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This paper proposes a vessel active contour model based on local intensity weighting and a vessel vector field. Firstly, the energy
function we define is evaluated along the evolving curve instead of all image points, and the function value at each point on the
curve is based on the interior and exterior weighted means in a local neighborhood of the point, which is good for dealing with
the intensity inhomogeneity. Secondly, a vascular vector field derived from a vesselness measure is employed to guide the contour
to evolve along the vessel central skeleton into thin and weak vessels. Thirdly, an automatic initialization method that makes the
model converge rapidly is developed, and it avoids repeated trails in conventional local region active contour models. Finally, a
speed-up strategy is implemented by labeling the steadily evolved points, and it avoids the repeated computation of these points
in the subsequent iterations. Experiments using synthetic and real vessel images validate the proposed model. Comparisons with
the localized active contour model, local binary fitting model, and vascular active contour model show that the proposed model is
more accurate, efficient, and suitable for extraction of the vessel tree from different medical images.

1. Introduction

Vessel segmentation in images from different modalities is
critical for medical diagnosis assistance as well as treatment
and surgery planning. It is a key step for quantification of
pathology. Although a large quantity of past and ongoing
dedicated research on this topic exists, vessel segmentation
remains a challenging task because of intensity inhomogene-
ity and weak boundary contrast of the vessels.

In the last two decades, a large number of methods for
vessel segmentation have been proposed, including pattern
recognition [1, 2], tubular structure [3, 4] and centerline based
approaches [5–7], and active contour model (ACM) [3, 8–
10]. Two comprehensive reviews can be referred to in [11, 12].
Among these approaches, ACMs have been widely applied in
medical image segmentation, and they can be divided into
several classes: edge- [13–18], region- [19–24], and higher
level knowledge-based models [5, 8, 9, 25–28]. Edge-based

models only utilize image gradient to construct a force to
direct contours towards boundaries of desired objects, which
makes these models sensitive to noise and prone to fail in
weak boundary detection.

Region-based models identify each region of interest by
using region statistical information as constraints to guide
the motion of the active contour. The most popular region-
based ACM is the C-V model [19], and it identifies object
and background regions by using global region statistical
information. This model has a strict assumption that image
intensities are homogeneous in each region; however, such an
assumption does not always hold in practice. To address this
problem, local region intensity information is incorporated
into the energy function [29–36]. For example, some popular
ACMs such as the localized active contour (LAC) model
[29] and the local binary fitting (LBF) model [35, 36] exactly
use local region information as constraints. However, using
only local region information makes these models sensitive
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to noise and the setting of the initial contour. In [37], a
hybrid model that combines the local and global statistical
intensity information was proposed. This model can reduce
the sensitivity to noise and is less sensitive to the initial
contour in a way.

Knowledge-basedmodels incorporate some essential fea-
tures to segment specific objects. Yan and Kassim [8] pro-
posed a capillary active contour that simulates the capillary
action that liquid climbs along the boundaries of thin tubes.
Lorigo et al. [9] proposed a curve model to regularize the
evolution of a surface in a 3D space using the curvature of
a line curve instead of the mean curvature of the surface
that tends to annihilate vascular structures. The evolution
equation is obtained by projecting an auxiliary vector derived
from the gradient and the Hessian matrix of the image to
the normal plane of the curve. Sun et al. [38] proposed an
active contour model based on local morphology fitting for
segmenting vessels from2D angiogram images.Thesemodels
cannot deal with thin vessels with weak edges. Shang et al.
[25] proposed the vascular active contour (VAC) model,
where a region competition-based ACM exploiting the dou-
ble Gaussian mixture model was employed to segment thick
vessels, and a vascular vector field (VVF) was implemented
to deal with thin and weak vessels. However, this mixture
model assumption of the VAC model is unreasonable for
some images including time-of-flight magnetic resonance
angiography (TOF-MRA) cerebrovascular images, especially
for vessel images with intensity inhomogeneity.

This paper proposes a vessel active contour model based
on the local intensity weighting and the vascular vector field.
The contributions are as follows. (a) An energy function
we define is evaluated by local region information, and
the function value at each point on the curve is based
on the weighted means of interior and exterior in a local
neighborhood of the point, which is good for dealing with the
intensity inhomogeneity. (b) A vascular vector field (VVF)
derived from a vesselness measure is employed to push or
pull the evolving contour to locate boundaries of thin and
weak vessels. (c) An automatic initialization method based
on the vessel shape enhancement is developed, and it can
provide a good initial evolution contour thatmakes themodel
converge rapidly, which avoids repeated trails in conventional
local region active contour models. (d) A speed-up strategy
for implementation is developed by labeling the steady points
in evolving, which avoids the repeated computation of these
points in the subsequent iterations.

The rest of the paper is organized as follows. Section 2
discusses related works. Section 3 describes the proposed
methodology and its numerical implementation. In
Section 4, the proposed method is validated using
experiments on synthetic and real images, and comparisons
with the LAC, LBF, and VACmodels are presented. Section 5
concludes the paper.

2. Related Works

The key idea of the LAC model is to use local rather than
global image statistics to evolve a contour in the variational

Figure 1: Graphical representation of a local region 𝑂𝑘(𝑥). The
white closed circle 𝑂𝑘 denotes the circular neighborhood of 𝑥. The
red closed curve denotes the evolving contour (𝜙 = 0). The mean
intensities of the subregions {𝜙 < 0} ∩ 𝑂𝑘 (yellow region) and
{𝜙 > 0} ∩ 𝑂𝑘 (blue region) are denoted by 𝑓in and 𝑓out, respectively.

framework. This model can accommodate variations in
intensities that occur over the length of vessels and respond
naturally to vessel branches. Lankton [29] directly used this
model to segment the coronary artery without any special
schemes. The model forms a geodesic energy from local
regions around the evolution curve. LetΩ ⊂ 𝑅2 be the image
domain; 𝐼 : Ω → 𝑅 is a given gray level image, and Γ denotes
a closed contour represented as the zero level set of a signed
distance function 𝜙; that is, Γ = {𝑥 | 𝜙(𝑥) = 0}. For each
point 𝑥 on the contour Γ, a local region 𝑂𝑘(𝑥) centered at 𝑥
is defined and is divided into interior and exterior regions by
the active contour, as illustrated in Figure 1.

By virtue of a characteristic function 𝐵(𝑥, 𝑦), whose value
is 1 when the point 𝑦 lies in the local region 𝑂𝑘(𝑥) or 0 for
others, an energy function is defined in terms of a generic
internal energy functional 𝐹 as follows:

𝐸 (𝜙) = ∫
Ω
𝑥

𝛿 (𝜙) ∫
Ω
𝑦

𝐵 (𝑥, 𝑦) ⋅ 𝐹 (𝐼, 𝜙, 𝑥, 𝑦) 𝑑𝑦 𝑑𝑥, (1)

where 𝜙 denotes the level set function; 𝛿(𝜙) is the Dirac
function to specify the evolving curve; and 𝐹 denotes local
adherence to a given model at each point along the contour,
and it relies on the simple fitting mean intensities, 𝑓in(𝑥) and
𝑓out(𝑥), of the local region. In the fitting intensities𝑓in(𝑥) and
𝑓out(𝑥), all points in the local region 𝑂𝑘(𝑥) have an equal
contribution. But in fact, the points near the center point 𝑥
should play amore important role than those far away from it.
This may affect the segmentation accuracy of some complex
objects such as cerebral vessels and carotid vessels.

Li et al. [35, 36] proposed the LBF model by embedding
a local binary energy with a kernel function into the total
energy. Different from the LAC model, the fitting intensities
𝑓1(𝑥) and 𝑓2(𝑥) in the LBF model not only take into account
the intensities of the points near the central point 𝑥, but also
consider the distances from these points to the central point.
This model can segment vessel images more accurately when
the initial contour is set appropriately. However, it is worth
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noting that there are four convolutions to be computed for all
pixels of the whole image domain during each iteration in the
implementation. Therefore, the computational cost is rather
high. Similar to the LAC model, the LBF model requires an
appropriate setting of the initial contour and suffers from
tending to trap into the local minimum of its energy.

By adding the VVF into the region competition based
active contour model, Shang et al. [25] proposed the VAC
model for vessel extraction in medical images. In this model,
thick vessels are distinguished from background by the
region competition based active contour model, and the
VVF is employed to cope with weak vessels through the
vesselness measure. In the region competition based active
contour model, the statistical distributions of the vessel and
background are estimated via a Gaussian mixture model. But
not all vessel images in real applications can be modeled by
the above Gaussian mixture model regarding the intensity
distribution. Moreover, the likelihood ratio of the vessel and
background may fluctuate substantially near vessel bound-
aries due to the strong intensity variation. As a result, the zero
level set can oscillate intensively on vessel edges, which may
lead to an unacceptable segmentation.

The LAC, LBF, and VAC models have their advantages
and disadvantages for vessel segmentation. We fully use
the advantages of the LAC, LBF, and VAC models in our
model. Similar to the LAC model, the energy function we
define is evaluated along the evolving curve instead of all
image points. Unlike the LAC model, we take into account
the contribution difference of different points in the local
region when computing the fitting mean intensities 𝑓in(𝑥)
and 𝑓out(𝑥), which is similar to the LBF model. Like the VAC
model, we employ a VVF to guide the contour to evolve
along the vessel central skeleton into thin and weak vessels.
Moreover, an automatic initialization method and a speed-
up strategy for implementation are developed, which are
superior to the three models.

3. Proposed Methodology

In this section, we describe the vessel active contour model
based on local intensity weighting and the vascular vector
field for vessel segmentation. Localized region energy is
defined firstly, and then the VVF based on the vesselness
measure is given; next, an automatic contour initialization is
presented; at last, a speed-up strategy in implementation is
designed.

3.1. Localized Region Energy. Inspired by the ideas in [29,
35, 36], we exploit a local region of each point on the active
contour instead of the whole image domain to define the
energy function. Statistical analysis of the local region can be
realized by introducing a kernel function:

𝐾𝜎 (𝑥, 𝑦) =
1

2𝜋𝜎2
𝑒
−‖𝑥−𝑦‖

2

/2𝜎
2

, (2)

where 𝜎 > 0 is a scale parameter, 𝑥 is the center point, and
𝑦 is the point in the neighbor domain centered at point 𝑥. In
the kernel function𝐾𝜎(𝑥, 𝑦), the distance between 𝑦 and 𝑥 is

fully considered, and𝐾𝜎(𝑥, 𝑦) decreases and approaches zero
with the increase of the distance. Here we use the definition
of the localized region energy [35, 36]:

𝐸
LRF
𝑥
(𝐶, 𝑓1, 𝑓2)

= 𝜆1 ∫
in(𝐶)

𝐾𝜎 (𝑥 − 𝑦)
󵄨󵄨󵄨󵄨𝐼 (𝑦) − 𝑓1 (𝑥)

󵄨󵄨󵄨󵄨

2
𝑑𝑦

+ 𝜆2 ∫
out(𝐶)

𝐾𝜎 (𝑥 − 𝑦)
󵄨󵄨󵄨󵄨𝐼 (𝑦) − 𝑓2 (𝑥)

󵄨󵄨󵄨󵄨

2
𝑑𝑦,

(3)

where 𝜆1 and 𝜆2 are the weights of the two integrals over the
regions in(𝐶) and out(𝐶), that is, interior region and exterior
region in Figure 1, respectively.They are usually set as 𝜆1 = 𝜆2
tomaintain a fair competition between the regions inside and
outside of the zero level contour during the evolution. When
𝜆1 and 𝜆2 are different, the amounts of penalty imposed
on the integrals over in(𝐶) and out(𝐶) will be different. For
example, if 𝜆1 is larger than 𝜆2, larger penalty will be imposed
on the area of in(𝐶). As a result, the emergence of new contour
outside the initial contour, which will increase the area of
in(𝐶), is prevented by a certain degree. In (3),𝑓1(𝑥) and𝑓2(𝑥)
are obtained as follows:

𝑓1 (𝑥) =

∫
Ω
𝑦

𝐾𝜎 (𝑥, 𝑦) ⋅ 𝐻𝜀 (𝜙 (𝑦)) ⋅ 𝐼 (𝑦) 𝑑𝑦

∫
Ω
𝑦

𝐾𝜎 (𝑥, 𝑦) ⋅ 𝐻𝜀 (𝜙 (𝑦)) 𝑑𝑦
,

𝑓2 (𝑥) =

∫
Ω
𝑦

𝐾𝜎 (𝑥, 𝑦) ⋅ (1 − 𝐻𝜀 (𝜙 (𝑦))) ⋅ 𝐼 (𝑦) 𝑑𝑦

∫
Ω
𝑦

𝐾𝜎 (𝑥, 𝑦) ⋅ (1 − 𝐻𝜀 (𝜙 (𝑦))) 𝑑𝑦
,

(4)

where 𝐻𝜀(𝑥) is the Heaviside function used to specify the
interior of Γ:

𝐻𝜀 (𝑥) =

{{{

{{{

{

1, 𝑥 > 𝜀,

0, 𝑥 < 𝜀,

[1 + 2 arctan (𝑥/𝜀) /𝜋]
2

, otherwise.
(5)

Then the contribution of the intensity 𝐼(𝑦) to the localized
region energy 𝐸LRF

𝑥
at the point 𝑥 decreases and approaches

zero as the point 𝑦 becomes farther and farther from the
center point 𝑥 because of the localization property of the
kernel function. As a result, the energy 𝐸LRF

𝑥
is dominated by

the intensities of the points in a neighborhood of the center
point. In this study, we uniformly choose 𝜎 = round((dim𝑦+
dim𝑥)/(2 × 8)), where dim𝑦 and dim𝑥 denote the row
number and the column number of the image, respectively.

Different from the LBF model, we only consider the
points on the evolving contour instead of all points in image
domain. So the total localized region energy is given by

𝐸Γ = ∮
Γ(𝑠)

𝐸
LRF
𝑥(𝑠)
(Γ, 𝑓1 (𝑥 (𝑠)) , 𝑓2 (𝑥 (𝑠))) 𝑑𝑠. (6)
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Here a length term |Γ| is added by penalizing the arc length of
the curve to keep the curve smooth.The total energy function
is defined as follows:

𝐸 = 𝐸Γ + V |Γ|

= ∮
Γ(𝑠)

𝐸
LRF
𝑥(𝑠)
(Γ, 𝑓1 (𝑥 (𝑠)) , 𝑓2 (𝑥 (𝑠))) 𝑑𝑠 + V |Γ| .

(7)

Then, the corresponding level set formulation can be
obtained. To preserve the regularity of the level set function𝜙,
a level set regularization term 𝑃(𝜙) = ∫

Ω
𝑥

(|∇𝜙(𝑥)| − 1)
2
/2𝑑𝑥

is introduced, which is necessary for accurate computation
and the stable evolution. Thus, the level set formulation with
the regularization term and the penalty term is written as
follows:

𝐸 = ∫
Ω
𝑥

𝛿𝜀 (𝜙 (𝑥)) ∫
Ω
𝑦

𝐾𝜎 (𝑥, 𝑦)

⋅ (𝐻𝜀 (𝜙 (𝑦)) (𝐼 (𝑦) − 𝑓1 (𝑥))
2

+ (1 − 𝐻𝜀 (𝜙 (𝑦)))

× (𝐼 (𝑦) − 𝑓2 (𝑥))
2
) 𝑑𝑦 𝑑𝑥

+ V∫
Ω
𝑥

𝛿𝜀 (𝜙 (𝑥))
󵄨󵄨󵄨󵄨∇𝜙 (𝑥)

󵄨󵄨󵄨󵄨 𝑑𝑥 + 𝜇∫
Ω
𝑥

1

2
(
󵄨󵄨󵄨󵄨∇𝜙 (𝑥)

󵄨󵄨󵄨󵄨 − 1)
2
𝑑𝑥,

(8)

where V and 𝜇 are weighting parameters and 𝛿(𝜙) can be
obtained using the derivative of𝐻𝜀 in (5) as follows:

𝛿𝜀 (𝑥) = 𝐻
󸀠

𝜀
(𝑥) =

1

𝜋

𝜀

𝜀2 + 𝑥2
. (9)

Keeping 𝑓1(𝑥) and 𝑓2(𝑥) constant, the energy function
in (8) is minimized with respect to 𝜙 to obtain the gradient
descent flow as follows:

𝑓
LRF
𝑔
=
𝜕𝜙

𝜕𝑡
(𝑥)

= 𝛿𝜀 (𝜙 (𝑥)) ∫
Ω
𝑦

𝐾𝜎 (𝑥, 𝑦) ⋅ 𝛿𝜀 (𝜙 (𝑦))

× ((𝐼 (𝑦) − 𝑓1 (𝑥))
2

−(𝐼 (𝑦) − 𝑓2 (𝑥))
2
) 𝑑𝑦 𝑑𝑥

+ V𝛿𝜀 (𝜙 (𝑥)) div(
∇𝜙 (𝑥)

󵄨󵄨󵄨󵄨∇𝜙 (𝑥)
󵄨󵄨󵄨󵄨

)

+ 𝜇(∇
2
𝜙 (𝑥) − div(

∇𝜙 (𝑥)

󵄨󵄨󵄨󵄨∇𝜙 (𝑥)
󵄨󵄨󵄨󵄨

)) .

(10)

3.2. VVF Based on Vesselness Measure. To make the segmen-
tation more accurate for thin and weak vessels, we embed the
vesselness measure information into the ACM. Similar to the
VAC model, a VVF is defined to restrain the active contour
evolution behavior in the vessel segmentation and to form

a force to push or pull the evolving contour to locate vessel
boundaries.

For 2D images, with regard to the bright vessels with
a dark background, we assume that the eigenvalues of
the Hessian matrix H are 𝜆1, 𝜆2 (|𝜆1| ≤ |𝜆2|), and the
corresponding eigenvectors are V⃗1 and V⃗2, respectively. Frangi
et al. [39] pointed out that a pixel belongs to a vessel region
with |𝜆1| ≪ |𝜆2|, V⃗1 indicating the direction along the vessel
with minimum intensity variation, and V⃗2 being orthogonal
to the vessel direction. A geometric ratio 𝑅𝐵 = |𝜆1|/|𝜆2|,
based on the second-order ellipsoid, is defined to account for
the deviation from a blob-like structure.𝑅𝐵 is at itsmaximum
for a blob-like structure, and is zero whenever 𝜆1 ≈ 0 or 𝜆1
and 𝜆2 tend to vanish. In addition, 𝑅𝐵 is grey-level invariant,
and it only captures image geometric information. On the
other hand, generally for the vessel images, vessel structures
are brighter than the background and occupy a relatively
small part of the whole image. Thus the magnitude of the
derivatives for background pixels is small. So the measure of
second-order structuredness based on image intensities can
be defined by 𝑆 = √𝜆2

1
+ 𝜆
2

2
. The measure will be low in the

background where the eigenvalues are small due to the lack
of contrast, while it will become larger in the vessel regions
with high contrast because of at least one of both eigenvalues
being large. By combining 𝑅𝐵 and 𝑆, the vesselness measure
𝑅(𝑥) can be defined as follows:

𝑅 (𝑥) = {
0, if 𝜆2 > 0,
𝑒
−𝑅
2

𝐵
/2𝛼
2

⋅ (1 − 𝑒
−𝑆
2

/(2𝛽
2

)
) , otherwise,

(11)

where 𝛼 and 𝛽 are weighting factors balancing the influence
of 𝑅𝐵 and 𝑆.

The VVF direction 𝑉⃗(𝑥) is defined in terms of the above
vesselness measure 𝑅(𝑥):

𝑉⃗ (𝑥) = {
V⃗1, if 𝑅 (𝑥) > 𝜏,
0, otherwise,

(12)

where 𝜏 is a threshold, and it is used to obtain the direction
of the vascular vector field. If 𝜏 is too large, some important
vascular vectors may be ignored. If 𝜏 is too small, numerous
redundant vector information, even the nonvessel vector
information, is also obtained. In our experiments, 𝜏 is set as
0.05.

Due to the diameter variation of the vessels, the vesselness
measure 𝑅(𝑥) is only high at a certain scale related to the
vessel diameter. So, in order to segment vessels with the
different sizes, the VVF is calculated under a multiscale
framework; that is, the Hessian matrix is calculated by the
second-order Gaussian derivatives at multiple scales 𝜎, and
the response function is normalized by 𝜎2 to extract vessels
with different sizes. Thus, the maximum response is selected,
and the corresponding vector is considered as the final vector,
as follows:

𝑉⃗ (𝑥) = {𝑉⃗𝜎 (𝑥) | 𝑅𝜎 (𝑥) = 𝑅 (𝑥)} , (13)

where
𝑅 (𝑥) = max

𝜎min≤𝜎≤𝜎max
{𝑅𝜎 (𝑥)} . (14)
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Since the direction of the VVF coincides with the direc-
tion of the normal of the active contour, 𝑉⃗(𝑥) can be further
modified as follows:

𝑉⃗ (𝑥) = {
𝑉⃗ (𝑥) , if 𝑉⃗ (𝑥) ⋅ ∇𝜙 (𝑥) ≥ 0,
−𝑉⃗ (𝑥) , if 𝑉⃗ (𝑥) ⋅ ∇𝜙 (𝑥) < 0.

(15)

The magnitude of the VVF, a speed function 𝑓𝜀(𝑅(𝑥))
related to 𝑅(𝑥), is defined to evolve efficiently:

𝑓𝜀 (𝑅 (𝑥)) =
1

2
[1 +

2

𝜋
arctan(𝑅 (𝑥) − 𝜀

𝜀
)] , (16)

where 𝜀 is the threshold of the vesselness measure. The
function 𝑓𝜀(𝑅(𝑥)) reaches its highest value quickly when
𝑅(𝑥) ≥ 𝜀 and reaches 0 quickly when 𝑅(𝑥) < 𝜀. It means
that the active contour moves with high speed inside thin
vessels, slows down on the vessel boundaries, and becomes
zero outside the vessel region. Furthermore, themagnitude of
the VVF rapidly changes near zero of the vesselness measure,
and the smaller the 𝜀 value is, the faster the 𝑓𝜀(𝑅(𝑥)) value
becomes. However, when 𝜀 ≤ 0.05, 𝑓𝜀(𝑅(𝑥)) has a subtle
change for different 𝜀. Therefore, we set 𝜀 = 0.05.

As a consequence, the vascular vector field can be added
in (10) as a constraint term.Thus the total evolution equation
of the proposed model is given by

𝜕𝜙

𝜕𝑡
(𝑥) = 𝑓

LRF
𝑔
+ 𝜆𝑓𝜀 (𝑅 (𝑥))

󵄨󵄨󵄨󵄨󵄨
𝑉⃗ (𝑥) ⋅ ∇𝜙 (𝑥)

󵄨󵄨󵄨󵄨󵄨
, (17)

where 𝜆 is a constant. If 𝜆 is positive, the VVF term, acting as
a shrinkable force, will penalize the arc length of the curve
along vessel boundaries and force the evolving contour to
shrink to thick vessel boundaries, while the weak vessels may
be neglected. On the contrary, if 𝜆 is negative, the VVF term
will restrain the influence of the first term 𝑓LRF

𝑔
on contour

evolution and tends to push the contour to extend along the
weak vessels.

3.3. Automatic Contour Initialization. Local region active
contour models are often sensitive to the initial contour and
need blind and inefficient repeated trails to find the best initial
contour. To this end, the vessel shape information is utilized
to set the initial contour automatically.We enhance the vessel
structures by the vessel enhancing diffusion to extract the
rough vessel boundaries.These rough boundaries are used to
initialize the contours, and the level set function is initialized
as follows:

𝜙 (𝑥, 𝑡 = 0) =

{{

{{

{

−𝜌, 𝑥 ∈ Ω0 − 𝜕Ω0,

0, 𝑥 ∈ 𝜕Ω0,

𝜌, 𝑥 ∈ Ω − Ω0,

(18)

where 𝜌 is a positive constant, Ω0 is the vessel regions in
the image domain, and 𝜕Ω0 is the vessel boundaries. The 𝜌
chosen should be larger than 2𝜀, where 𝜀 is the width in the
definition of the regularized Dirac function 𝛿𝜀 in (9). In this
study, 𝜌 = 2 is set.

and f
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Figure 2: Flow chart for the vessel segmentation of the method.

3.4. Implementation. In order to improve evolution effi-
ciency, redundant computations should be avoided. Firstly,
the narrowband technique is adopted. The analysis of local
statistics generates a family of local regions at each point on
the curve, which restricts the activity of the active contour
within the neighborhood of the object boundaries. This
occurrence naturally leads to a narrowband in the numeric
implementation. Thus, only some points near the contour,
instead of all image points, are considered in each iteration.
Secondly, a speed-up strategy is designed to further reduce
computations, which is based on labeling the steadily evolved
points. All the points on the contour are monitored, and
the points that do not move in several successive iterations
are regarded as the final evolution result. These points will
not be computed in the subsequent iterations, and thus the
computation load is reduced, especially for the long contours.

The flow chart of the proposed method is given in
Figure 2.The implementation is straightforward and consists
of the following six steps:

(1) enhance the vessels and extract the rough boundaries
of the vessels;

(2) initialize the level set function 𝜙 using (18);
(3) update 𝑓1 and 𝑓2 using (4);
(4) update 𝑉⃗(𝑥) and 𝑓(𝑅(𝑥)) using (15) and (16):
(5) update the level set function 𝜙 using (17);
(6) repeat steps (3) to (5) until the convergence criteria

are met.
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(a) (b)

(c) (d)

Figure 3: Result of our method for the noise synthetic image. (a) Synthetic image with Gaussian noise; (b) initial contour from our method;
(c) final contour after 70 iterations; and (d) VVF corresponding to the local region (marked with the yellow box) in (c).

4. Experiments and Analysis

Synthetic and real images fromdifferentmodalities were used
to evaluate the proposed model, which was implemented
in MATLAB 7.0 on a computer with Intel (R) Pentium (R)
Dual 2.0GHz CPU, 2.0G RAM, and Windows XP operating
system.The same parameters ofΔ = 0.1, V = 0.2, 𝜇 = 1.0, and
𝜆 = −0.1 were used for all the images in this paper, unless
noted otherwise.

4.1. Synthetic Images. In order to test the antinoise capability
of the proposed model, we used a synthetic noise vessel
(SynthNoiseVessel 1) image with 110 × 110 pixels, about 28%
Gaussian noise added, as shown in Figure 3(a). All branches
of the synthetic vessel have different intensities. Figure 3(b)
shows the initial contour obtained by our method. The final
evolving result with 70 iterations is shown in Figure 3(c). We
can see that, despite our model does not completely capture
the weak boundaries of the bottom branch with strong noise

marked with a yellow box in Figure 3(c), it is capable of
locating the most vessel boundaries accurately. The result
shows that the proposed model is capable of resisting noise
to some extent. In addition, the VVF of the local region in
Figure 3(c), marked with yellow boxes, was drawn, as shown
in Figure 3(d). We can see that the VVF of the image with
only the strong Gaussian noise is rather chaotic. In fact, the
VVF is well organized for the real vessel images because the
blood flow gradually becomes weak from thick vessels to
small branches.

4.2. Real Images. Experiments were performed using real
vessel images with different modalities, including digital
subtraction angiography (DSA) images, infrared image, com-
puted tomography (CT) images, and MRA and ultrasonic
(US) images of different parts of human body.

Four DSA images and one infrared eye vessel image are
shown in the first row of Figure 4 with sizes of 110 × 111, 131 ×
103, 211× 211, 206× 208, and 211× 168 pixels, namely, “DSA 1,”
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Figure 4: Results of the proposed model for DSA and infrared images. Rows 1, 2, and 3 show the original images, initial contour, and final
evolution results, respectively. The image results of the different methods are shown in each column.

“DSA 2,” “DSA 3,” “DSA 4,” and “InfraredEyeVessel,” respec-
tively. The intensities of all these images are inhomogeneous,
especially for the right three images. In each column, the
original image, the initial contour, and the final evolution
result are shown from top to bottom. The results shown in
Figure 4 demonstrate that our method is capable of locating
the real boundaries accurately for theDSA and infrared vessel
images.

Figure 5 shows the segmentation results for the CT
AbdominalVessel, MRA CerebralVessel, MRA CarotidVes-
sel, and US Plumonary images with sizes of 193 × 102, 202 ×
277, 165 × 156, and 138 × 203 pixels, respectively. These
original images are shown in the first row from left to right.
It can be seen that the shape and topology of the cerebral
vessels and carotid images in middle two columns are very
complex. The second row shows the initial contours derived
from the proposedmethod based on shape enhancement, and
the third row shows the final evolution results. Each column
corresponds to the original image, the initial contour, and the
final evolution result of the image. The results demonstrate
that our method is capable of identifying the real vessel
boundaries accurately for the CT, MRA, and US images,
although they have complex shape and topology.

In addition, we also extended the proposed model to
segment the 3D coronary vessel tree. The used data is a
3D cardiac CT angiography dataset with the size of 512 ×
512 × 311 voxels. Figure 6 shows the original dataset and

the reconstructed vessel trees with different points of view. It
can be seen that different sizes of branches in the vessel trees
are extracted.

4.3. Comparisons with LAC, LBF, and VAC Models. In this
section, ourmodel was comparedwith three classical models:
the LAC, LBF, and VAC models. For comparison, the same
initial contour was set for all models.

Figure 7 shows the results of six real vessel images
from Figures 4 and 5. The first column shows the initial
contours with different circles.The second column shows the
corresponding evolution results of the LAC model, wherein
the LAC model cannot completely and accurately locate
the vessel boundaries. The reason is that all points in the
neighborhood region have the same contribution to the
fitting mean intensities, and the distance between the points
in the neighborhood region and the center point is not
considered. Furthermore, there is lack of a force pushing the
contour to evolve along the centerline of weak vessels, which
makes the energy function tend to trap into a localminimum.
The third column shows the corresponding evolution results
of the LBF model. It can be seen that the LBF model is
capable of locating the vessel boundaries accurately and can
segment the vessels perfectly in the second and third rows.
However, themodel fails to segment vessels in the other rows.
The reason is that the LBF model is sensitive to the initial
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Figure 5: Results of the proposed model for CT, MRA, and US images. Rows 1, 2, and 3 show the original images, initial contour, and final
evolution results, respectively. The image results of the different methods are shown in each column.

contour, and the model usually requires setting different
initial contours for the disconnected objects. Furthermore,
the initial contour needs to be set inside the segmented
object or to be intersected with it. The fourth column shows
the corresponding results of the VAC model, which are
unacceptable. It is because the VAC model strongly depends
on the intensity statistical model, and oversegmentation or
undersegmentation usually happens when the statistical dis-
tribution of a vessel image cannot be modeled appropriately
by the Gaussian mixture model. The last column is the
results of the proposed method, and it can be seen that our
model successfully segments vessels in different images. This
illustrates that the proposed method is not sensitive to the
contour initialization; that is, it can also locate the vessel
boundaries accurately when the initial contour is set in the
same manner as that of the conventional models.

Figure 8 shows the amplified local regions of the evolved
results of our model for the two MRA images. The local
regions marked with yellow boxes are shown in Figures 8(a)
and 8(c), and their corresponding amplification results are
shown in Figures 8(b) and 8(d), respectively. The amplified
local regions present more spatial details. We can see that our

model is capable of locating the vessel boundaries accurately
in spite of its complex shape and topology.

Modified root mean squared error (MRMSE) [37] was
employed to quantitatively evaluate the different methods.
MRMSE measures the distance between the exact object
boundary and the final contours of the models as follows:

MRMSE = √
∑
𝑘
1
−1

𝑖=0
[(𝑥𝑖 − 𝑥𝑖)

2
+ (𝑦𝑖 − 𝑦𝑖)

2
] + 2 (𝑘2 + 𝑘3) 𝑟

2

𝑘1 + 𝑘2 + 𝑘3

,

(19)

where (𝑥𝑖, 𝑦𝑖) (𝑖 = 0, . . . , 𝑘1−1) denotes the coordinates of the
points on the truth contour; (𝑥𝑖, 𝑦𝑖) (𝑖 = 0, . . . , 𝑘1 − 1) is the
matching point on the evolution contour having the closest
distance from point (𝑥𝑖, 𝑦𝑖) in the corresponding neighbor
window with the size of (2𝑟 + 1) × (2𝑟 + 1); 𝑘1 denotes the
number of such matching point pairs; 𝑘2 denotes the number
of the points on the truth curve without a matching point on
the evolution contour; and 𝑘3 denotes the number of points
on the evolution contour without a matching point on the
truth curve.
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(a) (b)

(c) (d)

Figure 6: 3D original dataset and the extracted vessel trees with different points of view. (a) 3D cardiac CT angiography dataset; (b), (c), and
(d) cardiovascular trees from three different points of view.

The MRMSE values of the evolutional results in Figure 7
are listed in Table 1, and the correspondingwindow radii were
chosen as 12 uniformly. From Table 1, we can see that the
MRMSE values of the proposed model are overwhelmingly
less than the ones of the other models. It is due to our
method’s ability to faultlessly draw the advantages of the
localized idea of the LAC model, the local energy definition
of the LBF model, and the VVF idea of the VAC model.
Although the LBF model also has a low MRMSE for several
images, the local intensity mean it adopts does not provide
enough information for accurate segmentation in the pres-
ence of intensity inhomogeneity, for example, the results of
two MRA images shown in the 4th and 5th rows of Figure 7.

The CPU time of the different methods was also tested.
Table 2 presents the computational time and the number
of iterations for the results in Figure 7. Iteration numbers
of our method and the LAC model are almost equal, but
time-cost of our method is much less than that of the LAC
model. The reason is that the redundant computation in
our method is discarded by adopting narrowband technique
and labeling the steadily evolved points. As for the LBF

model, it usually requires much more time and iterations
to achieve stable results because of the computation of 𝑓1
and 𝑓2 for all points in the image domain. Of course, total
time of the LBF model can be also reduced by increasing
the time step, but the evolved accuracy may be low. As for
the VAC model, its time-cost partly depends on whether or
not the statistical distribution of intensities can be accurately
modeled by a Gaussian mixture model. Unfortunately, the
statistical distribution adopted by the VAC model is not
suitable for some vessel images. In brief, for almost all images,
our model has the lowest both time-cost and iterations,
which shows that the implementation of our method is more
efficient than the other three models in MATLAB.

4.4. Analyzing Contour Initialization. We also compared
and analyzed the automatic contour initialization and
the conventional manual contour initialization for the
conventional LAC model and our model. Figure 9 shows the
evolved results of bothmethodswith different initial contours
for the DSA 2 image. The first column shows different initial
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Figure 7: Comparison of our method with the LAC, LBF, and VAC models. Column 1 shows the initial contour for the different images.
Columns 2, 3, 4, and 5 show the evolutional results of the LAC model, LBF model, VAC model, and our method, respectively. The image
results of the different methods are shown in each row.

Table 1: MRMSE values for the images in Figure 7.

Image name/(row number of Figure 7) LAC model LBF model VAC model Proposed model
DSA 1/(1th) 12.833 7.0185 19.214 6.4826
DSA 2/(2th) 8.2871 8.7342 10.154 7.9628
InfraredEyeVessel/(3th) 18.965 5.9827 13.644 4.3688
MRA CerebralVessel/(4th) 121.36 27.466 51.282 14.653
MRA CarotidVessel/(5th) 90.815 24.927 26.820 11.376
US Plumonary/(6th) 16.063 10.854 11.501 8.8549
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(a) (b)

(c) (d)

Figure 8: Amplified local regions of the results of our model for the two MRA images. (a), (c) The evolved results for the cerebral vessels
and the carotid vessels. (b), (d) The amplified spatial details corresponding to the local region (marked with the yellow box) in (a) and (c),
respectively.

Table 2: Iterations and CPU time (in seconds) by the LAC model, LBF model, VAC model, and proposed model.

Image name/(row number
of Figure 7) Size (pixels) LAC model LBF model VAC model Proposed model

Iterations Time (s) Iterations Time (s) Iterations Time (s) Iterations Time (s)
DSA 1/(1th) 111 × 110 1000 59.157 2800 349.16 1900 70.593 800 29.719
DSA 2/(2th) 103 × 131 1600 225.45 2000 258.37 3500 109.84 1350 83.718
InfraredEyeVessel/(3th) 211 × 168 500 34.328 1400 172.83 2200 83.718 550 30.875
MRA CerebralVessel/(4th) 202 × 277 1000 71.829 500 69.656 1000 129.98 600 24.931
MRA CarotidVessel/(5th) 165 × 156 1200 39.735 1500 87.094 1200 94.719 1000 28.856
US Plumonary/(6th) 138 × 203 400 129.74 500 170.16 900 363.09 350 60.144

contours, and the second column and the third column show
the corresponding evolved results of the VAC model and
our model, respectively. As we can see from the second
column that the different results were obtained for the LAC
model with three different initial contours, and the active

contours stopped to evolve before it did not reach the final
location. However, as for our model, the evolved results via
the different initial contours are nearly the same,which can be
seen from the third column. It demonstrates that ourmodel is
not sensitive to the initial contour.This is because the defined
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Figure 9: Comparison of the different contour initializationmethods for the LACmodel and ourmodel. Column 1 shows the initial contours
for the DSA 2 image. Columns 2 and 3 show the evolutional results of the LACmodel and our method, respectively. The image results of the
different initialization contours are shown in each row.

VVF can assist and guide the contour to reasonably evolve
along the vessel direction, even when the initial contour is
not ideal.

In addition, MRMSE, CPU time, and iteration num-
ber were computed to evaluate different manners of set-
ting the initial contours in our method. One manner is
that used in Figure 7, and the other is the automatic
initialization described in Section 3.3. Table 3 lists the

MRMSE, computational time, and the number of iterations
needed to process the images in Figure 7. It can be seen that
the MRMSE by two manners is comparative, but time-cost
and iteration number decrease notably in the automatic
manner, which illustrates that our proposed initialization
strategy can make the model converge rapidly.

Figures 10(a) to 10(d) show the energy over
iteration of the proposed method with different contour
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Figure 10: Relationship graphs of energy over iteration of the proposedmethod with the different initial contours for the four images. (a)–(d)
show energy versus iteration for theDSA 1 image, the InfraredEyeVessel image, theMRA CarotidVessel image, and theUS Plumonary image,
respectively.

initlization manners, the automatic manner and the
manual manner used in Figure 7, for the DSA 1 image, the
InfraredEyeVessel image, the MRA CarotidVessel image,
and the US Plumonary image, respectively. It can be seen
that our model using the initial contour set in the automatic
manner converges rapidly and smoothly.

5. Conclusion

In this study, we presented a vessel active contour model
based on local intensity weighting and the vessel vector
field. Firstly, a localized energy function, derived from the
points on the evolving curve, was defined under the localized
active contourmodel framework. In this definition, the fitting
intensity value of the point on the curve was evaluated
through a statistical analysis of the interior and exterior

weighted means in a local neighborhood of the point, and
it was able to deal with the intensity inhomogeneity of the
vessels. Secondly, a VVF derived from the vesselness measure
was employed to guide the contour to evolve along the vessel
central skeleton into the thin and weak vessels. Thirdly, an
automatic initialization method for the evolution contour
was developed by vessel shape enhancement, which overcame
the problem of repeated trials for the initial contour of
conventional local region active contour models for vessel
segmentation andmade themodel converge rapidly. Finally, a
speed-up strategy in implementation was developed by label-
ing the steadily evolved points, which avoids the redundant
computation of these points in the subsequent iterations.

Extensive experimental results showed the desirable per-
formance of the proposedmodel. In our future work, we plan
to test more 3D volumetric datasets and improve the model
to better match to segment 3D vasculatures.
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Table 3: Iterations, CPU time (in seconds), and MRMSE by the proposed model with both different manners of initial contours.

Image name/(row number of Figure 7) Initial contour used in Figure 7 Initial contour set automatically
Iter. 𝑇. (s) MRMSE Iter. 𝑇. (s) MRMSE

DSA 1/(1th) 800 29.719 6.483 220 20.516 6.122
DSA 2/(2th) 1350 83.718 7.936 420 18.797 7.640
InfraredEyeVessel/(3th) 550 30.875 4.369 90 16.828 4.295
MRA CerebralVessel/(4th) 600 24.931 14.889 130 14.151 14.653
MRA CarotidVessel/(5th) 1000 28.856 11.742 200 19.620 11.376
US Plumonary/(6th) 350 60.144 9.010 110 16.772 8.855
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