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SUMMARY

Multiple synaptic adhesion molecules govern synapse formation. Here, we propose calsyntenin-3/

alcadein-β as a synapse organizer that specifically induces presynaptic differentiation in 

heterologous synapse-formation assays. Calsyntenin-3 (CST-3) was highly expressed during 

various postnatal periods of mouse brain development. The simultaneous knockdown of all three 

CSTs, but not CST-3 alone, decreased inhibitory, but not excitatory, synapse densities in cultured 

hippocampal neurons. Moreover, the knockdown of CSTs specifically reduced inhibitory synaptic 

transmission in vitro and in vivo. Remarkably, the loss of CSTs induced a concomitant decrease in 

neuron soma size in a non-cell-autonomous manner. Furthermore, α-neurexins (α-Nrxs) were 

affinity-purified as components of a CST-3 complex involved in CST-3-mediated presynaptic 

differentiation. However, CST-3 did not directly bind to Nrxs. Viewed together, these data suggest 
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that the three CSTs redundantly regulate inhibitory synapse formation, inhibitory synapse 

function, and neuron development in concert with Nrxs.
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INTRODUCTION

Synaptic cell adhesion molecules (CAMs) are major synapse organizers that initiate the cell 

type-specific formation of nascent synaptic contacts and recruit the pre- and postsynaptic 

protein complexes required for proper synaptic signaling (Missler et al., 2012). The list of 

synaptic CAMs has rapidly grown, largely reflecting the development of the heterologous 

synapse formation assay (Biederer and Scheiffele, 2007). Neuroligins (NLs), SynCAMs, 

Netrin-G ligands (NGLs), SALM3 and SALM5, Leucine-rich repeat transmembrane 

proteins (LRRTMs), and Slit- and Trk-like (Slitrks) proteins are among the synaptogenic 

CAMs with established synaptic functions (Missler et al., 2012; Sudhof, 2008; Um and Ko, 

2013). However, considering the number of neuronal synapses and neural circuits in the 

brain, it is reasonable to propose that additional synaptogenic CAMs remain undefined.

Calsyntenins (CSTs), called alcadeins, are members of the cadherin superfamily (Araki et 

al., 2003; Vogt et al., 2001). Originally identified from spinal cord neurons (Vogt et al., 

2001), CSTs are type I transmembrane proteins with extracellular domains containing two 

cadherin repeats and an LNS (laminin-α, neurexin, and sex hormone-binding globulin) 

domain. These proteins comprise three members: CST-1 (alcadein-α), CST-2 (alcadein-γ), 

and CST-3 (alcadein-β), and a single ortholog has also been identified in Caenorhabditis 

elegans (CASY-1 or CDH11) and Drosophila melanogaster (Cals) (Ikeda et al., 2008; 

Pettitt, 2005). CSTs are widely expressed in the central nervous system (Hintsch et al., 2002; 

Vogt et al., 2001). CST-1 is primarily expressed in the postsynaptic membranes of 

pyramidal neurons, whereas CST-2 and -3 are expressed in inhibitory neurons (Hintsch et 

al., 2002). Interestingly, CASY-1 is essential for chemotaxis-associated learning (Hoerndli 

et al., 2009; Ikeda et al., 2008), and CST-2 polymorphisms have been associated with human 

memory performance (Papassotiropoulos et al., 2006). In addition, CSTs dock vesicular 

cargo to kinesin-1, thereby determining the identity of transported cargo molecules (Araki et 

al., 2007; Konecna et al., 2006; Maruta et al., 2012; Vagnoni et al., 2011). More specifically, 

CST-1 mediates the transport of amyloid precursor protein (APP) via binding to X11/Mint 

and protects this protein from proteolytic processing during axonal transport (Suzuki et al., 

2006; Vagnoni et al., 2012). Intriguingly, several CST peptides have been frequently 

identified in the cerebrospinal fluid of Alzheimer’s disease (AD) patients (Ringman et al., 

2012; Yin et al., 2009), and CST-3 accumulates in dystrophic neurites surrounding 

Amyloid-β (Aβ) plaques (Uchida et al., 2013). Moreover, CST-1 regulates Aβ production 

through the regulation of APP transport at axons (Vagnoni et al., 2012). These data suggest 

that CST-associated molecular pathways might contribute to the pathogenic mechanisms 

underlying AD. However, the synaptic functions of CSTs have not been investigated.
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Here, we characterized the effects of CSTs on the structure and function of synapses in 

hippocampal and somatosensory cortical layer II/III neurons in vivo. CST-3 specifically 

induced presynaptic differentiation. The simultaneous knockdown of all three CSTs, but not 

a single CST isoform, decreased inhibitory synapse densities in cultured hippocampal 

neurons. Strikingly, CST-deficient neurons were morphologically smaller, and the neuronal 

phenotype was completely restored through the exogenous expression of full-length CST 

proteins. Furthermore, the frequency of miniature inhibitory, but not excitatory, postsynaptic 

currents was specifically reduced in CST-deficient cultured hippocampal and somatosensory 

cortical neurons. Moreover, we observed that CST-3 forms functional (but not physical) 

complexes with Nrxs. These data suggest that CST-3 is a synaptogenic adhesion molecule 

that forms functional complexes with Nrxs to regulate inhibitory synapse function.

RESULTS

Using heterologous synapse-formation assays with plasmid vectors expressing the entire 

extracellular region of cell-surface proteins exhibiting brain-specific expression (Table S1), 

we screened for novel synaptogenic molecules that induce presynaptic differentiation 

(Biederer and Scheiffele, 2007). The results revealed that LRRTMs, Slitrks, and TrkC act at 

the axons of cocultured neurons to specifically trigger presynaptic differentiation (Ko et al., 

2009a; Yim et al., 2013). In addition, the expression of CST-3 also showed synaptogenic 

activity.

CST-3 Triggers Presynaptic Differentiation

To determine the synaptic function(s) of CST-3, we first examined whether all three CSTs 

trigger presynaptic differentiation in heterologous synapse-formation assays using 

HEK293T cells expressing each CST protein. To maximize the cell surface expression of 

CST proteins, we generated plasmids for the expression of full extracellular fragments of 

CSTs. CST-3, but not CST-1 or CST-2, strongly induced synapsin clustering (Figures 1A 

and 1B). In parallel experiments, CALS, the Drosophila ortholog of mammalian CSTs, did 

not induce synaptic clustering (data not shown). Similar to NL-2 (positive control), CST-3 

induced the synaptic clustering of both the excitatory presynaptic marker VGLUT1 

(vesicular glutamate transport 1) and the inhibitory presynaptic marker GAD67 (glutamic 

acid decarboxylase, 67 kDa), but not the excitatory postsynaptic marker PSD-95 

(postsynaptic density, 95 kDa) (Figures 1A and 1B). These results suggest that CST-3 is a 

novel postsynaptogenic factor that induces presynaptic differentiation.

N-terminal Cadherin Repeats Are Essential for the Presynapse-inducing Activities of 
CST-3

CSTs possess two extracellular cadherin motifs (Cad repeats), a single LG/LNS domain, a 

transmembrane segment, and a short intracellular region comprising X11- and kinesin-

binding sites (Araki et al., 2003; Vogt et al., 2001). To determine the domains responsible 

for CST-3 synaptogenic activity, we performed heterologous synapse-formation assays 

using deletion constructs of CST-3 extracellular fragments (Figure 2A). Only CST-3 

mutants containing both Cad repeats exhibited full synaptogenic activity in heterologous 

synapse-formation assays (Figures 2B and 2C). Cadherin repeats typically mediate 
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extracellular Ca2+-dependent homophilic adhesion; thus, we examined whether CSTs 

mediate homo- or heterophilic adhesion between CST family members using cell-adhesion 

and cell surface-labeling assays (Figure S1). We observed that CSTs showed no homo- or 

heterophilic adhesion activities, suggesting the existence of unidentified presynaptic 

ligand(s) for CSTs.

CST-3 mRNA and Protein Expression Patterns

Previous Northern blot and in situ hybridization analyses of CSTs revealed that these 

proteins are located in postsynaptic membranes and are widely expressed in multiple brain 

regions (Hintsch et al., 2002; Vogt et al., 2001). Intriguingly, although CST-1 is enriched in 

axonal growth cone vesicles in the developing brain, this protein is restricted to the 

postsynaptic membranes of excitatory and inhibitory synapses (Konecna et al., 2006; Vogt 

et al., 2001). To determine whether other CST isoforms are also expressed in the developing 

brain, we performed in situ hybridization using mouse brain sections obtained from various 

embryonic and postnatal developmental stages (Figure 3A). CST-1 mRNA was expressed 

through the entire body, and more abundantly in the central nervous system (Figure 3A), 

consistent with the previously reported CST-1 expression pattern (Vogt et al., 2001). In 

contrast, the distribution of CST-2 and CST-3 in E16-E18 mice was restricted to the central 

nervous system. In adult mouse brains, a strong CST-3 mRNA signal was observed in 

various brain areas, whereas CST-2 mRNA was locally distributed to brain regions, 

including the hippocampus and olfactory bulb (Figure 3A).

To confirm the results obtained in the in situ hybridization analysis, we generated CST 

polyclonal CST-1/CST-2 antibodies (pan-antibody, JK010) and a CST-3-specific antibody 

(JK001) (Figures 3B and 3C). The CST-3 antibody (JK001) was used to confirm the 

authenticity of the immunoreactive signals using CST-3-knockout mouse lysates (Figure 

3D). The expression of CST-1/CST-2 proteins abruptly increased between postnatal day 7 

(P7) and P14, whereas CST-3 protein was steadily expressed throughout the postnatal 

development of mouse brains (Figure 3E). However, these antibodies were not suitable for 

immunocytochemistry; thus, we were unable to determine the synaptic localization of CSTs 

in cultured neurons (data not shown). All three CST proteins were significantly expressed 

(although not clearly enriched) in the PSD fraction (Figure 3F), consistent with previously 

reported biochemical data (Vogt et al., 2001). Taken together, these results indicate that 

CST-3 is a PSD-localized synaptogenic adhesion molecule.

The Simultaneous Knockdown of All Three CSTs Decreases Inhibitory Synapse Density in 
Cultured Neurons

To determine whether CSTs are required for the maintenance of synapse structure, we 

generated a series of knockdown (KD) lentiviral vectors expressing short hairpin RNA 

(shRNA) targeting individual CSTs. Subsequently, we infected cultured mouse cortical 

neurons with these vectors, and assessed the endogenous target mRNA and protein levels 

using quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) and 

quantitative immunoblotting, respectively (Figures 4A and 4B). The shRNA suppressed 

endogenous mRNA expression ~90% for CST-1, ~80% for CST-2, and ~85% for CST-3 

(Figure 4B). We next investigated whether the single KD of CST-1, CST-2, or CST-3 
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altered the synapse number in cultured mouse hippocampal neurons. To this end, we 

infected cultured neurons at DIV3 with lentiviruses expressing only EGFP (Control) or co-

expressed EGFP with shRNAs against CST-1 (J73), CST-2 (J76), or CST-3 (J81). In 

addition, we immunostained neurons at DIV14 for synapsin and MAP2 to visualize the 

entire somatodendritic architecture of the infected neurons (Figure S2A). We observed that 

single KD of each CST did not alter synapse density, synapse size, synapse strength or soma 

size (Figures S2B–S2E), suggesting that either CSTs are not required for synapse 

maintenance or that CSTs are functionally redundant. To examine the potential functional 

redundancy of CSTs, we generated a triple-KD vector (CST-TKD) containing three human 

polymerase III promoters to drive the expression of shRNAs against all three CSTs and a 

ubiquitin promoter to drive expression of EGFP, facilitating the visualization of infected or 

transfected neurons (Figure 4A).

Using the CST-TKD vector, which successfully suppressed the mRNA levels of all three 

CSTs (Figure 4C), we examined whether CSTs are functionally redundant and essential for 

synapse maintenance in cultured hippocampal neurons (Figures 4 and S3). Strikingly, CST-

TKD significantly decreased the number of inhibitory synapses, assessed using inhibitory 

synaptic markers (GAD67 and gephyrin) (Figures 4D, 4E and S3). CST-TKD also 

significantly reduced the number of excitatory presynaptic puncta (labeled by VGLUT1), 

but not excitatory postsynaptic puncta (labeled by Homer1) (Figures 4D, 4E and S3). These 

data suggest that CST-TKD preferentially alters inhibitory, but not excitatory, synapse 

structure in cultured hippocampal neurons. As previously reported, an LRRTM1 and 

LRRTM2 double-KD vector (LRRTM-DKD) did not alter the synapse density (Figures 4D 

and 4E; (Ko et al., 2011)). We also transfected cultured neurons at DIV8 with CST-TKD or 

an empty lentiviral shRNA vector (Control) and immunostained neurons at DIV14 for 

synapsin and EGFP (Figure S4). The introduction of the CST-TKD vector induced a modest 

but significant decrease in synapse number without changing synapse or soma size, or any 

spine parameters (number, width or length) (Figures S4A–S4G). Taken together, these 

results suggest that CSTs redundantly maintain synapses in cultured hippocampal neurons.

KD of CSTs Decreases the Soma Size of Cultured Hippocampal Neurons

An analysis of cultured mouse neurons infected with CST-TKD lentiviruses showed a 

dramatic reduction in the soma size of CST-TKD-infected neurons compared with control or 

LRRTM-DKD-infected neurons (Figures 4D and 4F). Moreover, electrophysiology 

recordings in cultured hippocampal neurons revealed that CST-TKD caused a significant 

decrease in membrane capacitance (Cm) and a concomitant increase in input resistance (Rm) 

(Figures S5A and S5B). These results imply that CSTs might stimulate the development of 

hippocampal neurons during the early stages of development. To examine this hypothesis, 

we infected hippocampal neurons with Control or CST-TKD viruses at DIV3 and measured 

neuron soma size during cultured neuron development every other day from DIV5 to DIV13 

(Figures S6). We observed that the soma size of cultured neurons infected with control 

viruses abruptly increased between DIV7 and DIV9, whereas no increase in the soma size of 

neurons infected with CST-TKD was observed (Figures S6), suggesting that a deficiency of 

CST proteins arrests neuronal development, which manifests as an absence of growth in the 

cell body size. In contrast, the soma size of neurons transfected with CST-TKD was 

Um et al. Page 5

Cell Rep. Author manuscript; available in PMC 2014 September 27.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



unchanged (Figures S4D), indicating that the effects of CSTs in regulating neuronal soma 

size were non-cell-autonomous. Because the simultaneous KD of multiple proteins 

occasionally leads to confounding, non-specific phenotypes, we further examined whether 

the decreases in soma size and synapse number induced through CST-TKD could be rescued 

through the co-expression of shRNA-resistant CSTs (Figures 4G, 4H and 4I). We observed 

that superinfection with both CST-1 and CST-3 completely eliminated the deficits in both 

soma size and synapse density observed with CST-TKD (Figures 4G, 4H and 4I). Strikingly, 

the super-infection of either CST-1 or CST-3 alone did not restore the deficits in soma size, 

but did restore the deficits in synapse number, suggesting that all three CSTs contribute to 

the growth of the neuronal cell body in a concerted manner. We also noted that the lentiviral 

expression of CST-1, CST-2, or CST-3 alone did not affect synapse density (Figure 4H). 

Thus, we considered whether our lentiviral expression system yielded lower expression 

levels of CSTs than chemical transfection. Thus, we compared the effect of expressing 

CST-3 in cultured hippocampal neurons using a CST-3 lentiviral construct with CST-3 

expression plasmid transfection using a Ca2+-phosphate/DNA coprecipitation method 

(Figures S7A, S7B and S7C). The overexpression of CST-3 by chemical transfection 

significantly increased the synapse density, whereas lentiviral CST-3 expression did not, 

implying that the CST-3 expression level per se is critical for synapse maintenance (Figures 

S7A, S7B and S7C). Using the CST-3 WT expression vector, we found that CST-3 WT 

exerted synaptogenic activities in gain-of-function assays. CSTs are cleaved by α-secretases 

(Maruta et al., 2012), raising questions concerning the expression of these CST constructs 

on the surface of heterologous cells and neurons. We found that, although the majority of 

CSTs are secreted into the cell culture medium, 10–35% of CSTs are expressed on the 

surface of both HEK293T cells and cultured neurons (Figures S7D, S7E, S7F, S7G and data 
not shown), suggesting that surface-exposed CSTs remain competent.

KD of CSTs Leads to a Reduction in Inhibitory, but Not Excitatory, Synaptic Transmission 
In Vitro and In Vivo

To determine whether the changes in anatomical synapse numbers presented in Figure 4 

reflect changes in the number of functional synapses, we examined synaptic transmission in 

mouse cultured hippocampal neurons infected with control or CST-TKD viruses (Figures 

S5C–S5H). Strikingly, measurements of miniature excitatory postsynaptic currents 

(mEPSCs) showed that CST-TKD did not alter excitatory synaptic transmission (Figures 

S5C and S5E-S5F). In contrast, CST-TKD caused a significant decrease in the frequency, 

but not the amplitude, of miniature inhibitory postsynaptic currents (mIPSCs) (Figures S5D 

and S5G–S5H). These results suggest that, although CSTs are required for the maintenance 

of both excitatory and inhibitory synapses, these molecules are predominantly involved in 

regulating inhibitory synaptic functions.

To further corroborate the in vitro electrophysiological results, we examined the effect of 

CSTs KD in somatosensory cortical layer II/III neurons in vivo through the in utero 

electroporation at E15 and analysis at P14–19 (Figure 5A). Similar to the results obtained 

with cultured neurons, CST-TKD specifically reduced the frequency of mIPSCs (Figures 

5B, 5C and 5D) without altering the frequency or amplitude of mEPSCs (Figures 5E, 5F and 

5G). Unexpectedly, CST-TKD increased the amplitude of mIPSCs. The explanation for this 
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observation is not clear, but might reflect the increased soma size of CST-deficient neurons 

or increased gephyrin puncta intensity (see Figures 5J and 5K; see also Figure 4; data not 
shown). We detected no changes in the paired-pulse ratio (PPR) of inhibitory IPSCs in CST-

TKD neurons, indicating no effects on presynaptic functions (Figures 5H and 5I). Consistent 

with the cultured neuron morphology, the soma sizes of CST-TKD neurons were smaller, as 

demonstrated by a decrease in membrane capacitance and a trend toward increased input 

resistance (Figures 5J and 5K). Taken together, these results indicate that CSTs are required 

for inhibitory synaptic transmission in vitro and in vivo.

CST-3 Forms Functional Complexes with Nrxs to Induce Presynapse Development

CSTs contain two extracellular cadherin-repeats and an LNS domain, and CST-3 displays 

synaptogenic activity, inducing presynaptic differentiation in heterologous synapse-

formation assays (Figures 1 and 2). To identify proteins that interact with the extracellular 

regions of CST-3, we used affinity chromatography, employing recombinant CST-3 fusion 

proteins expressed from HEK293T cells transfected with Ig-CST-3 comprising the entire 

extracellular sequence of CST-3 fused to the Fc-domain of human IgG to probe solubilized 

mouse brains (Figure 6A). Mass spectrometry analyses of Coomassie Blue-stained gels 

revealed multiple bands that were not observed in the negative control lane (IgC; Figure 

6B). Among the identified peptides, multiple peptides were derived from cell surface 

proteins, such as Nrxs (Figures 6C, 6D, 6E, 6F, Table 1 and Table S2). We asked whether 

Nrxs are required for the synaptogenic activities of CST-3. We infected cultured neurons 

with lentiviruses expressing either an empty shRNA vector (Control) or a triple KD shRNA 

construct for Nrxs (Nrx-TKD). Subsequently, we performed heterologous synapse-

formation assays using infected neurons and HEK293T cells expressing CST-3, neuroligin-1 

(NL1; positive control) or Slitrk1 (negative control) (Figures 6G and 6H). Upon Nrx-TKD, 

we observed the absence of CST-3 induced synapsin clustering on contacting axons of co-

cultured hippocampal neurons. In parallel experiments, Nrx-TKD abolished the 

synaptogenic activities of NL1 but not those of Slitrk1, consistent with the notion that Nrxs 

are presynaptic receptors for NL1 (note that PTPδ and PTPσ are presynaptic ligands for 

Slitrk1; see (Gokce and Sudhof, 2013; Yim et al., 2013)). Taken together, these results 

indicate that CST-3 forms a functional complex with Nrxs.

CST-3 Does Not Directly Interact with Nrxs

The fact that presynaptic Nrxs are functional receptors for CST-3 (Figure 6) prompted us to 

examine whether Nrxs directly bind to CST-3. First, we employed cell surface-labeling 

assays to determine whether CST-3 directly binds to both α- and β-Nrxs (Figures 7A and 

7B). We examined the binding of recombinant Ig-fusion proteins of Nrx-1α and −1β lacking 

an insert in splice site #4 (Ig-Nrx1αSS4− and Ig-Nrx1βSS4−, respectively) to HEK293T cells 

expressing HA-tagged CSTs. Surprisingly, we observed no binding of the Ig-Nrx1 fusion 

proteins with HA-CSTs in cell surface-labeling assays (Figure 7A). Consistent with this 

observation, we found that the Ig-CST-3 fusion protein did not bind FLAG-tagged Nrxs in 

cell surface-labeling assays (Figure 7B). There are three alternative splicing sites unique to 

α-Nrxs (Ullrich et al., 1995); thus we hypothesized that the presence of inserts at any or all 

of these sites (SS#1, SS#2, and SS#3) might modulate the binding between CST-3 and α-

Nrxs in a combinatorial manner. To examine this hypothesis, we generated a series of 
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Nrx-1α constructs containing a subset of domains with selected splice variants (see Figure 

7C for schematic diagrams of HA-Nrx-1α constructs) and analyzed the binding of these 

proteins to recombinant CST-3 using cell surface-labeling assays (Figure 7D). Strikingly, 

any Nrx1α variants showed no robust binding to HA-CST-3, indicating that Nrx-1α is not a 

direct ligand for CST-3. Moreover, neither Nrx-2α nor Nrx-3α interacted with CST-3 in cell 

surface-labeling assays (Figure 7D). Consistently, we found that CST-3 Cad did not bind to 

Nrx1α, suggesting that CST-3 exerts synaptogenic activity through a mechanism 

independent of direct binding to Nrxs (Figure 7A). Furthermore, pull-down experiments 

using immobilized Nrx-1α and Nrx-1β (Ig-Nrx-1αSS4− and Ig-Nrx-1βSS4−) Ig-fusion 

proteins with mouse synaptosomal fractions revealed that both Ig-Nrx-1αSS4− and Ig-

Nrx-1βSS4− effectively captured NL1, but did not bind to CSTs (Figure 7E), supporting the 

absence of an interaction of Nrx with CSTs. Viewed together, these results suggest that 

CST-3 requires Nrxs for its presynapse-inducing activities but is indirectly linked to them.

DISCUSSION

Currently, the neural roles of CST-1 have been extensively studied in the brain, showing that 

CST-1 is localized to both excitatory and inhibitory synapses and forms a tripartite complex 

with both Mint/X11 adaptor protein and APP, stabilizing intracellular APP metabolism and 

thereby suppressing Mint/X11-mediated Aβ-secretion (Araki et al., 2003; Vogt et al., 2001). 

Moreover, CST-1 mediates the transport of axonal APP-containing organelles in a 

kinesin-1-dependent manner (Konecna et al., 2006; Vagnoni et al., 2012; Vagnoni et al., 

2011). Recently, several genetic studies have implicated CST-2 polymorphisms in episodic 

memory performance, suggesting that CST-2 might regulate cognitive processes in the brain 

(Papassotiropoulos et al., 2006; Preuschhof et al., 2010). However, the synaptic functions of 

CST proteins have not been investigated. Particularly, the functions of CST-3 have been less 

explored than those of CST-1 and CST-2. The cadherin superfamily proteins are key 

regulators of various neuronal processes, but have been generally considered dispensable for 

de novo synapse formation (Scheiffele et al., 2000; Takeichi, 2007). Instead, these proteins 

have been suggested as critical for modulating numerous synaptic signaling pathways and 

synaptic plasticity (Arikkath and Reichardt, 2008). Here, we demonstrated that the two 

cadherin repeats of CST-3 are required for the synaptogenic activity of this protein (Figure 

2). However, it was recently reported that the cadherin repeats of CST-3 are required, but 

not sufficient, for the synaptogenic activity of CST-3 (Pettem et al., 2013), inconsistent with 

the results obtained in the present study. Although the nature of this discrepancy is currently 

unclear, the surface expression levels of the plasmids used in these two studies might differ, 

leading to completely different conclusions. Moreover, the fact that CSTs possess only two 

cadherin repeats at the N-terminus is a striking exception in the cadherin superfamily, as the 

majority of cadherin proteins possess five or more repeats (Hulpiau and van Roy, 2009). 

Furthermore, CST-TKD halted neuron growth, resulting in smaller soma size (Figures 4 and 

S6). Although the roles of cadherin superfamily proteins in neuron development have been 

relatively well established, to our knowledge, this study is the first report that members of 

this family are directly involved in the neuron soma development. Importantly, CSTs are 

among a small group of evolutionarily conserved synapse organizers, including NLs, Nrxs, 

and Leukocyte antigen-related receptor protein tyrosine phosphatases (LAR-RPTPs). In 
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invertebrates, these synapse organizers have been implicated in neuron development and 

synaptic functions (Calahorro and Ruiz-Rubio, 2013; Hu et al., 2012). CASY-1, the C. 

elegans ortholog of CSTs, is also essential for associative learning (Hoerndli et al., 2009; 

Ikeda et al., 2008); the Drosophila ortholog of CSTs (Cals) has not yet been functionally 

explored. Because the neuronal expression of human CST-2 in C. elegans functionally 

rescues the learning defects of CASY-1 mutants, we also examined whether Cals is 

synaptogenic using heterologous synapse-formation assays. However, Cals proteins, such as 

CST-1 or CST-2, did not induce presynaptic differentiation (data not shown). Thus, 

whether the functional significance of the Nrx/CST interaction reported in the present study 

also applies to the other model organisms remains undetermined.

Nrxs are essential for synapse formation and function (reviewed in Craig and Kang, 2007; 

Sudhof, 2008). The coupling of calcium channels to presynaptic machinery in mouse 

genetics studies has shown that α-Nrxs are important for presynaptic functions, but not 

structural integrity (Dudanova et al., 2007; Missler et al., 2003). The loss of all three α-Nrxs 

dramatically reduces spontaneous and evoked synaptic transmission at both excitatory and 

inhibitory synapses, although the defect in excitatory synaptic transmission reflects an Nrx-

α1 deficiency (Etherton et al., 2009; Missler et al., 2003). α-Nrxs trans-synaptically 

interacts with a multitude of postsynaptic adhesion molecules, including NLs, LRRTMs, 

cerebellins, dystroglycans, latrophilins, and neurexophilins (reviewed in (Krueger et al., 

2012)). However, because most of these postsynaptic ligands interact with both α- and β-

Nrxs (except neurexophilins), the functions of these synaptic adhesion pathways cannot be 

exclusively attributed to α-Nrx-specific synaptic functions. The data obtained in the present 

study suggest that CST-3 does not form a physical complex with Nrxs, but requires 

interactions with these molecules for synaptogenic activities, suggesting unidentified 

‘intermediary’ proteins that bridge CST-3 and Nrxs. A recent study reported that α-Nrxs, but 

not β-Nrxs, directly interact with CST-3 (Pettem et al., 2013). These authors presented a 

series of cell surface-labeling and pull-down assays to demonstrate the interaction of CST-3 

with α-Nrxs. However, we did not observe any significant binding of CST-3 to any of the 

three α-Nrxs in cell surface-labeling assays (Figure 7). Moreover, we found that various 

deletion variants of Nrx-1α did not interact with CST-3. Furthermore, we did not observe 

any significant enrichment of CSTs with recombinant Nrx-1α proteins in mouse brain pull-

down assays (Figure 7). Overall, we found no clear-cut evidence to support the direct 

interaction of CST-3 with α-Nrxs. Nevertheless, we observed that Nrxs are essential for 

CST-3 function because the triple-knockdown of Nrxs significantly reduced the 

synaptogenic activities of CST-3 (Figure 6). Currently, there is no precise explanation for 

the discrepant results between the two papers. Indeed, our data present two inherent 

paradoxes that we cannot at present resolve, but that paint a very different picture than that 

proposed by Pettem et al. First, in artificial synapse-formation assays only CST-3 is active, 

but not the other CSTs, whereas only a combined triple knockdown of all CSTs affects 

synapse density. Second, in pull-downs with recombinant CST-3 some Nrxs were found and 

in artificial synapse-formation assays the presynaptic Nrx-TKD blocked CST-3-induced 

synapse formation, but in all other binding assays, no CST-3 binding to Nrxs was detected. 

Most of these data were obtained in our laboratories before the Pettem et al. was published 

but we did not proceed to publication because we could not rationally reconcile these results 
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and formulate a coherent conclusion from them. We do feel, however, that based on our 

observations it is highly unlikely that CSTs are general Nrx ligands analogous to LRRTMs, 

neuroligins, or cerebellins.

In the present study, we found that the suppression of multiple CST isoforms, but not 

individual CSTs, reduced synapse density, suggesting redundancy among CST isoforms 

(Figure 4). However, electrophysiology experiments in both cultured and in vivo neurons 

indicated that CSTs act preferentially to inhibitory synapse structure and function (Figures 5 

and S5). These results are consistent with those from previous reports, showing that triple 

NL loss through acute KD in cultured neurons suppresses the frequency of mIPSCs (Chih et 

al., 2005). Moreover, α-Nrx-specific sequences confer specific activity toward inhibitory 

synapses in heterologous synapse formation-assays (Kang et al., 2008), suggesting that 

CST-3 might be a major postsynaptic mediator of inhibitory synapse organization through 

α-Nrxs. Notably, although CST-3 KD alone did not significantly affect synapse density in 

cultured neurons (Figure 4), synaptic transmission might be impaired at specific synapses, as 

demonstrated for individual NL isoforms (Chubykin et al., 2007). Consistently, analyses of 

CST-3-KO mice showed that both excitatory and inhibitory synaptic transmission are 

impaired (Pettem et al., 2013).

Although certain mechanistic details remain unresolved, CSTs have been predominantly 

associated with AD pathogenesis (reviewed in (Suzuki et al., 2006)). For example, CST-1 

modulates the effects of APP processing and trafficking, and CSTs co-accumulate with APP 

in dystrophic neuritis. Moreover, CST-1 KD perturbs the axonal transport of APP-

containing vesicles and alters APP processing, leading to increased Aβ production (Vagnoni 

et al., 2012). Furthermore, the proteolytically processed C-terminal fragment of CST-3 

(CTF) accumulates in dystrophic neurites surrounding Aβ plaques in AD model mice, 

accelerating neuronal death (Uchida et al., 2013). Intriguingly, CST-1 and CST-3 have been 

identified as potential biomarkers of AD (Ringman et al., 2012; Yin et al., 2009). Recently, 

several γ-secretase mutations impair Nrx-3β processing, linking Nrxs with AD pathogenesis 

(Bot et al., 2011). It is tempting to speculate that the misregulation of CST-3 and/or Nrx 

proteolytic processing might induce a subset of early-onset familial AD. It has been 

suggested that an imbalance between excitatory and inhibitory synapses is the central 

mechanism underlying a multitude of neuropsychiatric disorders. In the present study, we 

observed that inhibitory synapse function is selectively disrupted through CST-TKD in both 

cultured and in vivo neurons. Although there are currently no reports that CSTs are involved 

in neuropsychiatric disorders, it is likely that the synaptic dysfunction of CSTs contributes to 

the pathogenesis of multiple neuropsychiatric disorders. Intriguingly, CST-1 mRNA levels 

are upregulated in chronic cocaine-treated mice, suggesting that CST-1 dysfunction might 

be associated with addiction (Yao et al., 2004) via impaired long-term synaptic plasticity at 

inhibitory synapses (Niehaus et al., 2010). Some neuropsychiatric disorders (e.g., 

schizophrenia, autism, and intellectual disabilities) has been associated with specific defects 

in the development and function of interneurons. Considering that CST-2 and CST-3 are 

highly expressed in interneurons (Hintsch et al., 2002), it is possible that the molecular 

dysfunctions of these CST isoforms contribute to these diseases.
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In conclusion, we identified CST-3 as a synaptogenic adhesion molecule that forms 

complexes with Nrxs. Future studies should identify ‘intermediary’ protein(s) that 

functionally bridge CST-3 and Nrxs, characterize the detailed molecular mechanisms 

underlying the intracellular transduction of CST-3/Nrxs extracellular signals, identify the 

presynaptic receptors for CST-1 and/or CST-2 to establish a complete understanding of the 

synaptic functions of CST proteins, and validate the functions of CSTs proposed in the 

current study in vivo.

EXPERIMENTAL PROCEDURES

The Construction of Expression Vectors

HA-CSTs encode full-length mouse CSTs containing an inserted HA-epitope. The signal 

peptide sequence of CST-1 (amino acids [aa] 1–28) was initially PCR-amplified, digested 

with HindIII/BglII, and cloned into the GW1 vector (British Biotechnology). The remaining 

of CST-1 sequences (aa 29–979) were PCR-amplified, digested with BglII and EcoRI, and 

cloned into the GW1 vector. Full-length CST-2 and CST-3, excluding the corresponding 

signal peptide sequences (CST-2, aa 21–966; CST-3, aa 20–956), were PCR-amplified, 

digested with XmaI and SacII, and subcloned into the pDisplay vector (Invitrogen). pDis-

CST-3 deletion variants encode the indicated CST-3 fragment (Cad+LNS, aa 36–541; LNS

+linker, aa 335–846; Cad repeats, aa 20–257; LNS, aa 335–541; Cad repeat 1, aa 36–158; 

and Cad repeat 2, aa 152–259) cloned into the pDisplay vector at XmaI and SacII sites. 

pDis-Nrxs encode the indicated Nrx-1α, Nrx-1β, Nrx-2α, or Nrx-3α fragments cloned into 

the pDisplay vector at the indicated restriction enzyme sites. To construct shRNA lentiviral 

expression vectors, oligonucleotides targeting mouse CST-1, CST-2, or CST-3 were 

annealed, phosphorylated, and cloned into the XhoI and XbaI sites of a single KD vector 

(L-309 vector; see Figure 4A for a schematic diagram of vectors) immediately downstream 

of the human H1 promoter. For CST-TKD, oligonucleotides targeting CST-1 (J73), CST-2 

(J76), and CST-3 (J81) were subcloned respectively into the XhoI-XbaI (J73), BstEII-BsiWI 

(J76), and SbfI-BstBI (J81) sites of a TKD vector (L-313 vector) containing two human H1 

promoters and two human U6 promoters. For the details, see Extended Experimental 

Procedures.

Antibodies

used in this study are described in detail in the Supplemental materials associated with this 

paper.

Heterologous Synapse-formation Assays, Cell Surface-labeling Assays, and Cell-adhesion 
Assays

were performed using HEK293T cells as previously described (Ko et al., 2009a)

Affinity Chromatography and Mass Spectroscopy

were performed using recombinant CST-3 fusion proteins as previously described (Ko et al., 

2009a).
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Production of Recombinant Lentiviruses

Recombinant lentiviruses were produced through the transfection of human embryonic 

kidney 293T cells with four plasmids—L-313 vectors (L-313-Nrx-TKD or L-313 alone), 

pRRE, pVSVg, and pREV—using FuGENE-6 (Roche) as previously described (Ko et al., 

2011).

Primary Neuronal Culture, Transfections, Immunocytochemistry, Image Acquisition and 
Analyses

were performed using E18-derived mouse hippocampal cultured neurons and confocal 

microscopy as previously described (Ko et al., 2009b).

In Utero Electroporation

Pregnant ICR mice at 15 days post coitum (d.p.c) were anesthetized with an intraperitoneal 

injection of pentobarbital sodium, and the uterine horns were exposed through a longitudinal 

incision in the abdomen. Approximately 1 µl of DNA solution containing 1 mg/ml 

pCAGGS-EGFP, 1.5 mg/ml L-315-CST-TKD shRNA, and 0.01% Fast Green in PBS or 1 

mg/ml pCAGGS-EGFP, 1.5 mg/ml L-315 control shRNA, and 0.01% Fast Green in PBS, 

was injected into the lateral ventricle of each embryo through a glass capillary electrode. 

The uteri were returned to the peritoneal cavity, and the incisions were sutured. The 

operated mice were returned to their home cages and subsequently allowed to deliver 

naturally. The transfected pups were identified at P0 by visualizing the GFP signals through 

the scalp using an LED penlight (Handy Blue; Reryon).

Electrophysiology

Cell culture and slice electrophysiology were performed as previously described (Ko et al., 

2011).

Statistics

All data are expressed as the means ± SEM. All experiments were performed with at least 

three independent cultures and statistically evaluated using Student’s t-test and one-way 

ANOVA, with cell numbers as the basis for ‘n’.

Further details available in the Extended Experimental Procedures.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• CST-3 specifically induces presynaptic differentiation

• CSTs are required for inhibitory synapse structure and function

• CST-3 requires Nrxs as functional receptors for presynaptic development

• CST-3 does not directly interact with Nrxs
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Figure 1. CST-3 Induces Presynaptic Differentiation in Heterologous Synapse-formation Assays
(A) CST-3 promotes the formation of excitatory and inhibitory presynapses in heterologous 

synapse-formation assays. Rat hippocampal neurons were cocultured for 3 d (DIV10-13) 

with HEK293T cells expressing EGFP alone (control) or coexpressing EGFP and N-

terminally HA-tagged CST-1 extracellular fragment (CST-1), CST-2 extracellular fragment 

(CST-2), CST-3 extracellular fragment (CST-3), or an mVenus-fusion protein of 

neuroligin-2 (NL2). The panels show representative immunofluorescence images of 

cocultures stained with antibodies to EGFP (green) and various presynaptic (VGLUT1, 
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GAD67) and postsynaptic (PSD-95) markers (red). Coincident green and red signals are 

shown in yellow. Scale bar = 20 µm (applies to all images).(B) Quantitation of the 

heterologous synapse-formation activity of CST-1, CST-2, CST-3, and NL2. To quantify the 

experiments described in (A), the ratio of the synaptic marker staining to EGFP fluorescence 

(from absolute red and green fluorescence values) was measured. All data are shown as 

means ± SEMs (3*p<0.001, assessed using analysis of variance [ANOVA] with Tukey’s 

test; “n” denotes the total number of HEK293T cells analyzed, as follows: Control/synapsin, 

n=18; CST-1/synapsin, n=21; CST-2/synapsin, n=17; CST-3/synapsin, n=16; NL2/synapsin, 

n=14; Control/VGLUT1, n=22; CST-1/VGLUT1, n=17; CST-2/VGLUT1, n=15; CST-3/

VGLUT1, n=15; NL2/VGLUT1, n=16; Control/GAD67, n=15; CST-1/GAD67, n=15; 

CST-2/GAD67, n=14; CST-3/GAD67, n=15; NL2/GAD67, n=14; Control/PSD-95, n=15; 

CST-1/PSD-95, n=16; CST-2/PSD-95, n=17; CST-3/PSD-95, n=16; and NL2/PSD-95, 

n=15).
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Figure 2. N-terminal Cadherin Repeats Are Required for the Synaptogenic Activities of CST-3
(A) Diagrams of the CST-3 variants used in heterologous synapse-formation assays. The full 

extracellular region of CST-3 (Ecto-full) carrying an HA epitope inserted after the signal 

peptide sequence was cloned into the pDisplay vector. CST-3 fragments carrying the 

following extracellular regions were also prepared as pDisplay vectors: Cad+LNS, a CST-3 

fragment containing cadherin repeats and an LNS domain; LNS+linker, a CST-3 fragment 

containing the LNS domain and the linker region between an LNS domain and a 

transmembrane segment; Cad repeats, a CST-3 fragment containing two cadherin repeats; 
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LNS, a CST-3 fragment containing the LNS domain; Cad repeat 1, a CST-3 fragment 

containing the first cadherin repeat; and Cad repeat 2, a CST-3 fragment containing the 

second cadherin repeat. (B–C) Synaptogenic activity of various CST-3 constructs (described 

in [A]) in heterologous synapse formation-assays. Representative immunofluorescence 

images of cocultures stained with antibodies to HA (green) and synapsin (red). Coincident 

signals are shown in yellow. Scale bar = 20 µm (applies to all images) (B). Quantitation of 

heterologous synapse-formation assays (C), measured as the ratio of synapsin to HA 

fluorescence signals. The dashed lines correspond to Control values, used as the baseline. 

The data are shown as the means ± SEMs (3*p<0.001, assessed using analysis of variance 

[ANOVA] with Tukey’s test; “n” denotes the total number of HEK293T cells analyzed, as 

follows: Control, n=15; Ecto-Full, n=17; Cad+LNS, n=17; LNS+linker, n=16; Cad repeats, 

n=14; LNS, n=15; Cad repeat 19, n=16; and Cad repeat 2, n=16).
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Figure 3. Expressions of CSTs in Mouse Brains
(A) CST mRNA distribution patterns in the developing and adult mouse brains. Sections 

from E16, E18, P7, P14, P21, and P48 (adult) mouse brains were probed with CST-1, 

CST-2, and CST-3 cRNAs. Scale bar = 5 mm. Cb, cerebellum; Ctx, cerebral cortex; Hc, 

hippocampus; OB, olfactory bulb. (B) Biochemical characterization of the CST antibodies 

used in this study. Immunoblot analyses of CST antibodies using mouse brain synaptosomes 

and lysates from HEK293T cells, untransfected or transfected with CST-2 or CST-3 

expression vector. JK010 is reactive to both CST-1 and CST-2 proteins, whereas JK001 is 
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specific to CST-3. Br., brain; P2, crude synaptosomes; Unt., untransfected HEK293T cell 

lysates. (C) Cross-reactivity of the CST antibodies. HEK293T cells, untransfected or 

transfected with the indicated CST expression vectors, were immunoblotted with anti-

CST-1/CST-2 (JK010) and anti-CST-3 (JK001) antibodies. The expression of HA-tagged 

CST vectors was confirmed through immunoblotting with anti-HA antibodies. An anti-α-

tubulin antibody was used for normalization. (D) Authenticity of the anti-CST-3 antibody 

(JK001). P2 fractions from brains of wild-type or CST-3-KO mice were subjected to 

immunoblot analyses with the indicated antibodies. An anti-α-tubulin antibody was used for 

normalization. (E) The expression of CST proteins during development. E, embryonic day; 

P, postnatal day. An anti-α-tubulin antibody was used for normalization. (F) Localization of 

CST proteins in PSD fractions. The proteins from each mouse brain fraction (5 µg) were 

subjected to immunoblotting with the indicated antibodies. P2, crude synaptosomal fraction; 

S2, cytosolic and light membrane fraction; PSD, postsynaptic density fraction; SynPhys, 

synaptophysin; Synapto. Fraction, Synaptosomal fraction.
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Figure 4. Knockdown of All Three CSTs, but Not Individual CST Isoform Alone, Reduces 
Synapse Density and Soma Size in Cultured Neurons
(A) Schematic diagram of lentiviral shRNA vectors for KD of single CST isoforms (denoted 

CST-SKD) or triple KD of CST-1 to CST-3 (denoted CST-TKD). (B) KD efficacies of 

shRNA lentiviruses. Levels of target CST mRNAs (CST-1 to CST-3) were measured by 

quantitative RT-PCR in cultured mouse cortical neurons infected at DIV3 with lentiviruses 

expressing the indicated shRNAs. The mRNAs were prepared at DIV12-13. The dotted line 

represents the 75% KD cutoff level for tests of biological effects. (C) Measurements of 

target mRNA levels (CST-1, CST-2, and CST-3) in cultured cortical neurons as described in 
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(B), except that neurons were infected with CST-TKD lentiviruses expressing shRNAs 

targeting CST-1, CST-2, and CST-3 [described in (A)]. The target mRNA measured is 

colored coded as indicated on the upper right. Dotted line represents the 75% KD cutoff 

level for tests of biological effects. (D) Representative images of cultured hippocampal 

neurons infected at DIV3 with lentiviruses expressing EGFP alone (control); coexpressing 

EGFP with shRNAs against CST-1, CST-2, and CST-3 (CST-TKD); or coexpressing EGFP 

with shRNAs against LRRTM1 and LRRTM2 (LRRTM-DKD). Neurons were analyzed 

through double immunofluorescence labeling for MAP2 (blue) and synapsin (red) at DIV14. 

Scale bar = 35 µm (applies to all images). (E–F) Summary graphs of the effects of CST-

TKD in neurons on synapse density (E) (measured using synapsin as a general synapse 

marker, VGLUT1 as an excitatory presynaptic marker, GAD67 as an inhibitory presynaptic 

marker, Homer1 as an excitatory postsynaptic marker, and gephyrin as an inhibitory 

postsynaptic marker), and soma size (F) (measured using MAP2 signals). The data are 

shown as the means ± SEMs (3*p<0.001, assessed using analysis of variance [ANOVA] 

with Tukey’s test; 2–3 dendrites per transfected neuron were analyzed and group-averaged; 

“n” denotes the total number of neurons analyzed, as follows: Control/synapsin, n=16; CST-

TKD/synapsin, n=18; LRRTM-DKD/synapsin, n=15; Control/VGLUT1, n=15; CST-TKD/

VGLUT1, n=15; Control/GAD67, n=16; CST-TKD/GAD67, n=15; Control/Homer1, n=18; 

CST-TKD/Homer1, n=21; Control/Gephyrin, n=22; and CST-TKD/Gephyrin n=22). (G) 

Representative images of cultured hippocampal neurons infected with a vector expressing 

control lentiviruses (control); a vector expressing shRNA viruses against CST-1, CST-2, and 

CST-3 (CST-TKD); the CST-TKD vector together with lentiviruses expressing full-length 

human CST-1 [denoted as Rescue (+CST-1)], full-length human CST-3 [denoted as Rescue 

(+CST-3)], or both human CST-1 and human CST-3 [denoted as Rescue (+CST-1/3)]; or 

lentiviruses expressing only full-length human CST-1 (CST-1), full-length human CST-2 

(CST-2), or full-length human CST-3 (CST-3). The neurons were analyzed through double 

immunofluorescence using antibodies to MAP2 (blue) and synapsin (red) at DIV14. Scale 

bar = 35 µm (applies to all images). (H–I) Summary graphs of the effects of the indicated 

lentiviruses on synapse density (H) (measured using synapsin as a general synapse marker, 

and soma size (I) (measured using MAP2 signals). Note that lentiviral expression of CST-3 

did not increase synapse density, whereas high-level overexpression of CST-3 by calcium 

phosphate-mediated transfection significantly increased the synapse density (see Figure S7). 

The data are shown as the means ± SEMs (3*p<0.001, assessed using analysis of variance 

[ANOVA] with Tukey’s test; 2–3 dendrites per transfected neuron were analyzed and 

group-averaged; “n” denotes the total number of neurons analyzed, as follows: Control, 

n=19; CST-TKD, n=14; CST-TKD+CST-1 rescue, n=15; CST-TKD+CST-2 rescue, n=16; 

CST-TKD+CST-3 rescue, n=17; CST-TKD+CST-1/3 rescue, n=16; CST-1, n=15; CST-2, 

n=22; and CST-3, n=17).
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Figure 5. CST Knockdown Impairs Inhibitory, but Not Excitatory, Synaptic Transmission In 
Vivo
(A)In utero electroporation was performed at E15 to transfect neuron precursors with 

control or CST-TKD vectors. Coronal brain sections were prepared at P14-19. Many green 

fluorescence protein (GFP)-positive neurons were detected in layer I I/I II of somatosensory 

cortex. Scale bar = 250 µm. (B–D) Effect of CST proteins on inhibitory synaptic 

transmission. Representative traces (B) of mIPSCs in somatosensory cortical neurons in 

layer II/III electroporated in utero with control or CST-TKD vector. Summary graphs of the 
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frequencies (C) and amplitudes (D) of mIPSCs in neurons transfected with control or CST-

TKD vectors. (E–G) Effect of CST proteins on excitatory synaptic transmission. 

Representative traces (e) of mEPSCs in somatosensory cortical neurons in layer II/III 

electroporated in utero with control or CST-TKD vector. Summary graphs of the 

frequencies (F) and amplitudes (G) of mEPSCs in neurons transfected with control or CST-

TKD vectors. (H–I) Effect of CST proteins on PPR (amplitude of the second IPSC divided 

by that of the first). Representative traces (H) and summary graph (I) of PPR measured with 

100-ms interstimulus intervals are shown. (J–K) Membrane capacitance (j; Cm) and input 

resistance (k; Rm) measured in control and CST-TKD neurons. The data shown in the panels 

(B-K) represent the means ± SEMs (*p<0.05 using Student’s t-test; “n” denotes the total 

number of cells recorded, as follows: mIPSC control, n=10; mIPSC CST-TKD, n=12; 

mEPSC control, n=29; mEPSC CST-TKD, n=30; PPR control, n=13; and PPR CST-TKD, 

n=15).
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Figure 6. Nrxs Are Functional Receptors For CST-3 To Promote Presynaptic Development
(A) Coomassie Blue-stained gel of recombinant Ig-control (IgC), and Ig-CST-3 (Ig-CST-3) 

fusion proteins used for affinity chromatography and pull-down experiments. (B) 

Identification of specific CST-3-binding proteins in mouse brains. Solubilized mouse brain 

proteins were subjected to pull-down experiments with IgC or Ig-CST-3-fusion protein. 

Equivalent amounts of bound proteins were resolved using SDS-PAGE, and the gels were 

subsequently Coomassie Blue-stained. The boxed regions indicate the specific bands unique 

to the Ig-CST-3-bound fraction, which were further analyzed through mass spectroscopy. 

(C–D) Mass spectrometry data. Total ion chromatogram (XIC) of an LC separation from Ig-

CST3-bound eluates (C). Extracted ion chromatogram (EIC) of ion m/z 733.33 and 547.29 

from CST-3 (19.30 min) and Nrx-1α (25.77 min; D). (E–F) The MS/MS spectrum of two 

double-charged peptides unique for CST-3 and Nrx-1α obtained from LC-MS/MS at 733.33 

and 547.29, fragmented to produce an MS/MS spectrum with β- and ψ-ion series describing 
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the sequences ADESWQGTVTDTR (aa 684–696) and SADYVNLALK (aa 327–336). (G–
H) The effect of triple Nrx knockdown (sh-Nrx1/2/3) on the synaptogenic activities of 

CST-3, NL1, and Slitrk1. Representative immunofluorescence images (G) of cocultures 

stained with antibodies to mVenus or HA (green) and synapsin (red). Coincident signals are 

indicated in yellow. Scale bar = 10 µm (applies to all images). Quantitation (H) of 

heterologous synapse-formation assays, measured as the ratio of synapsin to mVenus/HA 

fluorescence signals. The dashed lines correspond to the Control values used as the baseline. 

The data are shown as the means ± SEMs (3*p<0.001 and *p<0.05 using analysis of 

variance [ANOVA] with Tukey’s test; “n” denotes the total number of HEK293T cells 

analyzed, as follows: Control/sh-control, n=19; Control/sh-Nrx1/2/3, n=45; CST-3/sh-

control, n=43; CST-3/sh-Nrx1/2/3, n=39; NL1/sh-control, n=30; NL1/sh-Nrx1/2/3, n=28; 

Slitrk1/sh-control, n=24; and Slitrk1/sh-Nrx1/2/3, n=29).
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Figure 7. Nrxs Do Not Directly Interact with CST-3
(A) Cell surface-labeling assays. HEK293T cells expressing NL1-mVenus (NL1), or HA-

tagged CSTs (CST-1, CST-2, CST-3, or CST-3 Cad) were incubated with control Ig-fusion 

proteins (Ig) or IgNrx-1α-1, or IgNrx-1β-1 (Ig-fusion proteins of neurexin-1α and −1β, 

respectively, lacking an insert in splice site #4). The cells were analyzed by 

immunofluorescence imaging for Ig-fusion proteins (red) and HA/mVenus (green). 

Representative merged images are shown. Scale bar = 10 µm (applies to all images). (B) 

Cell surface-labeling assays. HEK293T cells expressing pcDNA3-FLAG-Nrx vectors were 
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incubated with Ig, Ig-CST-3 proteins (Ig-CST-3) or Ig-neuroligin-2 (Ig-NL2). The cells 

were analyzed by immunofluorescence imaging for Ig-fusion proteins (red) and FLAG 

(green). The only representative merged images are shown. Scale bar = 10 µm (applies to all 

images). (C) Domain structures of α- and β-Nrxs (top) and identities of pDisplay-Nrx 

constructs used for binding studies (bottom). SP, signal peptide; LNS, Lamin G-domain 

repeats, neurexins, and sex hormone-binding globulin; E, EGF-like sequences; CHO, 

carbohydrate attachment site; T, transmembrane region; blue numbered arrows, positions of 

canonical alternative splice sites (Ullrich et al., 1995). “-” corresponds to the no-insert 

variant, “+” corresponds to the small insert, and “++” corresponds to the large insert (see 

(Sugita et al., 2001)). N.A., not applicable. (D) Cell surface-labeling assays. HEK293T cells 

expressing pDis-Nrx-α constructs were incubated with control Ig or Ig-CST-3. The cells 

were analyzed by immunofluorescence imaging for Ig-fusion proteins (red) and HA (green). 

Representative merged images are shown. Scale bar = 10 µm (applies to all images). (E) 

Pull-down assays in solubilized mouse synaptosomal fractions. The pull-down assays were 

performed using IgC (control), IgNrx-1α-1 or IgNrx-1β-1 recombinant proteins. Equivalent 

amounts of bound proteins were analyzed using the antibodies indicated on the right side of 

the panels (Input = 5% of total).
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Table 1

α-Nrx Proteins as CST-3 Complexes Identified Through LC-MS/MS

Accession No Gene name Protein description Mascot score Peptide matches

Q9CS84 Nrx-1α Neurexin-1α 130 59

Q63374 Nrx-2α Neurexin-2α 26 29

Q6P9K9 Nrx-3α Neurexin-3α 70 48

Accession numbers refer to the Uniprot/SwissProt database.
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