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Summary

We propose an adaptive nuclear norm penalization approach for low-rank matrix approximation,

and use it to develop a new reduced rank estimation method for high-dimensional multivariate

regression. The adaptive nuclear norm is defined as the weighted sum of the singular values of the

matrix, and it is generally non-convex under the natural restriction that the weight decreases with

the singular value. However, we show that the proposed non-convex penalized regression method

has a global optimal solution obtained from an adaptively soft-thresholded singular value

decomposition. The method is computationally efficient, and the resulting solution path is

continuous. The rank consistency of and prediction/estimation performance bounds for the

estimator are established for a high-dimensional asymptotic regime. Simulation studies and an

application in genetics demonstrate its efficacy.
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1. Introduction

Given n observations of the response yi ∈ ℜq and predictor xi ∈ ℜp, we consider the multi-

variate linear regression model

(1)
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where Y = (y1, …, yn)T, X = (x1, …, xn)T, C0 is an p × q coefficient matrix, and E = (e1, …,

en)T is an n × q matrix of independently and identically distributed random errors with mean

zero and variance σ2. Throughout, we write p ∧ q = min(p, q), n ∧ q = min(n, q), r* = r(C0)

and rx = r(X), where r(·) denotes the rank of a matrix.

We consider the scenario in which both the predictor dimension p and response dimension q

may depend on and even exceed the sample size n. Such high-dimensional regression

problems are increasingly encountered. Ordinary least squares estimation is equivalent to

separately regressing each response on the set of predictors, but this ignores the dependence

structure of the multivariate response and may be infeasible in high-dimensional settings.

The curse of dimensionality can be mitigated by assuming that the true coefficient matrix C0

has some low-dimensional structure and employing regularization/penalization approaches

for model estimation. For Gaussian data, it is appropriate to estimate C0 by minimizing the

penalized least squares criterion

(2)

with respect to C ∈ ℜp×q, where  is the sum of squared errors, with ||·||F
denoting the Frobenius norm, (·) is some penalty function measuring the complexity of the

enclosed matrix, and λ is a non-negative tuning parameter controlling the penalty.

Within this general framework, an important model is reduced rank regression (Anderson,

1951, 1999, 2002; Izenman, 1975; Reinsel & Velu, 1998), in which dimension reduction is

achieved by constraining the coefficient matrix to have low rank. The classical small-p case

and maximum likelihood inference for the rank-constrained approach have been extensively

investigated. Recently, Bunea et al. (2011) proposed a rank selection criterion that is valid

for high dimensional settings, revealing that rank-constrained estimation can be viewed as a

penalized regression method (2) with a penalty proportional to the rank of C. The penalty

can also be cast as an l0 penalty in terms of the number of non-zero singular values of C, i.e.,

, where I(·) is the indicator function, and di(·)

represents the ith largest singular value of a matrix. This results in an estimator obtained by

hard-thresholded singular value decomposition; see Section 2. Yuan et al. (2007) proposed a

nuclear norm penalized least squares criterion, in which the penalty is defined as

, where ||·||* denotes the nuclear norm. This l1 penalty

encourages sparsity among the singular values and achieves simultaneous rank reduction

and shrinkage estimation (Negahban & Wainwright, 2011; Bunea et al., 2011; Lu et al.,

2012). Rohde & Tsybakov (2011) investigated the theoretical properties of the Schatten-b

quasi-norm penalty, which is defined as for 0 < b ≤ 1, and obtained

non-asymptotic bounds for prediction risk. Several other extensions and theoretical

developments related to reduced rank estimation exist; see, e.g., Aldrin (2000), Negahban &

Wainwright (2011), Mukherjee & Zhu (2011), and Chen et al. (2012). Reduced rank

methodology has connections with many popular tools including principal component

Chen et al. Page 2

Biometrika. Author manuscript; available in PMC 2014 July 16.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



analysis and canonical correlation analysis, and has been extensively studied in matrix

completion problems (Candès & Recht, 2009; Candès et al., 2011; Koltchinskii et al., 2011).

The aforementioned reduced rank approaches are closely related to the singular value

decomposition (Eckart & Young, 1936; Reinsel & Velu, 1998). It is intriguing that the rank

and nuclear norm penalization approaches can be viewed as l0 and l1 singular value

penalization methods, respectively. Moreover, the squared l2 singular value penalty is in fact

a ridge penalty, because . Motivated by these connections and with a

desire to close the gap between the l0 and l1 penalization schemes, we propose the adaptive

nuclear norm regularization method. The adaptive nuclear norm of a matrix C ∈ ℜp×q is

defined as a weighted sum of its singular values:

(3)

where wis are the non-negative weights; a similar idea can be found in an unpublished 2009

University of Illinois manuscript by Jiaming Xu. We show that the adaptive nuclear norm is

non-convex when the weight of the singular value decreases with the singular value, a

condition needed for a meaningful regularization; see Section 2. Despite the non-convexity,

we show below that the adaptive nuclear norm penalized estimator has a closed-form

solution in matrix approximation problems.

Based on the proposed adaptive nuclear norm, we develop a new method for conducting

simultaneous dimension reduction and coefficient estimation in high-dimensional

multivariate regression. Our proposal combines two main ideas. Firstly, the proposed

method builds a bridge between the l0 and l1 singular value penalization methods, and it can

be viewed as analogous to the adaptive lasso (Tibshirani, 1996; Zou, 2006; Huang et al.,

2008) developed for univariate regression. Secondly, we penalize XC rather than C, which

allows the reduced rank estimation problem to be solved explicitly and efficiently. This

setup was used by Klopp (2011) and Koltchinskii et al. (2011) in trace regression problems.

Compared to the computationally intensive l1 method (Yuan et al., 2007) which tends to

overestimate the rank, the proposed method with the aid of some well-chosen adaptive

weights may improve rank determination. Compared to the discontinuous l0 method (Bunea

et al., 2011), the proposed method results in a continuous solution path and allows a more

flexible bias-variance tradeoff in model fitting.

2. Adaptive nuclear norm penalty

The adaptive nuclear norm ||C||*w forms a rich class of penalty functions indexed by the

weights. Clearly, it includes the nuclear norm as a special case with unit weights. Since the

nuclear norm is convex and is a matrix norm, an immediate question arises as to whether or

not its weighted extension (3) preserves the convexity, which is the case for the entrywise

lasso and adaptive lasso penalties (Zou, 2006). However, the following theorem shows that

the convexity of (3) depends on the ordering of the non-negative weights.
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Theorem 1—For any matrix C ∈ ℜp×q, let f(C) = ||C||*w be defined in (3). Then f(·) is

convex in C if and only if w1 ≥ ··· ≥ wp∧q ≥ 0.

Hence, for the adaptive nuclear norm (3) to be a convex function, the weights must be

nondecreasing with the singular value. However, for penalized estimation, the opposite is

desirable, i.e., we would and shall henceforth impose the order constraint

(4)

which ensures that a larger singular value receives a lighter penalty to help reduce the bias

and a smaller singular value receives a heavier penalty to help promote sparsity. The non-

convexity of f(·) arises from the constraint (4), so f(·) is no longer a matrix norm. Here is an

example showing that (3) is neither convex nor concave under constraint (4). Consider p = q

= 2, and

Let w1 = 1 and w2 = 2. It can be verified that f(C1) = f(C2) = f (−C2) = 4, while f{(C1 +

C2)/2} = 4·5 > {f(C1) + f(C2)}/2; also, f{(C1 − C2)/2} = 1·5 < {f(C1) + f(−C2)}/2.

Consider the low-rank matrix approximation problem, Y = C0 + E, a special case of model

(1) where X is an identity matrix and C0 is n × q. This model provides a framework for

denoising the data matrix Y. Certain low-rank estimators of C0 can be derived from the

singular value decomposition of Y ∈ ℜn×q,

(5)

where U and V are respectively n × (n ∧ q) and q × (n ∧ q) orthonormal matrices, d(Y) =

{d1(Y), …, dn∧q(Y)}T consists of the singular values of Y in descending order, and diag(·)

denotes a diagonal matrix with the enclosed vector on its diagonal. Consider the following

two kinds of estimators of C0,

(6)

(7)

where λ ≥ 0 and x+ = max(0, x). The following proposition shows that the hard-thresholding

estimator in (6) yields the l0 rank penalized estimator (Eckart & Young, 1936), and the soft-

thresholding estimator in (7) yields the l1 nuclear norm penalized estimator (Cai et al.,

2010).
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Proposition 1—For any λ ≥ 0 and Y ∈ ℜn×q, (Y) defined by (6) can be characterized as

, and (Y) in (7) can be characterized as

.

The estimator (Y) eliminates any singular values below a threshold λ, while (Y) shrinks

all the singular values by λ towards zero. These operations are natural extensions of the

hard/soft-thresholding rules for scalars and vectors (Donoho & Johnstone, 1995; Cai et al.,

2010). In general, a soft-thresholding estimator has smaller variance but larger bias than its

hard-thresholding counterpart. Soft-thresholding may, however, be preferable when data are

noisy and highly correlated (Donoho & Johnstone, 1995).

The preceding discussion on the connections between different thresholding rules and

penalty terms motivates us to consider the use of the adaptive nuclear norm in bridging the

gap between the l0 and l1 singular value penalties and fine-tuning the bias-variance tradeoff.

In the context of low-rank matrix approximation, we are able to obtain, with complete

characterization, an explicit global minimizer of the least squares criterion penalized by a

non-convex adaptive nuclear norm.

Theorem 2—For any λ ≥ 0, 0 ≤ w1 ≤ ··· ≤ wn∧q, and Y ∈ ℜn×q with a singular value

decomposition Y = UDVT, a global optimal solution to the optimization problem

(8)

is (Y), where

(9)

Further, if all the nonzero singular values of Y are distinct, then (Y) is the unique optimal

solution.

The fact that a closed-form global minimizer can be found for the non-convex problem (8) is

rather surprising. The result stems from the von Neumann’s trace inequality (Mirsky, 1975);

see the Appendix. Following Zou (2006), the weights can be set to be , for i = 1,

…, n ∧ q, where γ ≥ 0 is a pre-specified constant. In this way, the order constraint (4) is

automatically satisfied. We discuss a general way to construct the weights in Section 7.

3. Adaptive nuclear norm penalization in multivariate regression

3·1. Rank and nuclear norm penalized regression methods

We now consider estimating the coefficient matrix C0, which is possibly of low rank, in the

multivariate regression model (1) with an arbitrary design matrix X. Below, let P =

X(XTX)−XT be the projection matrix onto the column space of X and ĈL = (XT X)−XT Y the

least squares estimator of C0, where (·)− denotes a Moore–Penrose inverse.
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The results in Section 2 can be readily applied to derive certain low-rank estimator of C0 in

the general regression setting. First, consider the rank selection criterion (Bunea et al.,

2011),

(10)

Minimizing (10) is the same as minimizing , owing to

Pythagoras’ theorem. We now demonstrate that this is also equivalent to minimizing

, which can be cast as a constrained matrix

approximation problem,

(11)

However, the constrained minimizer of (11) turns out to be the same as its unconstrained

counterpart. To see this, let V̂D̂2V̂T be the eigenvalue decomposition of YTPY = (XĈL)TXĈL.

The singular value decomposition of XĈL is then given by ÛD̂V̂T, where Û = PYV ̂D̂− =

XĈLV̂D̂−. It follows from Proposition 1 that the unconstrained minimizer equals

(12)

where . Therefore,  is the desired constrained minimizer of

(11). Moreover, , i.e., .

Consequently, , for any C ∈ ℜp×q, i.e., 

minimizes (10). It can also be shown that the set of rank-constrained estimators, obtained by

minimizing  subject to r(C) ≤ r, for r = 1, …, p ∧ q, spans the solution path of

(10) (Reinsel & Velu, 1998).

The nuclear norm penalized least squares criterion (Yuan et al., 2007) is

(13)

We denote the minimizer of (13) by , which generally does not have an explicit form.

Extensive research has been devoted to this minimization problem (Cai et al., 2010; Toh &

Yun, 2010). One popular algorithm is to alternate between a majorization step of the

objective function and a minimization step by singular value soft-thresholding operation

until convergence, but it is computationally intensive for large-scale data (Cai et al., 2010).
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3·2. Adaptive nuclear norm penalized regression method

Predictive accuracy and computational efficiency are both important in high dimensional

regression problems. Motivated by criteria (10) and (13), we propose to estimate C0 by

minimizing

(14)

where the weights {wi} are required to be non-negative and non-decreasing. In practice, a

fore-most task of using (14) is setting proper adaptive weights. Following Zou (2006), this

can be based on the least squares solution,

(15)

where PY = XĈL is the projection of Y onto the column space of X and γ is a non-negative

constant.

The proposed method (14) is built on two main ideas. Firstly, the criterion focuses on the

fitted values XC, and encourages sparsity among the singular values of XC rather than those

of C. This may yield a low-rank estimator for XC0 and hence for C0 (Koltchinskii et al.,

2011). A prominent advantage of this setup is that the problem can then be solved explicitly

and efficiently. Secondly, the adaptive penalization of the singular values allows a flexible

bias-variance tradeoff: a large singular value receives a small penalty to control possible

bias, and a small singular value receives a large penalty to induce sparsity and hence reduce

the rank. The following corollary shows that this criterion admits an explicit minimizer.

Corollary 1—A minimizer of (14), denoted by , is given by

(16)

where ĈL is the least squares estimator of C0, ÛD̂V̂T is the singular value decomposition of

XĈL, and (·) is defined in (9).

By Pythagoras’ theorem, minimizing criterion (14) is equivalent to minimizing

 with respect to C. The above result then follows directly from

Theorem 2. The proposed method first projects Y onto the column space of X, i.e., PY =

XĈL; the estimator is then obtained as a low-rank approximation of PY by adaptively soft-

thresholding the singular values. The thresholding level is data-driven: the smaller an

initially estimated singular value, the larger its thresholding level. Therefore, the estimated

rank corresponds to the smallest singular value of PY that exceeds its thresholding level, i.e.,

r̂ = max{r : dr(PY) > λwr}. For the choice of the weights in (15), the estimated rank is
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(17)

for  and r̂ = 0 for . Therefore, the plausible range of the

tuning parameter is , with λ = 0 corresponding to the least squares

solution and  to the null solution.

The proposed estimator  and the l0 estimator  in (12) differ only in their estimated

singular values for XC0, but the difference can be consequential. While the solution path of

the l0 method is discontinuous and the number of possible solutions equals the maximum

rank, the proposed criterion offers more flexibility in that the resulting solution path is

continuous and guided by the data-driven weights. The two methods can both be efficiently

computed, in contrast to the computationally intensive l1 method in (13).

For any fixed λ ≥ 0,  can be computed by (16). To choose an optimal λ and hence an

optimal solution, K-fold cross validation method can be used, based on predictive

performance of the models (Stone, 1974). In our numerical studies, we first compute the

solutions over a grid of 100 λ values equally spaced on the log scale and select the best λ

value; subsequently we refine the selection process around the chosen λ value with a finer

grid of 100 λ values.

4. Rank consistency and error bounds

We study the rank estimation and prediction properties of the proposed adaptive nuclear

norm penalized regression method. Our theoretical analysis is built on the framework

developed by Bunea et al. (2011). We mainly focus on the random weights constructed in

(15), in line with the adaptive lasso method (Zou, 2006) developed for univariate regression.

Similar results are obtained for any pre-specified sequence of non-random weights satisfying

certain order restriction and boundedness requirements. All the proofs are given in the

Appendix.

The rank of the coefficient matrix C0, denoted as r*, can be viewed as the number of

effective linear combinations of the predictors linked to the responses. Rank determination is

always a foremost task of reduced rank estimation. The quality of the rank estimator, given

in (17), clearly depends on the signal to noise ratio. Following Bunea et al. (2011), we shall

use the r*th largest singular value of XC0, i.e., dr*(XC0), to measure the signal strength, and

use the largest singular value of the projected noise matrix PE, i.e., d1(PE), to measure the

noise level. Intuitively, if d1(PE) is much larger than the size of the signal, some of the

signal could be masked by the noise and lost during the thresholding procedure; as such, r̂

may be much smaller than the true rank. The lemma below characterizes the limit or the true

target of r̂ and its relationship with the signal and noise levels, as well as the adaptive

weights.

Lemma 1—Suppose that there exists an index s ≤ r* such that ds(XC0) > (1 + δ)λ1/(γ+1) and

ds+1(XC0) ≤ (1 − δ)λ1/(γ+1) for some δ ∈ (0, 1]. Then pr(r̂ = s) ≥ 1 − pr{d1(PE) ≥ δλ1/(γ+1)},
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where r* is the rank of C0, r̂ the estimated rank given in (17), P the projection matrix onto

the column space of X, E the error matrix in model (1), and γ the power parameter in the

adaptive weights (15).

To achieve consistent rank estimation, we consider the following assumptions:

Assumption 1. The error matrix E has independent N(0, σ2) entries.

Assumption 2. For any θ > 0, λ = {(1 + θ)σ(√rx + √q)/δ}γ+1 with δ defined in Lemma 1,

and dr*(XC0) > 2λ1/(γ+1).

Assumption 1 ensures that the noise level d1(PE) is of order √rx + √q; see Lemma 2 in the

Appendix (Bunea et al., 2011). Assumption 2 concerns the signal strength relative to the

noise level and the appropriate rate of the tuning parameter.

Theorem 3—Suppose Assumptions 1–2 hold. Let r̂ be the estimated rank given in (17),

and rx = r(X) the rank of X. Then pr(r̂ = r*) → 1 as rx + q → ∞.

Theorem 3 shows that the proposed estimator is able to identify the correct rank with

probability tending to 1 as rx + q goes to infinity. As in Bunea et al. (2011), the consistency

results can be extended to the case of sub-Gaussian errors and can also be easily adapted to

the case when rx + q is bounded and the sample size n goes to infinity. The rank consistency

of the proposed estimator is thus valid for both classical and high-dimensional asymptotic

regimes.

Our main results about the prediction performance of the proposed estimator are presented

in Theorem 4. For simplicity, we write ĈS for .

Theorem 4—Suppose Assumptions 1–2 hold. Let c = d1(XC0)/dr*(XC0) ≥ 1. Then

with probability greater than 1 − exp{−θ2(rx + q)/2}, for any 0 < a < 1 and any p × q matrix

B with r(B) ≤ r*. Moreover, taking B = C0 and a = 1/2 yields

(18)

with probability greater than 1 − exp{−θ2(rx + q)/2}.

The established bound in (18) shows that the prediction error is bounded by  up to

some multiplicative constant, with probability 1 − exp{−θ2(rx + q)/2}, i.e., the smaller the

noise level or the true rank, the smaller the prediction error. The bound is valid for any X

and C0. The estimation error bound of ĈS can also be readily derived from Theorem 4, e.g.,

Chen et al. Page 9

Biometrika. Author manuscript; available in PMC 2014 July 16.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



if drx(X) ≥ ρ > 0 for some constant ρ, then under Assumptions 1–2,

.

So far, we have considered random weights based on the least squares solution, as given in

(15). We now briefly outline the results for any pre-specified sequence of non-negative and

nondecreasing, non-random weights {wi; i = 1, …, n ∧ q}.

Corollary 2—Suppose Assumption 1 holds, and that (i) 0 ≤ w1 ≤ ··· ≤ wn∧q, and there exists

0 < m < ∞ such that wr* ≤ m ≤ wr*+1, (ii) the tuning parameter λ = (1 + θ)σ(√rx + √q)/m and

(iii) dr*(XC0) > 2λm. Then

a. pr(r̂ = r*) → 1 as rx + q → ∞; and

b.
 with probability

greater than 1 − exp{−θ2(rx + q)/2}.

The proof is similar to that of Theorems 3 and 4 and hence is omitted.

The error bounds of the proposed estimator established in Theorem 4 and Corollary 2 are

comparable to those of the l0 rank penalized estimator and the l1 nuclear norm penalized

estimator (Bunea et al., 2011; Rohde & Tsybakov, 2011). The rate of convergence is (rx +

q)r* because (√rx + √q)2 ≤ 2(rx + q), which is the optimal minimax rate for rank sparsity

under suitable regularity conditions (Rohde & Tsybakov, 2011; Bunea et al., 2012).

However, the bounds for the nuclear norm penalized estimator were obtained with extra

restrictions on the design matrix, and a tuning sequence for achieving the smallest mean

squared error usually does not lead to correct rank recovery (Bunea et al., 2011). While both

the rank selection criterion and the proposed method are able to achieve correct rank

recovery and minimal mean squared error simultaneously, the latter possesses a continuous

solution path produced by data-driven adaptive penalization, which may lead to improved

empirical performance.

5. Robustification of reduced rank estimation

As suggested by a referee and motivated by Mukherjee & Zhu (2011), we discuss the

robustification of the reduced rank methods by adding a ridge penalty. Mukherjee & Zhu

(2011) proposed a reduced rank ridge regression method; see also Bunea et al. (2011) and

She (2012). The shrinkage estimation induced by a ridge penalty makes the reduced rank

estimation robust and hence is especially suitable when the predictors are highly correlated.

The method can be viewed as minimizing the following criterion

(19)

where , and λ1 and λ2 are tuning parameters. We denote the

resulting robustified estimator by , which can be obtained by data augmentation.

Specifically, letting

Chen et al. Page 10

Biometrika. Author manuscript; available in PMC 2014 July 16.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



(19) can be written as a rank selection criterion , whose solution is

given in (12); see Mukherjee & Zhu (2011).

The adaptive nuclear norm penalization method can also be robustified by incorporating a

ridge penalty term. Similar to (14), for efficient computation, we impose a ridge penalty on

XC rather than C,

(20)

Interestingly, criterion (20) is analogous to the adaptive elastic net criterion (Zou & Zhang,

2009) in univariate regression. We denote the minimizer of (20) by . It can be

verified that

(21)

where , defined in (16), denotes the proposed estimator in the absence of the ridge

penalty.

For each fixed λ2, solving (19) requires inverting an p × p matrix (XTX + λ2I) and

performing a singular value decomposition of an q × q matrix. When p is much greater than

n, the Woodbury matrix identity is useful in speeding up computation (Hager, 1989), i.e.,

. Following Mukherjee & Zhu (2011), in

practice we use K-fold cross validation to determine the optimal rank and select the optimal

λ2 from a sequence of 100 values. On the other hand, obtaining the whole solution path of

(20) only requires a one-time matrix inversion and singular value decomposition. We

perform a 100 × 100 grid search of (λ1, λ2) to obtain the final estimator.

6. Empirical studies

6·1. Simulation

We compare the prediction, estimation and rank determination of various reduced rank

estimators including the nuclear norm penalized estimator  (Yuan et al., 2007), the rank

penalized estimator  (Bunea et al., 2011), and our proposed adaptive nuclear norm

penalized estimator  with several choices of the weight parameter γ. The robustified

versions, namely,  and , are also considered. For simplicity, we suppress the

superscripts from the notations of the various estimators. We used the accelerated proximal
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gradient algorithm implemented in Matlab by Toh & Yun (2010) for computing ĈN. R code

for computing ĈHR was provided by the original authors (Mukherjee & Zhu, 2011), and we

modified their code to make use of the Woodbury matrix identity. We implemented all the

other methods in R (R Development Core Team, 2013). All computation was done on

computers with 3.4 GHz CPU, 8 GB RAM and the Linux operating system.

We consider the same simulation models as in Bunea et al. (2011). The coefficient matrix C0

is constructed as , where b > 0, C1 ∈ ℜp×r*
, C2 ∈ ℜq×r*

 and all entries in C1 and

C2 are random samples from N(0, 1). Two scenarios of model dimensions are considered,

with p, q < n and p, q > n. In Model I, we set n = 100, p = q = 25 and r* = 10. The matrix X

is constructed by generating its n rows as random samples from N(0, Γ), where Γ = (Γij)p×p

and Γij = ρ|i−j| with some 0 < ρ < 1. In Model II, we set n = 20, p = q = 25, r* = 5 and rx =

10. The matrix X is generated as X = X0Γ1/2, where Γ is defined as above, X0 = X1X2, X1 ∈

ℜn×rx, X2 ∈ ℜrx×p, and all entries of X1, X2 are N(0, 1) random samples.

The data matrix Y is then generated by Y = XC0 + E, where the elements of E are N(0, 1)

random samples. Each simulated model is characterized by the sample size n, the number of

predictors p, the number of responses q, the true model rank r*, the rank of the design matrix

rx, the correlation ρ ∈ {0·1, 0·5, 0·9}, and the signal strength b ∈ {0·05, 0·1, 0·3}. The

experiment was replicated 500 times for each parametric setting.

One way to alleviate inaccuracy in the empirical tuning parameter selection and to reveal the

true potential of each method for fair comparison is to tune each method based on its

predictive accuracy evaluated with a very large independently generated validation data set;

this yields optimally tuned estimators. We have also tried ten-fold cross validation for

selecting the tuning parameters but the results are omitted for brevity, as they are similar to

or slightly worse than those of the optimal tuning procedure; see the Supplementary

Material. For each method, the model accuracy is measured by the average of the scaled

mean squared errors from all 500 runs, i.e.,  for estimation, and

 for prediction. To evaluate the rank determination

performance, we report the average of the estimated ranks from all runs and the percentage

of correct rank identification. Tables 1 and 2 summarize the simulation results and list the

average computation time per simulation run for Models I and II.

We first examine the effects of the adaptive weights on the proposed estimator ĈS. For the

case of equal weights, i.e., γ = 0, ĈS tends to overestimate the rank and does not have good

predictive performance in most cases. The performance of ĈS is substantially better when γ

= 2, which implements data-driven weights, than when γ = 0. We have also experimented

with other γ values, and our results show that γ = 2 is generally a good choice; see the

Supplementary Material. Henceforth we refer to the case of γ = 2 in the following

comparisons.

A sharper comparison between the various estimators can be obtained by contrasting their

performance on each simulated dataset. For instance, for each experimental setting, we
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compare ĈH with ĈS by computing the percentage reduction in the mean squared prediction

error of ĈS relative to ĈH for each of the 500 simulated datasets:

where Pred(·) denotes the scaled mean squared prediction error of a method. Figure 1

displays the notched boxplots of the percentage reduction in the mean squared prediction

error of ĈS relative to ĈH across all experimental settings, whereas Figure 2 displays those

of ĈS relative to ĈN. The notches in each boxplot extend 1·58/√500 times its inter-quartile

range from the median (McGill et al., 1978).

The proposed estimator ĈS generally outperforms the rank penalized estimator ĈH,

especially in Model I. Figure 1 shows that the improvement in prediction can be substantial,

when the signal is weak or moderate and the correlation among the predictors is high. For

rank determination, both estimators perform well when the signal is moderate to strong and

the correlation among the predictors is weak to moderate. The proposed estimator ĈS,

however, tends to slightly overestimate the rank.

The proposed method often outperforms nuclear norm penalized regression (Yuan et al.,

2007), and is more parsimonious than the latter in both rank reduction and computation.

Table 1 and Figure 2 show that in Model I, when the signal is weak and/or the correlation

among the predictors is high, the nuclear norm penalized estimator ĈN performs better than

ĈS in estimation and prediction. However, this gain has a price, for ĈN often overestimates

the rank and is much harder to compute. In the high dimensional setting of Model II, ĈS

generally enjoys similar or better predictive performance than ĈN. Our findings agree with

those of Bunea et al. (2011).

Table 1 shows that shrinkage estimation due to the additional ridge penalty generally

enhances an estimator, especially in the presence of highly correlated predictors. However,

ĈS benefits much less from the additional ridge penalty than does ĈH, because, unlike the

latter, ĈS is already an adaptive shrinkage estimator, owing to the soft-thresholding

operation. In general, it is worthwhile to incorporate ridge penalization in order to further

improve prediction, if the increased computational cost is affordable.

6·2. Application

We consider a breast cancer data set (Witten et al., 2009), consisting of gene expression

measurements and comparative genomic hybridization measurements for n = 89 subjects.

The data were used to demonstrate the effectiveness of the rank selection criterion in a

preprint of Bunea et al. (2011) posted at the website http://arxiv.org. The data set is available

in the R package PMA (Witten et al., 2009), and a detailed description can be found in Chin

et al. (2006).

Prior studies have demonstrated that certain types of cancer are characterized by abnormal

DNA copy-number changes (Pollack et al., 2002; Peng et al., 2010). It is thus of interest to
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examine the relationship between DNA copy-number variations and gene expression

profiles, for which multivariate regression methods can be useful. Biologically, it makes

sense to regress gene expression profiles on copy-number variations because the

amplification or deletion of the portion of DNA corresponding to a given gene may result in

a corresponding increase or decrease in expression of that gene. The reverse approach is also

meaningful, in that the resulting predictive model may identify functionally relevant copy-

number variations. This approach has been shown to be promising in enhancing the limited

comparative genomic hybridization data analysis with the wealth of gene expression data

(Geng et al., 2011; Zhou et al., 2012). We have tried both approaches, i.e., setting 1:

designating the copy-number variations of a chromosome as predictors and the gene

expression profiles of the same chromosome as responses, and setting 2: reversing the roles

of the predictors and the responses. We find that in setting 1, none of the methods provides

an adequate fit to the data, and the rank selection criterion may even fail to pick up any

signals. The reduced rank models give much better results under setting 2. We thus report

only the results for setting 2.

We focus the analysis on chromosome 21, for which p = 227 and q = 44. Both the responses

and predictors are standardized. We compare the various reduced rank methods by the

following cross-validation procedure. The data were randomly split into a training set of size

ntrain = 79 and a test set of size ntest = 10. All model estimation was carried out using the

training data, with the tuning parameters selected by ten-fold cross validation. We used the

test data to calibrate the predictive performance of each estimator Ĉ, specifically, by its

mean squared prediction error , where (Ytest, Xtest) denotes the test

set. The random-splitting process was repeated 100 times to yield the average mean squared

prediction error and the average rank estimate for each method; see the upper panel of Table

3.

As the number of predictors is much greater than the sample size, it is reasonable to assume

that only a subset of predictors is important. Therefore, a perhaps better modeling strategy is

subset multivariate regression with a selected subset of predictors. Recently, several variable

selection methods have been proposed in the context of reduced rank regression (Chen et al.,

2012; Chen & Huang, 2012; Bunea et al., 2012). We modified the preceding cross-

validation procedure for comparing the reduced rank subset regression methods. The only

modification was that for each random split, we first applied the method of Chen et al.

(2012) using the training set to select a set of predictors, with which the reduced rank

methods were subsequently carried out using the training set and calibrated using the test

set. Since our main goal is to compare the various reduced rank methods, we omit the

description of the predictor selection procedure but refer the interested reader to Chen et al.

(2012) for details. The results are summarized in the lower panel of Table 3.

Table 3 shows that the proposed estimator ĈS enjoys slightly better predictive performance

than both ĈH and ĈN. The numbers of selected predictors in the 100 splits range from 71 to

102, hence incorporating variable selection greatly reduces the number of predictors and

may potentially improve model interpretation. However, in this example, reduced rank

estimation using a subset of predictors results in higher mean squared prediction error than
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using all predictors, uniformly for all methods, but more so for ĈH than for other methods.

The nuclear norm penalized estimator ĈN generally yields a higher rank estimate than the

other methods. Incorporating ridge penalization improves the predictive performance of the

reduced rank methods. Particularly, ĈHR may substantially outperform its non-robust

counterpart ĈH. We find that both ĈN and ĈHR can be computationally intensive for large

datasets, while other methods are much faster to compute. These results are consistent with

the simulation findings in Section 6·1.

7. Discussion

Adaptive nuclear norm penalization can serve as a building block to study a family of

singular value penalties. This is based on the connection between an adaptive l1 penalty and

many concave penalty functions (Knight & Fu, 2000; Fan & Li, 2001; Huang et al., 2008).

Consider the regression problem (2) with a general singular value penalty

, where pλ(·) is a penalty function, e.g.,  for

some 0 < b ≤ 1 (Huang et al., 2008; Rohde & Tsybakov, 2011). In this setup the

optimization of (2) can be challenging. A promising approach is to adopt a local linear

approximation (Zou & Li, 2008), , for di(C) ≈ d̃
i,

where d̃
i is some initial estimator of di(C). It can be seen that for fixed d̃

i, up to a constant,

the first-order approximation yields exactly an adaptive nuclear norm penalty. This suggests

that these problems may be solved by an iteratively reweighted adaptive nuclear norm

penalization approach.

Incorporating an extra ridge penalty can improve reduced rank estimation (Mukherjee &

Zhu, 2011; She, 2012). When combined with the adaptive nuclear norm penalty, such a

criterion bears resemblance to the adaptive elastic-net criterion (Zou & Hastie, 2005; Zou &

Zhang, 2009) in univariate regression. It would be interesting to investigate the theoretical

properties of this approach and compare it with the nonlinear fusion of nuclear norm and

ridge penalties in Owen (2007) and She (2012). Another pressing problem is to extend

regularized reduced rank regression methods to generalized linear and nonparametric

regression models (Yee & Hastie, 2003; Li & Chan, 2007; She, 2012). On the optimization

aspect, it is interesting to study the use of adaptive nuclear norm in some classical sparse

optimization areas, such as matrix completion (Candès et al., 2011).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix. Technical details

Proof of Theorem 1

First we show by a counter-example that if we have an index k such that wk < wk+1, then f (·)

is non-convex. Let C and Z be diagonal p × p matrices such that cii = i, for i = 1, …, p, while

Z equals C but with entries switched at positions p − k + 1 and p − k for some 1 ≤ k ≤ p − 1

on the diagonal. It is then easy to verify that

, where f(·) is defined in (3). Therefore f(·) is non-convex.

Next we prove that f(C) = ||C||w* is a convex function of C ∈ ℜp×q for w1 ≥ ··· ≥ wp∧q ≥ 0.

Without loss of generality, assume p ≤ q so that we can simply write p = p ∧ q. First

consider the case that wp > 0, and define the following function on ℜp:

(A1)

where δ is a permutation of {1,…, p} determined by x such that |x|δ(1) ≥ ··· ≥ |x|δ(p). We claim

that w(·) in (A1) is a symmetric gauge function (Horn & Johnson, 1985, Definition 7.4.23),

i.e., it satisfies the following six conditions: (a) w(x) ≥ 0, for any x ∈ ℜ; (b) w(x) = 0 if and

only if x = 0; (c) w(αx) = |α|w(x), for any α ∈ ℜ; (d) w(x + y) ≤ w(x) + w(y); (e) w(x) = w(|x|);

(f) w(x) = w{τ (x)} for any τ that is a permutation of indices {1,…, p}.

All conditions except (d) are trivial to verify. To prove (d), let δ, σ and τ be permutations

such that |x + y|δ(i), |x|σ(i) and |y|τ(i) are placed in non-increasing order respectively.

where the second inequality is due to the Hardy–Littlewood–Pólya inequality (Hardy et al.,

1967). By a straightforward application of Horn & Johnson (1985, Theorem 7.4.24), since ||

C||w* = w{d(C)} where d(C) = {d1(C),…, dp(C)}T, the function f(·) = ||·||w* defines a matrix

norm and hence is convex.

For the case that wp = 0, let s be the largest index such that ws > 0. For 0 < ε < ws, consider

the perturbed w̃ that wĩ = wi, for i = 1,…, s, and w̃i = ε, for i = s + 1,…, p. Then for any C,Z ∈

ℜp×q, ||C + Z||w̃*/2 ≤ ||C||w̃*/2 + ||Z||w̃*/2. By taking ε → 0, ||C + Z||w*/2 ≤ ||C||w*/2 + ||Z||w*/2.

Therefore ||·||w* is convex.
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Proof of Theorem 2

We first prove that (Y) is indeed a global optimal solution to (8). Below, we write h for n

∧ q. Let , which implies the entries of g are in non-increasing order. Since

the penalty term only depends on the singular values of C, (8) can be equivalently written as:

For the inner minimization, we have the inequality

The last inequality is due to von Neumann’s trace inequality (von Neumann, 1937; Mirsky,

1975). Equality holds when C admits the singular value decomposition C = Udiag(g)VT,

where U and V are defined in (5) as the left and right singular matrices of Y. Then the

optimization reduces to

(A2)

The objective function is completely separable and is minimized only when gi = {di(Y) −

λwi}+. This is a feasible solution because {di(Y)} is in non-increasing order, while {wi} is in

non-decreasing order. Therefore (Y) = Udiag[{d(Y) − λw}+]VT is a global optimal

solution to (8). The uniqueness follows by the equality condition for the von Neumann’s

trace inequality when Y has distinct nonzero singular values, and the uniqueness of the

strictly convex optimization (A2). This concludes the proof.

Proof of Lemma 1

By (17), r̂ > s holds if and only if ds+1(PY) > λ1/(γ+1) and r̂ < s holds if and only if ds(PY) ≤

λ1/(γ+1). Then

Based on Weyl’s inequalities on singular values (Franklin, 2000) and observing that PY =

XC0 + PE, we have d1(PE) ≥ ds+1(PY) − ds+1(XC0) and d1(PE) ≥ ds(XC0) − ds(PY). Hence
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ds+1(PY) > λ1/(γ+1) implies d1(PE) ≥ λ1/(γ+1) − ds+1(XC0), and ds(PY) ≤ λ1/(γ+1) implies

d1(PE) ≥ ds(XC0) − λ1/(γ+1). It then follows that

Note that min{λ1/(γ+1) − ds+1(XC0), ds(XC0) − λ1/(γ+1)} ≥ δλ1/(γ+1). This completes the proof.

Lemma 2 (Bunea et al., 2011)

Let rx denote the rank of X and suppose Assumption 1 holds. Then for any t > 0, E{d1(PE)}

≤ σ(√rx + √q), and pr[d1(PE) ≥ E{d1(PE)} + σt] ≤ exp(−t2/2).

Proof of Theorem 3

When dr* (XC0) > 2λ1/(γ+1), we have dr* (XC0) > 2λ1/(γ+1) ≥ (1 + δ)λ1/(γ+1) and dr*+1(XC0) =

0 ≤ (1 − δ)λ1/(γ+1), for some 0 < δ ≤ 1. The effective rank s defined in Lemma 1 equals the

true rank, i.e., s = r*, and min{λ1/(γ+1) − dr*+1(XC0), dr* (XC0) − λ1/(γ+1) } ≥ δλ1/(γ+1). It then

follows from Lemma 2 that

as rx + q → ∞. This completes the proof.

Proof of Theorem 4

We write h for n ∧ q. By the definition of ĈS in (16),

for any p × q matrix B. Note that

Then we have
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(A3)

Now consider any B with r(B) ≤ r̂,

Recall that , so wr̂ − w1 ≥ ··· ≥ wr̂ − wr̂−1 ≥ 0. Therefore, both 

and  satisfy the triangle inequality; see the proof of Theorem 1.

Moreover, Weyl’s inequalities (Franklin, 2000) and the equality PY = XC0 + PE imply that

dr̂ (PY) ≥ dr̂(XC0) − d1(PE) and d1(PY) ≤ d1(XC0) + d1(PE). Hence,

The last inequality is due to the Cauchy–Schwarz inequality. Using (A3), r(XĈS − XB) ≤

r(ĈS − B) ≤ 2r̂ and the inequality 2xy ≤ x2/a + ay2, we have

Since , consequently, for any 0 < a < 1,
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As shown in Theorem 3, on the event {d1(PE) < δλ1/(γ+1)}, the estimated rank r̂ equals the

true rank r*, i.e., r̂ = r*, and pr{d1(PE) ≥ δλ1/(γ+1)}≤ exp{−θ2(rx + q)/2}. Also, dr* (XC0) >

2λ1/(γ+1) and c = d1(XC0)/dr* (XC0) ≥ 1. Therefore, with probability at least 1 − exp{−θ2(rx

+ q)/2},

Since B is an arbitrary matrix with r(B) ≤ r*, the second part of the theorem is obtained by

taking B = C0 and a = 1/2. This completes the proof.

Chen et al. Page 22

Biometrika. Author manuscript; available in PMC 2014 July 16.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Chen et al. Page 23

Biometrika. Author manuscript; available in PMC 2014 July 16.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 1.
Notched boxplots of the percentage reduction in the mean squared prediction error of ĈS

relative to ĈH. The boxplots are shaded in dark grey for ρ = 0.9, in light grey for ρ = 0.5, and

in white for ρ = 0.1.
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Fig. 2.
Notched boxplots of the percentage reduction in the mean squared prediction error of ĈS

relative to ĈN. All other settings are same as in Figure 1.
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