—For any A =0 and Y € R4, #.(Y) defined by (6) can be characterized as
HA(Y)=arg minC{HY—C|\i+)\2T(C)}, and s:(Y) in (7) can be characterized as
()= argmin, {|[Y =C|2 /24| C|,}.

The estimator #:(Y) eliminates any singular values below a threshold A, while s:(Y) shrinks
all the singular values by A towards zero. These operations are natural extensions of the
hard/soft-thresholding rules for scalars and vectors (Donoho & Johnstone, 1995; Cai et al.,
2010). In general, a soft-thresholding estimator has smaller variance but larger bias than its
hard-thresholding counterpart. Soft-thresholding may, however, be preferable when data are
noisy and highly correlated (Donoho & Johnstone, 1995).

The preceding discussion on the connections between different thresholding rules and
penalty terms motivates us to consider the use of the adaptive nuclear norm in bridging the
gap between the Iy and 11 singular value penalties and fine-tuning the bias-variance tradeoff.
In the context of low-rank matrix approximation, we are able to obtain, with complete
characterization, an explicit global minimizer of the least squares criterion penalized by a
non-convex adaptive nuclear norm.

Theorem 2—Forany 120, 0<wy < - SWppq, and Y € R4 with a singular value
decomposition Y = UDVT, a global optimal solution to the optimization problem

et
min{ ||V =C[Z +A|C.,} @
is Sw(Y), where

Frw(YV)=US D)V, Ay(D)=diag[{d;(Y)—Aw;}, ,i=1,...,nAq]. (9)

Further, if all the nonzero singular values of Y are distinct, then s..(Y) is the unique optimal
solution.

The fact that a closed-form global minimizer can be found for the non-convex problem (8) is
rather surprising. The result stems from the von Neumann’s trace inequality (Mirsky, 1975);
see the Appendix. Following Zou (2006), the weights can be set to be w;=d; 7 (Y'), fori = 1,
...,N A g, where y= 0 is a pre-specified constant. In this way, the order constraint (4) is
automatically satisfied. We discuss a general way to construct the weights in Section 7.

3. Adaptive nuclear norm penalization in multivariate regression

3-1. Rank and nuclear norm penalized regression methods

We now consider estimating the coefficient matrix Cq, which is possibly of low rank, in the
multivariate regression model (1) with an arbitrary design matrix X. Below, let P =
X(XTX)™XT be the projection matrix onto the column space of X and = (XT X)"XT Y the
least squares estimator of Cp, where (-)~ denotes a Moore—Penrose inverse.
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The results in Section 2 can be readily applied to derive certain low-rank estimator of Cg in
the general regression setting. First, consider the rank selection criterion (Bunea et al.,
2011),

[Y=XC|2+X*r(C). (10)

Minimizing (10) is the same as minimizing L1(C):||XCL—XCHF+>\271(C), owing to
Pythagoras’ theorem. We now demonstrate that this is also equivalent to minimizing

A 2 . . .
Lg(C):\|XCL—XC||F+>\27~(XC), which can be cast as a constrained matrix
approximation problem,

n}&n{”XCA'L —]\I||i+/\27"(]\1)} subject to M=XC for some C. (1)

However, the constrained minimizer of (11) turns out to be the same as its unconstrained
counterpart. To see this, let VDT be the eigenvalue decomposmon of YTPY = (XC._)TXCL
The 5|ngular value decomposition of X is then given by UDVT where 0 = PYVD™ =
XCLVD‘. It follows from Proposition 1 that the unconstrained minimizer equals

HA(XC)=0(D) =X, 7D (D)W =xEY | @2

A(N) (N

where C | is the desired constrained minimizer of

()
)=r(Cy ")
AN W xq ia AN

Consequently, L1 (C,.")=L3(C,") < Lo(C) < L1(C), forany C € RP*4, e, C

minimizes (10). It can also be shown that the set of rank-constrained estimators, obtained by

A A A— ~T N
=C VD J4(D)V . Therefore, XC'|

) o\

(11). Moreover, {4 (D) }:T(Xé ) < T(C’ N < r{AD), e, r(XC,

minimizing HY—XCHf, subjecttor(C)<r,forr=1, ..., p A g, spans the solution path of
(10) (Reinsel & Velu, 1998).

The nuclear norm penalized least squares criterion (Yuan et al., 2007) is

1 2
SIY=XCl+AC].. a3

We denote the minimizer of (13) by é](j), which generally does not have an explicit form.

Extensive research has been devoted to this minimization problem (Cai et al., 2010; Toh &
Yun, 2010). One popular algorithm is to alternate between a majorization step of the
objective function and a minimization step by singular value soft-thresholding operation
until convergence, but it is computationally intensive for large-scale data (Cai et al., 2010).
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3-2. Adaptive nuclear norm penalized regression method

Predictive accuracy and computational efficiency are both important in high dimensional
regression problems. Motivated by criteria (10) and (13), we propose to estimate Cy by
minimizing

1

IV =XCL+AIXC,,, a4

where the weights {w;} are required to be non-negative and non-decreasing. In practice, a
fore-most task of using (14) is setting proper adaptive weights. Following Zou (2006), this

can be based on the least squares solution,

wi=d; (PY)=d; "(XC,), (15)

where PY = X(_is the projection of Y onto the column space of X and ¥ is a non-negative
constant.

The proposed method (14) is built on two main ideas. Firstly, the criterion focuses on the
fitted values XC, and encourages sparsity among the singular values of XC rather than those
of C. This may yield a low-rank estimator for XCq and hence for Cy (Koltchinskii et al.,
2011). A prominent advantage of this setup is that the problem can then be solved explicitly
and efficiently. Secondly, the adaptive penalization of the singular values allows a flexible
bias-variance tradeoff: a large singular value receives a small penalty to control possible
bias, and a small singular value receives a large penalty to induce sparsity and hence reduce
the rank. The following corollary shows that this criterion admits an explicit minimizer.

Corollary 1—A minimizer of (14), denoted by é?w), is given by

A(Aw)

A(Aw)
XC,

=S u(XC)=05,(D)VT, =6, VD™ A, (D), @)
where C_is the least squares estimator of Cp, ODVT is the singular value decomposition of
XC., and sw.() is defined in (9).

By Pythagoras’ theorem, minimizing criterion (14) is equivalent to minimizing

||X(:’L—XCH2F/2+/\||XCHW with respect to C. The above result then follows directly from
Theorem 2. The proposed method first projects Y onto the column space of X, i.e., PY =
X ; the estimator is then obtained as a low-rank approximation of PY by adaptively soft-
thresholding the singular values. The thresholding level is data-driven: the smaller an
initially estimated singular value, the larger its thresholding level. Therefore, the estimated
rank corresponds to the smallest singular value of PY that exceeds its thresholding level, i.e.,
r = max{r : d(PY) > Aw,}. For the choice of the weights in (15), the estimated rank is

Biometrika. Author manuscript; available in PMC 2014 July 16.
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p=max{r:d,(PY)> Y0t} a7

foro < ,\<d}+1(Py) and r =0 for )\ > d}“(Py). Therefore, the plausible range of the
tuning parameter is \ € [0, d?“(Py)], with A = 0 corresponding to the least squares

solution and )\:d’{“(Py) to the null solution.

The proposed estimator é‘?w) and the Iy estimator C’g) in (12) differ only in their estimated
singular values for XCy, but the difference can be consequential. While the solution path of
the 1y method is discontinuous and the number of possible solutions equals the maximum
rank, the proposed criterion offers more flexibility in that the resulting solution path is
continuous and guided by the data-driven weights. The two methods can both be efficiently
computed, in contrast to the computationally intensive I; method in (13).

For any fixed 1= 0, C‘Sw) can be computed by (16). To choose an optimal A and hence an
optimal solution, K-fold cross validation method can be used, based on predictive
performance of the models (Stone, 1974). In our numerical studies, we first compute the
solutions over a grid of 100 A values equally spaced on the log scale and select the best A
value; subsequently we refine the selection process around the chosen A value with a finer
grid of 100 A values.

4. Rank consistency and error bounds

We study the rank estimation and prediction properties of the proposed adaptive nuclear
norm penalized regression method. Our theoretical analysis is built on the framework
developed by Bunea et al. (2011). We mainly focus on the random weights constructed in
(15), in line with the adaptive lasso method (Zou, 2006) developed for univariate regression.
Similar results are obtained for any pre-specified sequence of non-random weights satisfying
certain order restriction and boundedness requirements. All the proofs are given in the
Appendix.

The rank of the coefficient matrix Cp, denoted as r”, can be viewed as the number of
effective linear combinations of the predictors linked to the responses. Rank determination is
always a foremost task of reduced rank estimation. The quality of the rank estimator, given
in (17), clearly depends on the signal to noise ratio. Following Bunea et al. (2011), we shall
use the r’th largest singular value of XCy, i.e., d;*(XCp), to measure the signal strength, and
use the largest singular value of the projected noise matrix PE, i.e., d1(PE), to measure the
noise level. Intuitively, if dq(PE) is much larger than the size of the signal, some of the
signal could be masked by the noise and lost during the thresholding procedure; as such, r ~
may be much smaller than the true rank. The lemma below characterizes the limit or the true
target of r and its relationship with the signal and noise levels, as well as the adaptive
weights.

Lemma 1—Suppose that there exists an index s < r” such that dg(XCg) > (1 + §AY("1) and
ds+1(XCo) < (1 — §)AY(*D) for some S < (0, 1]. Then pr(r =s) = 1 — pr{d;(PE) = 521/ D)3},

Biometrika. Author manuscript; available in PMC 2014 July 16.
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where r* is the rank of Cy, r the estimated rank given in (17), P the projection matrix onto
the column space of X, E the error matrix in model (1), and ythe power parameter in the
adaptive weights (15).

To achieve consistent rank estimation, we consider the following assumptions:
Assumption 1. The error matrix E has independent N(0, ¢2) entries.

Assumption 2. For any 8> 0, 1= {(1 + §)o(Vry + Vq)/8} 71 with Sdefined in Lemma 1,
and d*(XCg) > 24101,

Assumption 1 ensures that the noise level d;(PE) is of order vry + Vq; see Lemma 2 in the
Appendix (Bunea et al., 2011). Assumption 2 concerns the signal strength relative to the
noise level and the appropriate rate of the tuning parameter.

Theorem 3—Suppose Assumptions 1-2 hold. Let r be the estimated rank given in (17),
and ry = r(X) the rank of X. Then pr(r =r*) — 1 as ry +q — co.

Theorem 3 shows that the proposed estimator is able to identify the correct rank with
probability tending to 1 as ry + g goes to infinity. As in Bunea et al. (2011), the consistency
results can be extended to the case of sub-Gaussian errors and can also be easily adapted to
the case when ry + g is bounded and the sample size n goes to infinity. The rank consistency
of the proposed estimator is thus valid for both classical and high-dimensional asymptotic
regimes.

Our main results about the prediction performance of the proposed estimator are presented

(Aw)
S

in Theorem 4. For simplicity, we write Cs for C

Theorem 4—Suppose Assumptions 1-2 hold. Let ¢ = d1(XCq)/d*(XCq) = 1. Then

A 2 14a 2 1 — —v12\2/(y+1), %
IXC,—XCol] < EHXB—XCO||F+@{5\/2+2(2—6) T (2e4-8) T 2N/ (D,

with probability greater than 1 — exp{—&2(ry + q)/2}, for any 0 < a < 1 and any p x q matrix
B with r(B) < r". Moreover, taking B = Cy and a = 1/2 yields

IXC—XCo||%. < 45y/24+2(2—8) 7~ (2c+6) 7} A/ O+ D+

A 242(2-8) " [i—(2e8) 7 5} (110) 202 (yrat /a) ot

with probability greater than 1 — exp{—&(ry + q)/2}.
The established bound in (18) shows that the prediction error is bounded by 4%( PE)r* up to
some multiplicative constant, with probability 1 — exp{—(ry + g)/2}, i.e., the smaller the

noise level or the true rank, the smaller the prediction error. The bound is valid for any X
and Cg. The estimation error bound of Cs can also be readily derived from Theorem 4, e.g.,

Biometrika. Author manuscript; available in PMC 2014 July 16.
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if dr, (X) = p> 0 for some constant p, then under Assumptions 1-2,

[Co=Coll2 < 4p™2{6v/2+2(2—6) T —(2c+6) T} A O+

So far, we have considered random weights based on the least squares solution, as given in
(15). We now briefly outline the results for any pre-specified sequence of non-negative and
nondecreasing, non-random weights {w;j; i=1, ..., n A q}.

Corollary 2—Suppose Assumption 1 holds, and that (i) 0 < wy < - < Wp.q, and there exists
0 <m < oo such that we* < m < wy*yq, (i) the tuning parameter 1 = (1 + &) o(Vry + Vg)/m and
(iii) dy*(XCgp) > 2Am. Then

a. pr(r=r") — lasry+q— oo; and

b. ||XéS_XcO||2F < 4(y/242—wy /m)? (140)* (v/ro-+/q)*r* with probability
greater than 1 — exp{—(r, + q)/2}.

The proof is similar to that of Theorems 3 and 4 and hence is omitted.

The error bounds of the proposed estimator established in Theorem 4 and Corollary 2 are
comparable to those of the Iy rank penalized estimator and the |1 nuclear norm penalized
estimator (Bunea et al., 2011; Rohde & Tsybakov, 2011). The rate of convergence is (ry +
q)r” because (Vry + Vg)2 < 2(ry + ), which is the optimal minimax rate for rank sparsity
under suitable regularity conditions (Rohde & Tsybakov, 2011; Bunea et al., 2012).
However, the bounds for the nuclear norm penalized estimator were obtained with extra
restrictions on the design matrix, and a tuning sequence for achieving the smallest mean
squared error usually does not lead to correct rank recovery (Bunea et al., 2011). While both
the rank selection criterion and the proposed method are able to achieve correct rank
recovery and minimal mean squared error simultaneously, the latter possesses a continuous
solution path produced by data-driven adaptive penalization, which may lead to improved
empirical performance.

5. Robustification of reduced rank estimation

As suggested by a referee and motivated by Mukherjee & Zhu (2011), we discuss the
robustification of the reduced rank methods by adding a ridge penalty. Mukherjee & Zhu
(2011) proposed a reduced rank ridge regression method; see also Bunea et al. (2011) and
She (2012). The shrinkage estimation induced by a ridge penalty makes the reduced rank
estimation robust and hence is especially suitable when the predictors are highly correlated.
The method can be viewed as minimizing the following criterion

2 2
[Y=XC[Z 4+ (C)+22|IC]12 (29)
DA\
where ||CH2F=tf(CTC):Zi:zd?(C), and A4 and A, are tuning parameters. We denote the

resulting robustified estimator by é&“m, which can be obtained by data augmentation.
Specifically, letting
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Y X
Y= , X'= ,
( Opxq ) ’ ( VAzlpxp ) |

(19) can be written as a rank selection criterion ||Y*—X*C\|i+)\§r(0), whose solution is
given in (12); see Mukherjee & Zhu (2011).

The adaptive nuclear norm penalization method can also be robustified by incorporating a
ridge penalty term. Similar to (14), for efficient computation, we impose a ridge penalty on
XC rather than C,

1 2 Az 2
LY XA X 22 X2 )

Interestingly, criterion (20) is analogous to the adaptive elastic net criterion (Zou & Zhang,

2009) in univariate regression. We denote the minimizer of (20) by é‘i?;w’&). It can be
verified that

A(Aw,\2) 1 A(uw)
C =—-1U0C
SR ]__|_>\2 S » (A1)

where C’Slw), defined in (16), denotes the proposed estimator in the absence of the ridge
penalty.

For each fixed Ay, solving (19) requires inverting an p x p matrix (XTX + A,1) and
performing a singular value decomposition of an g x g matrix. When p is much greater than
n, the Woodbury matrix identity is useful in speeding up computation (Hager, 1989), i.e.,

(XTX+0oD) =0 -2 2X T (142, X XT) " . Following Mukherjee & Zhu (2011), in
practice we use K-fold cross validation to determine the optimal rank and select the optimal
Ao from a sequence of 100 values. On the other hand, obtaining the whole solution path of
(20) only requires a one-time matrix inversion and singular value decomposition. We
perform a 100 x 100 grid search of (44, A,) to obtain the final estimator.

6. Empirical studies

6-1. Simulation

We compare the prediction, estimation and rank determination of various reduced rank
estimators including the nuclear norm penalized estimator é‘fj) (Yuan et al., 2007), the rank

penalized estimator C‘S) (Bunea et al., 2011), and our proposed adaptive nuclear norm

penalized estimator é?w) with several choices of the weight parameter y. The robustified

. A (A1, 22) A(A1w,Az) . L
versions, namely, C. " ""and C_ , are also considered. For simplicity, we suppress the

superscripts from the notations of the various estimators. We used the accelerated proximal
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gradient algorithm implemented in Matlab by Toh & Yun (2010) for computing Cy. R code
for computing Cqr Was provided by the original authors (Mukherjee & Zhu, 2011), and we
modified their code to make use of the Woodbury matrix identity. We implemented all the
other methods in R (R Development Core Team, 2013). All computation was done on
computers with 3.4 GHz CPU, 8 GB RAM and the Linux operating system.

We consider the same simulation models as in Bunea et al. (2011). The coefficient matrix Cq

is constructed as Cy=bC,Cy3, Where b >0, Cy € ‘Rpxr*, Cy e Rr" and all entries in Cy and
C, are random samples from N(0, 1). Two scenarios of model dimensions are considered,
with p, g<nandp, g>n. In Model I, we setn = 100, p = q = 25 and r" = 10. The matrix X
is constructed by generating its n rows as random samples from N(0, I'), where T" = (T'jj)pxp
and Tjj = o7l with some 0 < p< 1. In Model 11, we setn =20, p=q=25,r" =5and ry =
10. The matrix X is generated as X = XoI'2, where T is defined as above, X = X1X, X1 €
R, X5 € R™*P, and all entries of X1, X5 are N(0, 1) random samples.

The data matrix Y is then generated by Y = XCq + E, where the elements of E are N(0, 1)
random samples. Each simulated model is characterized by the sample size n, the number of
predictors p, the number of responses q, the true model rank r, the rank of the design matrix
ry, the correlation p € {0-1, 0-5, 0-9}, and the signal strength b € {0-05, 0-1, 0-3}. The
experiment was replicated 500 times for each parametric setting.

One way to alleviate inaccuracy in the empirical tuning parameter selection and to reveal the
true potential of each method for fair comparison is to tune each method based on its
predictive accuracy evaluated with a very large independently generated validation data set;
this yields optimally tuned estimators. We have also tried ten-fold cross validation for
selecting the tuning parameters but the results are omitted for brevity, as they are similar to
or slightly worse than those of the optimal tuning procedure; see the Supplementary
Material. For each method, the model accuracy is measured by the average of the scaled

mean squared errors from all 500 runs, i.e., Est(é):loouco—é||i/(pq) for estimation, and

Pred(é‘)leOHXCo—Xé’Hi/(nq) for prediction. To evaluate the rank determination
performance, we report the average of the estimated ranks from all runs and the percentage
of correct rank identification. Tables 1 and 2 summarize the simulation results and list the
average computation time per simulation run for Models | and I1.

We first examine the effects of the adaptive weights on the proposed estimator Cs. For the
case of equal weights, i.e., y= 0, Cs tends to overestimate the rank and does not have good
predictive performance in most cases. The performance of Cs is substantially better when y
= 2, which implements data-driven weights, than when y= 0. We have also experimented
with other yvalues, and our results show that y = 2 is generally a good choice; see the
Supplementary Material. Henceforth we refer to the case of y= 2 in the following
comparisons.

A sharper comparison between the various estimators can be obtained by contrasting their
performance on each simulated dataset. For instance, for each experimental setting, we
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compare Cy with Cs by computing the percentage reduction in the mean squared prediction
error of Cs relative to Cy for each of the 500 simulated datasets:

Pred(C,)—Pred(C,)

100 x =
Pred(C})

%.

where Pred(-) denotes the scaled mean squared prediction error of a method. Figure 1
displays the notched boxplots of the percentage reduction in the mean squared prediction
error of Cs relative to Cy across all experimental settings, whereas Figure 2 displays those
of Cs relative to Cy. The notches in each boxplot extend 1-58/V500 times its inter-quartile
range from the median (McGill et al., 1978).

The proposed estimator Cs generally outperforms the rank penalized estimator C,
especially in Model I. Figure 1 shows that the improvement in prediction can be substantial,
when the signal is weak or moderate and the correlation among the predictors is high. For
rank determination, both estimators perform well when the signal is moderate to strong and
the correlation among the predictors is weak to moderate. The proposed estimator Cs,
however, tends to slightly overestimate the rank.

The proposed method often outperforms nuclear norm penalized regression (Yuan et al.,
2007), and is more parsimonious than the latter in both rank reduction and computation.
Table 1 and Figure 2 show that in Model I, when the signal is weak and/or the correlation
among the predictors is high, the nuclear norm penalized estimator C performs better than
Cs in estimation and prediction. However, this gain has a price, for Cy often overestimates
the rank and is much harder to compute. In the high dimensional setting of Model 11, Cs
generally enjoys similar or better predictive performance than Cy. Our findings agree with
those of Bunea et al. (2011).

Table 1 shows that shrinkage estimation due to the additional ridge penalty generally
enhances an estimator, especially in the presence of highly correlated predictors. However,
Cs benefits much less from the additional ridge penalty than does Gy, because, unlike the
latter, Cs is already an adaptive shrinkage estimator, owing to the soft-thresholding
operation. In general, it is worthwhile to incorporate ridge penalization in order to further
improve prediction, if the increased computational cost is affordable.

6-2. Application

We consider a breast cancer data set (Witten et al., 2009), consisting of gene expression
measurements and comparative genomic hybridization measurements for n = 89 subjects.
The data were used to demonstrate the effectiveness of the rank selection criterion in a
preprint of Bunea et al. (2011) posted at the website http://arxiv.org. The data set is available
in the R package PMA (Witten et al., 2009), and a detailed description can be found in Chin
et al. (2006).

Prior studies have demonstrated that certain types of cancer are characterized by abnormal
DNA copy-number changes (Pollack et al., 2002; Peng et al., 2010). It is thus of interest to
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examine the relationship between DNA copy-number variations and gene expression
profiles, for which multivariate regression methods can be useful. Biologically, it makes
sense to regress gene expression profiles on copy-number variations because the
amplification or deletion of the portion of DNA corresponding to a given gene may result in
a corresponding increase or decrease in expression of that gene. The reverse approach is also
meaningful, in that the resulting predictive model may identify functionally relevant copy-
number variations. This approach has been shown to be promising in enhancing the limited
comparative genomic hybridization data analysis with the wealth of gene expression data
(Geng et al., 2011; Zhou et al., 2012). We have tried both approaches, i.e., setting 1:
designating the copy-number variations of a chromosome as predictors and the gene
expression profiles of the same chromosome as responses, and setting 2: reversing the roles
of the predictors and the responses. We find that in setting 1, none of the methods provides
an adequate fit to the data, and the rank selection criterion may even fail to pick up any
signals. The reduced rank models give much better results under setting 2. We thus report
only the results for setting 2.

We focus the analysis on chromosome 21, for which p = 227 and q = 44. Both the responses
and predictors are standardized. We compare the various reduced rank methods by the
following cross-validation procedure. The data were randomly split into a training set of size
Nirain = 79 and a test set of size ngg = 10. All model estimation was carried out using the
training data, with the tuning parameters selected by ten-fold cross validation. We used the
test data to calibrate the predictive performance of each estimator C, specifically, by its

- A2
mean squared prediction error || Yiest — XtestC| ./ (q74est), Where (Yiest, Xtest) denotes the test
set. The random-splitting process was repeated 100 times to yield the average mean squared
prediction error and the average rank estimate for each method; see the upper panel of Table
3.

As the number of predictors is much greater than the sample size, it is reasonable to assume
that only a subset of predictors is important. Therefore, a perhaps better modeling strategy is
subset multivariate regression with a selected subset of predictors. Recently, several variable
selection methods have been proposed in the context of reduced rank regression (Chen et al.,
2012; Chen & Huang, 2012; Bunea et al., 2012). We modified the preceding cross-
validation procedure for comparing the reduced rank subset regression methods. The only
modification was that for each random split, we first applied the method of Chen et al.
(2012) using the training set to select a set of predictors, with which the reduced rank
methods were subsequently carried out using the training set and calibrated using the test
set. Since our main goal is to compare the various reduced rank methods, we omit the
description of the predictor selection procedure but refer the interested reader to Chen et al.
(2012) for details. The results are summarized in the lower panel of Table 3.

Table 3 shows that the proposed estimator Cs enjoys slightly better predictive performance
than both Gy and Cy. The numbers of selected predictors in the 100 splits range from 71 to
102, hence incorporating variable selection greatly reduces the number of predictors and
may potentially improve model interpretation. However, in this example, reduced rank
estimation using a subset of predictors results in higher mean squared prediction error than
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using all predictors, uniformly for all methods, but more so for Gy than for other methods.
The nuclear norm penalized estimator Cy generally yields a higher rank estimate than the
other methods. Incorporating ridge penalization improves the predictive performance of the
reduced rank methods. Particularly, Cyg may substantially outperform its non-robust
counterpart Cyy. We find that both Gy and Ciyr can be computationally intensive for large
datasets, while other methods are much faster to compute. These results are consistent with
the simulation findings in Section 6-1.

7. Discussion

Adaptive nuclear norm penalization can serve as a building block to study a family of
singular value penalties. This is based on the connection between an adaptive I, penalty and
many concave penalty functions (Knight & Fu, 2000; Fan & Li, 2001; Huang et al., 2008).
Consider the regression problem (2) with a general singular value penalty

«@A(C)ZZZZPA{di(C)}, where p;(-) is a penalty function, e.g., p,{d;(C)}=Ad}(C) for
some 0 < b <1 (Huang et al., 2008; Rohde & Tsybakov, 2011). In this setup the
optimization of (2) can be challenging. A promising approach is to adopt a local linear
approximation (Zou & Li, 2008), py{d:(C)} ~ px(ds)+p(d:){d:(C)—d;}, for 6i(C) ~ di,
where dj is some initial estimator of d;(C). It can be seen that for fixed d;, up to a constant,
the first-order approximation yields exactly an adaptive nuclear norm penalty. This suggests
that these problems may be solved by an iteratively reweighted adaptive nuclear norm
penalization approach.

Incorporating an extra ridge penalty can improve reduced rank estimation (Mukherjee &
Zhu, 2011; She, 2012). When combined with the adaptive nuclear norm penalty, such a
criterion bears resemblance to the adaptive elastic-net criterion (Zou & Hastie, 2005; Zou &
Zhang, 2009) in univariate regression. It would be interesting to investigate the theoretical
properties of this approach and compare it with the nonlinear fusion of nuclear norm and
ridge penalties in Owen (2007) and She (2012). Another pressing problem is to extend
regularized reduced rank regression methods to generalized linear and nonparametric
regression models (Yee & Hastie, 2003; Li & Chan, 2007; She, 2012). On the optimization
aspect, it is interesting to study the use of adaptive nuclear norm in some classical sparse
optimization areas, such as matrix completion (Candés et al., 2011).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix. Technical details

Proof of Theorem 1

First we show by a counter-example that if we have an index k such that wy < wy+1, then f ()
is non-convex. Let C and Z be diagonal p x p matrices such that ¢;; =i, fori =1, ..., p, while
Z equals C but with entries switched at positionsp—k+landp-kforsomel<k<p-1
on the diagonal. It is then easy to verify that

f(C)If(Z)Ié wi(p—i+1),

F(SH2) L _SD (et 1) (wytwp 1) — (p—k+1)wg— (p—k)wy 1
=3 (wptwi41)—wy>0,

, where f(:) is defined in (3). Therefore f(:) is hon-convex.

Next we prove that f(C) = ||C]|, is a convex function of C € RP*A for wy > -+ 2 Wp,q 2 0.
Without loss of generality, assume p < g so that we can simply write p = p A g. First
consider the case that wy, > 0, and define the following function on %P

P
w(@)=) wilzlsy), (@A
i=1

where §is a permutation of {1,..., p} determined by x such that [x|s1) = - = [X|gp). We claim
that w(:) in (A1) is a symmetric gauge function (Horn & Johnson, 1985, Definition 7.4.23),
i.e., it satisfies the following six conditions: (a) w(x) = 0, for any x € R; (b) w(x) =0 if and
only if x = 0; (c) w(ax) = [aw(x), for any a € R; (d) w(x +y) < w(x) + w(y); (e) w(x) = w([x]);
() w(x) = w{z(x)} for any zthat is a permutation of indices {1,..., p}.

All conditions except (d) are trivial to verify. To prove (d), let 5, cand zbe permutations
such that [x + Y| iy, [X|o() and |y| ) are placed in non-increasing order respectively.

p p
w(IJFZ/):;wi\ﬂHyb(i) < ; (wi{z|5(i)+wi|y|5(i))

p
< 3 (wilal g tilyl ) =w@)+u(y),

where the second inequality is due to the Hardy—L.ittlewood—Pdlya inequality (Hardy et al.,
1967). By a straightforward application of Horn & Johnson (1985, Theorem 7.4.24), since ||
Cljw* = w{d(C)} where d(C) = {d;(C),..., dp(C)}T, the function f(-) = |||l defines a matrix
norm and hence is convex.

For the case that wy, = 0, let s be the largest index such that wg > 0. For 0 < & < wg, consider
the perturbed w that wj=w;j, fori=1,...,s,and wj= ¢ fori=s+1,...,p. Then forany C,Z €
RPXA||C + Z||w#/2 < ||Cllw#/2 + ||Z]|w+/2. By taking € — 0, ||C + Z||w*/2 < ||C|lw*/2 + ||Z||w+/2.
Therefore |||+ is convex.
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Proof of Theorem 2

We first prove that s:(Y) is indeed a global optimal solution to (8). Below, we write h for n

A Q. Let g:{gi}?zlzd(C’), which implies the entries of g are in non-increasing order. Since
the penalty term only depends on the singular values of C, (8) can be equivalently written as:

h
) . 1 2
—|lY-C A 1Gi .
g:glzq-l-glghzo {069zn£21,3(0)9 (2 H ”F+ ;w g,> }

For the inner minimization, we have the inequality

[V —C|2 =tr(YYT)—2tr(Y CT) +tr(CCT)
h h
=2 d;(Y)-2tr(YC )+ 3 g7
=1 1=1

h h
>3 d(Y)—2d(Y) g+ ) g2.
1= 1=

The last inequality is due to von Neumann’s trace inequality (von Neumann, 1937; Mirsky,
1975). Equality holds when C admits the singular value decomposition C = Udiag(g)V",
where U and V are defined in (5) as the left and right singular matrices of Y. Then the
optimization reduces to

h
gzngI-I-lglthO (Z [%g?—{di (Y)_)Mi}gi_'—%d?(yv)}) -
The objective function is completely separable and is minimized only when g; = {d;(Y) -
Aw;i}s. This is a feasible solution because {d;(Y)} is in non-increasing order, while {w;} is in
non-decreasing order. Therefore s..(Y) = Udiag[{d(Y) — Aw}+]VT is a global optimal
solution to (8). The uniqueness follows by the equality condition for the von Neumann’s
trace inequality when Y has distinct nonzero singular values, and the uniqueness of the
strictly convex optimization (A2). This concludes the proof.

Proof of Lemma 1

By (17), r 5 s holds if and only if dg41(PY) > AY0*1) and r < s holds if and only if dg(PY) <
AY(D) Then

pr(7 # s)=pr {1 (PY) >0 ordy(PY) < AVOTDL,

Based on Weyl’s inequalities on singular values (Franklin, 2000) and observing that PY =
XCq + PE, we have d{(PE) = ds+1(PY) — dg+1(XCp) and d1(PE) = d4(XCp) — ds(PY). Hence
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ds+1(PY) > A1) implies dq(PE) = AY(1) - dg,1(XCp), and dg(PY) < AY(r*D) implies
d1(PE) = dg(XCp) — AV 1t then follows that

pr(# # s) < pr [dl(PE) > min{AY 0V _d 1 (XCp),ds(XCp)—AY WU}} :

Note that min{AY(*D) - dg,1(XCp), ds(XCp) — AV0+D} > 521/(r*1)_ This completes the proof.

Lemma 2 (Bunea et al., 2011)

Let ry denote the rank of X and suppose Assumption 1 holds. Then for any t > 0, E{d,(PE)}
< o(Vry +Vq), and pr[d;(PE) = E{d;(PE)} + ot] < exp(-t2/2).

Proof of Theorem 3

When d,* (XCg) > 24Y(*1) we have d,* (XCg) > 24171 > (1 + A1) and d,*41(XCo) =
0< (1 - 8AY(r*D) for some 0 < §< 1. The effective rank s defined in Lemma 1 equals the
true rank, i.e., s = r", and min{AY(*1 - d,*,1(XCy), dy* (XCg) = AY(*D } > S1V0*D), 1t then
follows from Lemma 2 that

pr(f=r*) > 1—pr{d,(PE) > 5)\1/(7+1)}
=1-pr{di(PE) > (140)o(\/rs++/q)}
> 1—exp{0*(r,+q)/2}

— 1

as ry + g — oo. This completes the proof.

Proof of Theorem 4
We write h for n A g. By the definition of Cs in (16),

h h
A 2 N
[Y=XC | 422 widi(XCy) < |[Y =X B|2+2)Y w;d;(XB),

=1 =1
for any p x g matrix B. Note that

A 12 A 2 ~
Y =XC( | =lIY =X Col|} +]|XCy—=XCo|,+2<E, XCo~XC>
[V =X B|?=||Y =X Co|]> +| X B-XCo||> +2<E,XCo—XB>,.

Then we have
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~ 9 ~ h h ~
HXCS_XCOHF < HXB—XC0||i+2<E,XC'S—XB>F+2)\{Zwidi(XB)— Zwidi(XCS)}
=1 1=1

N h h N
< | XB-XCo|*+2<PE,XC,~X B> +2M Y widi(XB)— Y. wid;(XC,)}
=1 =1
N h h R (A3)
< | XB=XCo|%+2d\(PE)| XCy—X B ,+2M > widi(X B)— Y widy (X )}
i=1 =1

A 1/2 N h h o
< |\XB—XC0||i+2d1(PE)T(XC’S—XB) / ||XC’S—XB||F+2)\{Zwidi(XB)—Zwidi(XCS)}.
i=1 i=1

Now consider any B with r(B) <r,”

h h T 7 7 T
Zwidi(XB)—Zwidi(XéS):wadi(XB)—w;Zdi (Xés)+Z(wT—wi)di (Xés)—Z(w;—wi)di (XB).

Recall that w;=d; 7 (PY'), SO Wy ~ Wy = - = Wy = Wy-1 2 0. Therefore, both p1(-)= Z:zldi(')

and p2('):Z::1(wf—wi)di(') satisfy the triangle inequality; see the proof of Theorem 1.
Moreover, Weyl’s inequalities (Franklin, 2000) and the equality PY = XCq + PE imply that
d; (PY) = dy(XCy) - d1(PE) and d;(PY) < dy(XCg) + d1(PE). Hence,

h h R 7 R P )
Y widi(XB)— Y w;di(XCy) < ws 3 di( XCy—XB)+ 3 (wp—w;)di(XCy—XB)
i=1 =1 i=1 i=1

< {2d;7(PY)~d;" (PY)}ij di(XC,—~XB)

< [2{di(XCo)—di (PE)} " —{d1(XCo)+d1 (PE)}~ ]Zd (XC—XB)
< [2{d;(XCo)=di(PE)} " —{d1(XCo)+d1(PE)} ]HXC —XB| 7

The last inequality is due to the Cauchy—-Schwarz inequality. Using (A3), r(XCs — XB) <
r(Cs - B) < 2r and the inequality 2xy < x%/a + ay?, we have

N 2 A 2
IXC =X G} < [|IXB-XCy||?+al| XC—X B[,
+L[d1 (PE)/(27)+2M{d:(X Co) ~dy (PE)} ™ /i=A{dy (X Co)+d1 (PE)} /7",

. A 2 A 2
Since |[XCs—X B[, < IIXCS—XCo||F+||XB—XCoIIi, consequently, forany0<a<1,

N 2
|XCe—XColl, < 2| XB-XCo|?

+ o | (PE) V242Mds (X Co)—dy (PE)} ' =AMdy (X Co)+dy (PE)} )7
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As shown in Theorem 3, on the event {d;(PE) < 5A2Y(r*1D} the estimated rank r équals the
true rank r”, i.e., r = r*, and pr{d;(PE) = SAY(r*D}< exp{-&(r, + q)/2}. Also, d;* (XCp) >
2 1) and ¢ = dq(XCp)/d* (XCp) = 1. Therefore, with probability at least 1 — exp{—&&(ry
+0)/2},

A~ 2
IXC—XCo|} < Lo |XB—XC0||i+a(11_a){5/\1/(7“)\/2+2/\(2—5)_"’/\‘7/(’Y+1)—/\(2c+6)_7>\_’7/<7+1)} r
1

19| X B X Co |2 + gy (0v/2+2(2—8) 77— (26+8) 7} AY O,

— 9

IA

Since B is an arbitrary matrix with r(B) < r”, the second part of the theorem is obtained by
taking B = Cp and a = 1/2. This completes the proof.
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Fig. 1.
Notched boxplots of the percentage reduction in the mean squared prediction error of Cs

relative to Cyy. The boxplots are shaded in dark grey for p= 0.9, in light grey for p = 0.5, and
in white for p=0.1.
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Fig. 2.
Notched boxplots of the percentage reduction in the mean squared prediction error of Cs

relative to Cy. All other settings are same as in Figure 1.
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