
An Elegant Algorithm for the Construction of Suffix Arrays

Sanguthevar Rajasekaran1 and Marius Nicolae1

Sanguthevar Rajasekaran: rajasek@engr.uconn.edu; Marius Nicolae: marius.nicolae@engr.uconn.edu

Dept. of Computer Science and Engineering, Univ. of Connecticut, Storrs, CT, USA

Abstract

The suffix array is a data structure that finds numerous applications in string processing problems

for both linguistic texts and biological data. It has been introduced as a memory efficient

alternative for suffix trees. The suffix array consists of the sorted suffixes of a string. There are

several linear time suffix array construction algorithms (SACAs) known in the literature.

However, one of the fastest algorithms in practice has a worst case run time of O(n2). The problem

of designing practically and theoretically efficient techniques remains open.

In this paper we present an elegant algorithm for suffix array construction which takes linear time

with high probability; the probability is on the space of all possible inputs. Our algorithm is one of

the simplest of the known SACAs and it opens up a new dimension of suffix array construction

that has not been explored until now. Our algorithm is easily parallelizable. We offer parallel

implementations on various parallel models of computing. We prove a lemma on the ℓ-mers of a

random string which might find independent applications. We also present another algorithm that

utilizes the above algorithm. This algorithm is called RadixSA and has a worst case run time of

O(n log n). RadixSA introduces an idea that may find independent applications as a speedup

technique for other SACAs. An empirical comparison of RadixSA with other algorithms on

various datasets reveals that our algorithm is one of the fastest algorithms to date. The C++ source

code is freely available at http://www.engr.uconn.edu/~man09004/radixSA.zip.

Keywords

suffix array construction algorithm; parallel algorithm; high probability bounds

1. Introduction

The suffix array is a data structure that finds numerous applications in string processing

problems for both linguistic texts and biological data. It has been introduced in [1] as a

memory efficient alternative to suffix trees. The suffix array of a string T is an array A, (|T |

© 2014 Elsevier B.V. All rights reserved.

Authors contributions
SR and MN designed and analyzed the algorithms. MN implemented RadixSA and carried out the empirical experiments. SR and MN
analyzed the empirical results and drafted the manuscript.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
J Discrete Algorithms (Amst). Author manuscript; available in PMC 2015 July 01.

Published in final edited form as:
J Discrete Algorithms (Amst). 2014 July 1; 27: 21–28. doi:10.1016/j.jda.2014.03.001.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://www.engr.uconn.edu/~man09004/radixSA.zip

= |A| = n) which gives the lexicographic order of all the suffixes of T. Thus, A[i] is the

starting position of the lexicographically i-th smallest suffix of T.

The original suffix array construction algorithm [1] runs in O(n log n) time. It is based on a

technique called prefix doubling: assume that the suffixes are grouped into buckets such that

suffixes in the same bucket share the same prefix of length k. Let bi be the bucket number

for suffix i. Let qi = (bi, bi+k). Sort the suffixes with respect to qi using radix sort. As a

result, the suffixes become sorted by their first 2k characters. Update the bucket numbers

and repeat the process until all the suffixes are in buckets of size 1. This process takes no

more than log n rounds. The idea of sorting suffixes in one bucket based on the bucket

information of nearby suffixes is called induced copying. It appears in some form or another

in many of the algorithms for suffix array construction.

Numerous papers have been written on suffix arrays. A survey on some of these algorithms

can be found in [2]. The authors of [2] categorize suffix array construction algorithms

(SACA) into five based on the main techniques employed: 1) Prefix Doubling (examples

include [1] - run time = O(n log n); [3] - run time = O(n log n)); 2) Recursive (examples

include [4] - run time = O(n log log n)); 3) Induced Copying (examples include [5] -

); 4) Hybrid (examples include [6] and [7] - run time = O(n2 log n));

and 5) Suffix Tree (examples include [8] - run time = O(n log σ) where σ is the size of the

alphabet).

In 2003, three independent groups [7, 9, 10] found the first linear time suffix array

construction algorithms which do not require building a suffix tree beforehand. For example,

in [7] the suffixes are classified as either L or S. Suffix i is an L suffix if it is

lexicographically larger than suffix i + 1, otherwise it is an S suffix. Assume that the number

of L suffixes is less than n/2, if not, do this for S suffixes. Create a new string where the

segments of text in between L suffixes are renamed to single characters. The new text has

length no more than n/2 and we recursively find its suffix array. This suffix array gives the

order of the L suffixes in the original string. This order is used to induce the order of the

remaining suffixes.

Another linear time algorithm, called skew, is given in [9]. It first sorts those suffixes i with i

mod 3 ≠ 0 using a recursive procedure. The order of these suffixes is then used to infer the

order of the suffixes with i mod 3 = 0. Once these two groups are determined we can

compare one suffix from the first group with one from the second group in constant time.

The last step is to merge the two sorted groups, in linear time.

Several other SACAs have been proposed in the literature in recent years (e.g., [11, 12]).

Some of the algorithms with superlinear worst case run times perform better in practice than

the linear ones. One of the currently best performing algorithms in practice is the BP R

algorithm of [12] which has an asymptotic worst-case run time of O(n2). BP R first sorts all

the suffixes up to a certain depth, then focuses on one bucket at a time and repeatedly refines

it into sub-buckets.

Rajasekaran and Nicolae Page 2

J Discrete Algorithms (Amst). Author manuscript; available in PMC 2015 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

In this paper we present an elegant algorithm for suffix array construction. This algorithm

takes linear time with high probability. Here the probability is on the space of all possible

inputs. Our algorithm is one of the simplest algorithms known for constructing suffix arrays.

It opens up a new dimension in suffix array construction, i.e., the development of algorithms

with provable expected run times. This dimension has not been explored before. We prove a

lemma on the ℓ-mers of a random string which might find independent applications. Our

algorithm is also nicely parallelizable. We offer parallel implementations of our algorithm

on various parallel models of computing.

We also present another algorithm for suffix array construction that utilizes the above

algorithm. This algorithm, called RadixSA, is based on bucket sorting and has a worst case

run time of O(n log n). It employs an idea which, to the best of our knowledge, has not been

directly exploited until now. RadixSA selects the order in which buckets are processed

based on a heuristic such that, downstream, they impact as many other buckets as possible.

This idea may find independent application as a standalone speedup technique for other

SACAs based on bucket sorting. RadixSA also employs a generalization of Seward’s copy

method [13] (initially described in [14]) to detect and handle repeats of any length. We

compare RadixSA with other algorithms on various datasets.

2. A Useful Lemma

Let Σ be an alphabet of interest and let S = s1s2 … sn ∈ Σ*. Consider the case when S is

generated randomly, i.e., each si is picked uniformly randomly from Σ (1 ≤ i ≤ n). Let L be

the set of all ℓ-mers of S. Note that |L| = n − ℓ + 1. What can we say about the independence

of these ℓ-mers? In several papers analyses have been done assuming that these ℓ-mers are

independent (see e.g., [15]). These authors point out that this assumption may not be true but

these analyses have proven to be useful in practice. In this Section we prove the following

Lemma on these ℓ-mers.

Lemma 1—Let L be the set of all ℓ-mers of a random string generated from an alphabet Σ.

Then, the ℓ-mers in L are pairwise independent. These ℓ-mers need not be k-way

independent for k ≥ 3.

Proof: Let A and B be any two ℓ-mers in L. If x and y are non-overlapping, clearly, Prob[A =

B] = (1/σ)ℓ, where σ = |Σ|. Thus, consider the case when x and y are overlapping.

Let Pi = sisi+1 … si+ℓ−1, for 1 ≤ i ≤ (n − ℓ + 1). Let A = Pi and B = Pj with i < j and j ≤ (i + ℓ

− 1). Also let j = i + k where 1 ≤ k ≤ (ℓ − 1).

Consider the special case when k divides ℓ. If A = B, then it should be the case that si = si+k =

si+2k = ···= si+ℓ; si+1 = si+k+1 = si+2k+1 = ···= si+ℓ+1; ···; and si+k−1 = si+2k−1 = si+3k−1 = ···=

si+ℓ+k−1. In other words, we have k series of equalities. Each series is of length (ℓ/k) + 1. The

probability of all of these equalities is .

Rajasekaran and Nicolae Page 3

J Discrete Algorithms (Amst). Author manuscript; available in PMC 2015 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

As an example, let S = abcdefghi, ℓ = 4, k = 2, A = P1, and B = P3. In this case, the following

equalities should hold: a = c = e and b = d = f. The probability of all of these equalities is

(1/σ)2(1/σ)2 = (1/σ)4 = (1/σ)ℓ.

Now consider the general case (where k may not divide ℓ). Let ℓ = qk + r for some integers q

and r where r < k. If A = B, the following equalities will hold: si = si+k = si+2k = ···=

si+⌊(ℓ+k−1)/k⌋k; si+1 = si+1+k = si+1+2k = ···= si+1+⌊(ℓ+k−2)/k⌋k; ···; and si+k−1 = si+k−1+k =

si+k−1+2k = ···= si+k−1+⌊(ℓ/k)⌋k.

Here again we have k series of equalities. The number of elements in the qth series is

, for 1 ≤ q ≤ k. The probability of all of these equalities is (1/σ)x where

.

The fact that the ℓ-mers of L may not be k-way independent for k ≥ 3 is easy to see. For

example, let S = abcdefgh, ℓ = 3, A = P1, B = P3, and C = P4. What is Prob.[A = B = C]? If A

= B = C, then it should be the case that a = c, b = d = a, b = c = e, and c = f. In other words,

a = b = c = d = e = f. The probability of this happening is (1/σ)5 ≠ (1/σ)6.

Note: To the best of our knowledge, the above lemma cannot be found in the existing

literature. In [16] a lemma is proven on the expected depth of insertion of a suffix tree. If

anything, this only very remotely resembles our lemma but is not directly related. In

addition the lemma in [16] is proven only in the limit (when n tends to ∞).

Our Basic Algorithm

Let S = s1s2 ···sn be the given input string. Assume that S is a string randomly generated

from an alphabet Σ. In particular, each si is assumed to have been picked uniformly

randomly from Σ (for 1 ≤ i ≤ n). For all the algorithms presented in this paper, no

assumption is made on the size of Σ. In particular, it could be anything. For example, it

could be O(1), O(nc) (for any constant c), or larger.

The problem is to produce an array A[1 : n] where A[i] is the starting position of the ith

smallest suffix of S, for 1 ≤ i ≤ n. The basic idea behind our algorithm is to sort the suffixes

only with respect to their prefixes of length O(log n) (bits). The claim is that this amount of

sorting is enough to order the suffixes with high probability. By high probability we mean a

probability of ≥ (1 − n−α) where α is the probability parameter (typically assumed to be a

constant ≥1). The probability space under concern is the space of all possible inputs.

Let Si stand for the suffix that starts at position i, for 1 ≤ i ≤ n. In other words, Si = sisi+1

···sn. Let Pi = sisi+1 ···si+ℓ−1, for i ≤ (n − ℓ). When i > (n − ℓ), let Pi = Si. The value of ℓ will

be decided in the analysis. A pseudocode of our basic algorithm follows.

Rajasekaran and Nicolae Page 4

J Discrete Algorithms (Amst). Author manuscript; available in PMC 2015 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Algorithm SA1

Sort P1, P2, …, Pn using radix sort;

The above sorting partitions the Pi’s into buckets where equal ℓ-mers are in the same bucket;

Let these buckets be B1, B2, …, Bm where m ≤ n;

for i := 1 to m do

 if |Bi| > 1 then sort the suffixes corresponding to the ℓ-mers in Bi using any relevant algorithm;

Lemma 2—Algorithm SA1 has a run time of O(n) with high probability.

Proof: Consider a specific Pi and let B be the bucket that Pi belongs to after the radix

sorting step in Algorithm SA1. How many other Pj’s will there be in B? Using Lemma 1,

Prob.[Pi = Pj] = (1/σ)ℓ. This means that Prob.[∃j : i ≠ j&Pi = Pj] ≤ n(1/σ)ℓ. As a result, Prob.

[∃j : |Bj| > 1] ≤ n2(1/σ)ℓ. If ℓ ≥ ((α + 2) logσ n), then, n2(1/σ)ℓ ≤ n−α.

In other words, if ℓ ≥ ((α + 2) logσ n), then each bucket will be of size 1 with high

probability. Also, the radix sort will take O(n) time. Note that we only need to sort O(log n)

bits of each Pi (1 ≤ i ≤ n) and this sorting can be done in O(n) time (see e.g., [17]).

Observation 1—We could have a variant of the algorithm where if any of the buckets is of

size greater than 1, we abort this algorithm and use another algorithm. A pseudocode

follows.

Algorithm SA2

1 Sort P1, P2, …, Pn using radix sort;

The above sorting partitions the Pi’s into buckets where equal ℓ-mers are in the same bucket;

Let these buckets be B1, B2, …, Bm where m ≤ n;

2 if |Bi| = 1 for each i, 1 ≤ i ≤ m

3 then output the suffix array and quit;

4 else use another algorithm (let it be Algorithm SA) to find and output the suffix array;

Observation 2—Algorithm SA1 as well as Algorithm SA2 run in O(n) time on at least (1

− n−α) fraction of all possible inputs. Also, if the run time of Algorithm SA is t(n), then the

expected run time of Algorithm SA2 is (1 − n−α)O(n) + n−α(O(n) + t(n)). For example, if

Algorithm SA is the skew algorithm [9], then the expected run time of Algorithm SA2 is

O(n) (the underlying constant will be smaller than the constant in the run time of skew).

Observation 3—In general, if T (n) is the run time of Algorithm SA2 lines 1 through 3

and if t(n) is the run time of Algorithm SA, then the expected run time of Algorithm SA2 is

(1 − n−α)T (n) + n−α(T (n) + t(n)).

The case of non-uniform probabilities—In the above algorithm and analysis we have

assumed that each character in S is picked uniformly randomly from Σ. Let Σ = {a1, a2, …,

Rajasekaran and Nicolae Page 5

J Discrete Algorithms (Amst). Author manuscript; available in PMC 2015 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

aσ}. Now we consider the possibility that for any si ∈ S, Prob.[si = aj] = pj, 1 ≤ i ≤ n; 1 ≤ j ≤

σ. For any two ℓ-mers A and B of S we can show that . In this

case, we can employ Algorithms SA1 and SA2 with ℓ ≥ (α + 2) log1/P n, where

.

Observation 4—Both SA1 and SA2 can work with any alphabet size. If the size of the

alphabet is O(1), then each Pi will consist of O(log n) characters from Σ. If |Σ| = Θ(nc) for

some constant c, then Pi will consist of O(1) characters from Σ. If |Σ| = ω(nc) for any

constant c, then each Pi will consist of a prefix (of length O(log n) bits) of a character in Σ.

3. Parallel Versions

In this Section we explore the possibility of implementing SA1 and SA2 on various models

of parallel computing.

3.1. Parallel Disks Model

In a Parallel Disks Model (PDM), there is a (sequential or parallel) computer whose core

memory is of size M. The computer has D parallel disks. In one parallel I/O, a block of size

B from each of the D disks can be fetched into the core memory. The challenge is to devise

algorithms for this model that perform the least number of I/O operations. This model has

been proposed to alleviate the I/O bottleneck that is common for single disk machines

especially when the dataset is large. In the analysis of PDM algorithms the focus is on the

number of parallel I/Os and typically the local computation times are not considered. A

lower bound on the number of parallel I/Os needed to sort N elements on a PDM is

. Numerous asymptotically optimal parallel algorithms have been devised for

sorting on the PDM. For practical values of N, M, D, and B, the lower bound basically

means a constant number of passes through the data. Therefore, it is imperative to design

algorithms wherein the underlying constants in the number of I/Os is small. A number of

algorithms for different values of N, M, D, and B that take a small number of passes have

been proposed in [18].

One of the algorithms given in [18] is for sorting integers. In particular it is shown that we

can sort N random integers in the range [1, R] (for any R) in passes through

the data, where ν is a constant < 1. This bound holds with probability ≥ (1 − N−α), this

probability being computed in the space of all possible inputs.

We can adapt the algorithm of [18] for constructing suffix arrays as follows. We assume that

the word length of the machine is O(log n). This is a standard assumption made in the

algorithms literature. Note that if the length of the input string is n, then we need a word

length of at least log n to address the suffixes. To begin with, the input is stored in the D

disks striped uniformly. We generate all the ℓ-mers of S in one pass through the input. Note

that each ℓ-mer occupies one word of the machine. The generated ℓ-mers are stored back

into the disks. Followed by this, these ℓ-mers are sorted using the algorithm of [18]. At the

Rajasekaran and Nicolae Page 6

J Discrete Algorithms (Amst). Author manuscript; available in PMC 2015 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

end of this sorting, we have m buckets where each bucket has equal ℓ-mers. As was shown

before, each bucket is of size 1 with high probability.

We get the following:

Theorem 1—We can construct the suffix array for a random string of length n in

 passes through the data, where ν is a constant < 1. This bound holds for ≥

(1 − n−α) fraction of all possible inputs.

3.2. The Mesh and the Hypercube

Optimal algorithms exist for sorting on interconnection networks such as the mesh (see e.g.,

[19] and [20]), the hypercube (see e.g., [21]), etc. We can use these in conjunction with

Algorithms SA1 and SA2 to develop suffix array construction algorithms for these models.

Here again we can construct all the ℓ-mers of the input string. Assume that we have an

interconnection network with n nodes and each node stores one of the characters in the input

string. In particular node i stores si, for 1 ≤ i ≤ n. Depending on the network, a relevant

indexing scheme has to be used. For instance, on the mesh we can use a snake-like row-

major indexing. Node i communicates with nodes i + 1, i + 2, …, i + ℓ − 1 to get si+1, si+2,

…, si+ℓ−1. The communication time needed is O(log n). Once the node i has these characters

it forms Pi. Once the nodes have generated the ℓ-mers, the rest of the algorithm is similar to

the Algorithm SA1 or SA2. As a result, we get the following:

Theorem 2—There exists a randomized algorithm for constructing the suffix array for a

random string of length n in O(log n) time on a n-node hypercube with high probability. The

run time of [21]’s algorithm is O(log n) with high probability, the probability being

computed in the space of all possible outcomes for the coin flips made. Also, the same can

be done in time on a mesh with high probability.

Observation—Please note that on a n-node hypercube, sorting n elements will need Ω(log

n) time even if these elements are bits, since the diameter of the hypercube is Ω(log n). For

the same reason, sorting n elements on a mesh will need time since

 is the diameter.

3.3. PRAM Algorithms

In [9] several PRAM algorithms are given. One such algorithm is for the EREW PRAM that

has a run time of O(log2 n), the work done being O(n log n). We can implement Algorithm

SA2 on the EREW PRAM so that it has an expected run time of O(log n), the expected work

done being O(n log n). Details follow. Assume that we have n processors. 1) Form all

possible ℓ-mers. Each ℓ-mer occupies one word; 2) Sort these ℓ-mers using the parallel

merge sort algorithm of [22]; 3) Using a prefix computation check if there is at least one

bucket of size > 1; 4) Broadcast the result to all the processors using a prefix computation;

5) If there is at least one bucket of size more than one, use the parallel algorithm of [9].

Steps 1 through 4 of the above algorithm take O(log n) time each. Step 5 takes O(log2 n)

time. From Observation 3, the expected run time of this algorithm is (1 − n−α)O(log n) +

Rajasekaran and Nicolae Page 7

J Discrete Algorithms (Amst). Author manuscript; available in PMC 2015 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

n−α(O(log n) + O(log2 n)) = O(log n). Also, the expected work done by the algorithm is

(1−n−α)O(n log n)+n−α(O(n log n)+ O(n log2 n)) = O(n log n).

4. Practical Implementation

In this section we discuss the design and implementation of the RadixSA algorithm. The

following is the pseudocode of the RadixSA algorithm:

Algorithm RadixSA

1. radixSort all suffixes by d characters

2. let b[i] = bucket of suffix i

3. for i := n down to 1 do

4. if (b[i].size > 1) then

5. if detectPeriods(b[i])then

6. handlePeriods(b[i]);

7. else radixSort all suffixes j ∈ b[i] with respect to b[j + d]

A bucket is called singleton if it contains only one suffix, otherwise it is called non-

singleton. A singleton suffix is the only suffix in a singleton bucket. A singleton suffix has

its final position in the suffix array already determined.

We number the buckets such that two suffixes in different buckets can be compared by

comparing their bucket numbers. The for loop traverses the suffixes from the last to the first

position in the text and sorts the bucket in which the current suffix resides. This order

ensures that after each step, suffix i will be found in a singleton bucket. This is easy to prove

by induction. Thus, at the end of the loop, all the buckets will be singletons. If each bucket is

of size O(1) before the for loop is entered, then it is easy to see that the algorithm runs in

O(n) time. In lines 5 and 6 we detect periodic regions of the input. This is discussed in the

next section.

Even if the buckets are not of constant size (before the for loop is entered) the algorithm is

still linear if every suffix takes part in no more than a constant number of radix sort

operations. The order in the for loop is deceptively simple but it sorts the buckets in an order

which favors quick breakdown of non-singleton buckets. Intuitively, say a pattern P =

a1a2a3 … ak appears multiple times in the input. After the initial radix sort, we will have the

suffixes which start with a1 in a bucket b1, the suffixes which start with a2 in a bucket b2

and so on. Assume that the initial sorting depth D is much smaller than k. If we sort these

buckets in the order b1, b2, …, bk most of them remain the same, except that now we know

we have them sorted by at least 2D characters. On the other hand, our algorithm will sort

these buckets in the order bk, bk−1, …, b1. If bucket bk separates into singleton buckets after

sorting, then all the other buckets will subsequently separate into singletons. This way, every

suffix in these buckets is placed in a singleton bucket at a constant cost per suffix. Due to

this traversal order, in practice, our algorithm performs a small number of accesses to each

suffix, as we show in the results section.

Rajasekaran and Nicolae Page 8

J Discrete Algorithms (Amst). Author manuscript; available in PMC 2015 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Table 4 shows an example of how the algorithm works. Each column illustrates the state of

the suffix array after sorting one of the buckets. The order in which buckets are chosen to be

sorted follows the pseudocode of RadixSA. The initial radix sort has depth 1 for illustration

purpose. The last column contains the fully sorted suffix array.

However, the algorithm as is described above has a worst case runtime of (proof

omitted). We can improve the runtime to O(n log n) as follows. If, during the for loop, a

bucket contains suffixes which have been accessed more than a constant C number of times,

we skip that bucket. This ensures that the for loop takes linear time. If at the end of the loop

there have been any buckets skipped, we do another pass of the for loop. After each pass,

every remaining non-singleton bucket has a sorting depth at least C + 1 times greater than in

the previous round (easy to prove by induction). Thus, no more than a logarithmic number

of passes will be needed and so the algorithm has worst case runtime O(n log n).

4.1. Periods

In lines 5 and 6 of the RadixSA pseudocode we detect periodic regions of the input as

follows: if the suffixes starting at positions i, i − p, i − 2p, … appear in the same bucket b,

and bucket b is currently sorted by d ≥ p characters, it is easy to see that we have found a

periodic region of the input, where the period P is of length p. In other words, suffix i is of

the form P Si+p+1…n, suffix i − p is of the form P P Si+p+1…n, suffix i − 2p is of the form P P

P Si+p+1…n and so on. We can easily see that these suffixes can be placed in separate

buckets based on the relationship between suffixes i and i + p by the following rule. If suffix

i is less than suffix i + p, then suffix i − p is less than suffix i, suffix i − 2p is less than i − p,

and so on. The case where i is greater than i + p is analogous.

The depth of each bucket increases after each sorting, therefore periods of any length are

eventually detected. This method can be viewed as a generalization of Seward’s copy

method [13] where a portion of text of size p is treated as a single character.

4.2. Implementation Details

Radix sorting is a central operation in RadixSA. We tried several implementations, both

with Least Significant Digit (LSD) and Most Significant Digit (MSD) first order. The best of

our implementations was a cache-optimized LSD radix sort. The cache optimization is the

following. In a regular LSD radix sort, for every digit we do two passes through the data:

one to compute bucket sizes, one to assign items to buckets. We can save one pass through

the data per digit if in the bucket assignment pass we also compute bucket sizes for the next

round [23]. We took this idea one step forward and we computed bucket counts for all

rounds before doing any assignment. Since in our program we only sort numbers of at most

64 bits, we have a constant number of bucket size arrays to store in memory. To sort small

buckets we employ an iterative merge sort.

To further improve cache performance, in the bucket array we store not only the bucket start

position but also a few bits indicating the length of the bucket. Since the bucket start

requires ⌈log n⌉ bits, we use the remaining bits, up to the machine word size, to store the

Rajasekaran and Nicolae Page 9

J Discrete Algorithms (Amst). Author manuscript; available in PMC 2015 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

bucket length. This prevents a lot of cache misses when small buckets are the majority. For

longer buckets, we store the lengths in a separate array which also stores bucket depths.

The total additional memory used by the algorithm, besides input and output, is 5n + o(n)

bytes: 4n for the bucket array, n bytes for bucket depths and lengths, and a temporary buffer

for radix sort.

5. Experimental Results

One of the fastest SACAs, in practice, is the Bucket Pointer Refinement (BPR) algorithm

[12]. Version 0.9 of BPR has been compared [12] with several other algorithms: deep

shallow [24], cache and copy by Seward [13], qsufsort [25], difference-cover [26], divide

and conquer by Kim et al. [4], and skew [9]. BPR 0.9 has been shown to outperform these

algorithms on most inputs [12]. Version 2.0 of BPR further improves over version 0.9. We

compare RadixSA with both versions of BPR.

Furthermore, a large set of SACAs are collected in the jSuffixArrays library [27] under a

unified interface. This library contains Java implementations of: DivSufSort [28], QsufSort

[25], SAIS [11], skew [9] and DeepShallow [24]. We include them in the comparison with

the note that these Java algorithms may incur a performance penalty compared to their C

counterparts.

We tested all algorithms on an Intel core i3 machine with 4GB of RAM, Ubuntu 11.10

Operating System, Sun Java 1.6.0 26 virtual machine and gcc 4.6.1. The Java Virtual

Machine was allowed to use up to 3.5 GB of memory. As inputs, we used the datasets of

[12] which include DNA data, protein data, English alphabet data, general ASCII alphabet

data and artificially created strings such as periodic and Fibonacci strings1.

For every dataset, we executed each algorithm 10 times. The average run times are reported

in table 2 where the best run times are shown in bold. Furthermore, we counted the number

of times RadixSA accesses each suffix. The access counts are shown in figure 1. For almost

all datasets, the number of times each suffix is accessed is a small constant. For the

Fibonacci string the number of accesses is roughly logarithmic in the length of the input.

6. Discussion and Conclusions

In this paper we have presented an elegant algorithm for the construction of suffix arrays.

This algorithm is one of the simplest algorithms known for suffix arrays construction and

runs in O(n) time on a large fraction of all possible inputs. It is also nicely parallelizable. We

have shown how our algorithm can be implemented on various parallel models of

computing.

We have also given an extension of this algorithm, called RadixSA, which has a worst case

runtime of O(n log n). RadixSA uses a deceptively simple heuristic to select the order in

which buckets are processed so as to reduce the number of operations performed. As a

1Fibonacci strings are similar to Fibonacci numbers, but addition is replaced with concatenation (F0 = b, F1 = a, Fi is a concatenation
of Fi−1 and Fi−2).

Rajasekaran and Nicolae Page 10

J Discrete Algorithms (Amst). Author manuscript; available in PMC 2015 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

result, RadixSA performed a small number of accesses per suffix on all but one of the inputs

tested (the Fibonacci string). This heuristic, together with a careful implementation designed

to increase cache performance, makes RadixSA very efficient in practice.

The RadixSA heuristic could find application as an independent speedup technique for other

algorithms which use bucket sorting and induced copying. For example, BPR could use it to

determine the order in which it chooses buckets to be refined. A possible research direction

is to improve RadixSA’s heuristic. Buckets can be processed based on a topological sorting

of their dependency graph. Such a graph has at most n/2 nodes, one for each non singleton

bucket, and at most n/2 edges. Thus, it has the potential for a lightweight implementation.

An interesting open problem is to devise a randomized algorithm that has a similar

performance.

Acknowledgments

This work has been supported in part by the following grants: NSF 0829916 and NIH R01LM010101.

References

1. Manber, U.; Myers, G. Suffix arrays: a new method for on-line string searches. Proceedings of the
first annual ACM-SIAM symposium on Discrete algorithms, SODA ’90; Philadelphia, PA, USA:
Society for Industrial and Applied Mathematics; 1990. p. 319-327.

2. Puglisi S, Smyth W, Turpin A. A taxonomy of suffix array construction algorithms. ACM Comput
Surv. 39(2)10.1145/1242471.1242472

3. Larsson, J.; Sadakane, K. Tech Rep LU-CS-TR: 99-214 [LUNFD6/(NFCS-3140)/1-20/(1999)].
Department of Computer Science, Lund University; Sweden: 1999. Faster suffix sorting.

4. Kim, D.; Jo, J.; Park, H. A fast algorithm for constructing suffix arrays for fixed size alphabets. In:
Ribeiro, CC.; Martins, SL., editors. Proceedings of the 3rd Workshop on Experimental and Efficient
Algorithms (WEA 2004). Springer-Verlag; Berlin: 2004. p. 301-314.

5. Baron D, Bresler Y. Antisequential suffix sorting for bwt-based data compression. IEEE
Transactions on Computers. 2005; 54 (4):385–397.

6. Itoh, H.; Tanaka, H. Proceedings of the sixth Symposium on String Processing and Information
Retrieval. IEEE Computer Society; Cancun, Mexico: 1999. An efficient method for in memory
construction of suffix arrays; p. 81-88.

7. Ko P, Aluru S. Space efficient linear time construction of suffix arrays. CPM. 2003:200–210.

8. Kurtz S. Reducing the space requirement of suffix trees, Software. Practice and Experience. 1999;
29 (13):1149–1171.

9. Kärkkäinen J, Sanders P. Simple linear work suffix array construction. ICALP. 2003:943–955.

10. Kim D, Sim J, Park H, Park K. Linear-time construction of suffix arrays. CPM. 2003:186–199.

11. Nong, G.; Zhang, S.; Chan, W. Linear suffix array construction by almost pure induced-sorting.
Data Compression Conference; 2009. p. 193-202.

12. Schürmann KB, Stoye J. An incomplex algorithm for fast suffix array construction. Softw: Pract
Exper. 2007; 37 (3):309–329.

13. Seward, J. On the performance of bwt sorting algorithms. Proceedings of the Conference on Data
Compression, DCC ’00; Washington, DC, USA: IEEE Computer Society; 2000. p. 173

14. Burrows M, Wheeler D. A block-sorting lossless data compression algorithm. Tech Rep. 1994; 124

15. Buhler J, Tompa M. Finding motifs using random projections. RE-COMB. 2001:69–76.

16. Szpankowski, W. Average Case Analysis of Algorithms on Sequences. John Wiley & Sons, Inc;
2001.

17. Horowitz, E.; Sahni, S.; Rajasekaran, S. Computer Algorithms. Silicon Press; 2008.

Rajasekaran and Nicolae Page 11

J Discrete Algorithms (Amst). Author manuscript; available in PMC 2015 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

18. Rajasekaran S, Sen S. Optimal and practical algorithms for sorting on the pdm. IEEE Trans
Computers. 2008; 57 (4):547–561.

19. Thompson C, Kung HT. Sorting on a mesh-connected parallel computer. Commun ACM. 1977; 20
(4):263–271.

20. Kaklamanis, C.; Krizanc, D.; Narayanan, L.; Tsantilas, T. Randomized sorting and selection on
mesh-connected processor arrays (preliminary version). Proceedings of the third annual ACM
symposium on Parallel algorithms and architectures, SPAA ’91; New York, NY, USA: ACM;
1991. p. 17-28.

21. Reif J, Valiant L. A logarithmic time sort for linear size networks. J ACM. 1987; 34 (1):60–76.

22. Cole R. Parallel merge sort. SIAM J Comput. 1988; 17 (4):770–785.

23. LaMarca, A.; Ladner, RE. The influence of caches on the performance of sorting. Proceedings of
the eighth annual ACM-SIAM symposium on Discrete algorithms, SODA ’97; Philadelphia, PA,
USA: Society for Industrial and Applied Mathematics; 1997. p. 370-379.

24. Manzini G, Ferragina P. Engineering a lightweight suffix array construction algorithm.
Algorithmica. 2004; 40:33–50.

25. Larsson N, Sadakane K. Faster suffix sorting. Theor Comput Sci. 2007; 387 (3):258–272.

26. Burkhardt, S.; Kärkkäinen, J. Fast lightweight suffix array construction and checking. In: Baeza-
Yates, R.; Chávez, E.; Crochemore, M., editors. Combinatorial Pattern Matching, Vol. 2676 of
Lecture Notes in Computer Science. Springer; Berlin / Heidelberg: 2003. p. 55-69.

27. Osiński, S.; Weiss, D. jsuffixarrays: Suffix arrays for java. 2002–2011. http://
labs.carrotsearch.com/jsuffixarrays.html

28. Mori, Y. Short description of improved two-stage suffix sorting algorithm. 2005. http://
homepage3.nifty.com/wpage/software/itssort.txt

Rajasekaran and Nicolae Page 12

J Discrete Algorithms (Amst). Author manuscript; available in PMC 2015 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://labs.carrotsearch.com/jsuffixarrays.html
http://labs.carrotsearch.com/jsuffixarrays.html
http://homepage3.nifty.com/wpage/software/itssort.txt
http://homepage3.nifty.com/wpage/software/itssort.txt

Figure 1.
Average number of times RadixSA accesses each suffix, for datasets from [12].

Rajasekaran and Nicolae Page 13

J Discrete Algorithms (Amst). Author manuscript; available in PMC 2015 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Rajasekaran and Nicolae Page 14

Table 1

Example of suffix array construction steps for string ‘cdaxcdayca‘. b[suffix] stands for the bucket of suffix.

Underlines show the depth of sorting in a bucket at a given time. The initial radix sort has depth 1 for

illustration purpose.

Initial buckets Sort b[a] Sort b[ca] Sort b[dayca] Sort b[cdayca]

a a a a a

ayca axcdayca axcdayca axcdayca axcdayca

axcdayca ayca ayca ayca ayca

ca ca ca ca ca

cdayca cdayca cdayca cdayca cdaxcdayca

cdaxcdayca cdaxcdayca cdaxcdayca cdaxcdayca cdayca

dayca dayca dayca daxcdayca daxcdayca

daxcdayca daxcdayca daxcdayca dayca dayca

xcdayca xcdayca xcdayca xcdayca xcdayca

yca yca yca yca yca

J Discrete Algorithms (Amst). Author manuscript; available in PMC 2015 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Rajasekaran and Nicolae Page 15

T
ab

le
 2

C
om

pa
ri

so
n

of
 r

un
 ti

m
es

 o
n

da
ta

se
ts

 f
ro

m
 [

12
]

on
 a

 6
4-

bi
t I

nt
el

 C
O

R
E

 i3
 m

ac
hi

ne
 w

ith
 4

G
B

 o
f

R
A

M
, U

bu
nt

u
11

.1
0

O
pe

ra
tin

g
Sy

st
em

, S
un

 J
av

a
1.

6.
0

26
 a

nd
 g

cc
 4

.6
.1

. R
un

 ti
m

es
 a

re
 in

 s
ec

on
ds

, a
ve

ra
ge

d
ov

er
 1

0
ru

ns
. B

ol
d

fo
nt

 in
di

ca
te

s
th

e
be

st
 ti

m
e.

 M
L

 m
ea

ns
 o

ut
 o

f
m

em
or

y,
 T

L
 m

ea
ns

 m
or

e
th

an
 1

ho
ur

.

D
at

as
et

R
un

 t
im

e

N
am

e
L

en
gt

h
|Σ

|
R

ad
ix

SA
B

P
R

2
B

P
R

.9
D

iv
Su

f
So

rt
Q

Su
f

So
rt

SA
IS

sk
ew

D
ee

p
Sh

al
lo

w

Fi
bo

na
cc

i
20

00
00

00
2

7.
88

12
.4

8
14

.0
5

6.
81

26
.4

4
5.

50
14

.5
3

36
9.

48

pe
ri

od
 1

00
0

20
00

00
00

26
2.

12
3.

52
5.

71
3.

15
20

.4
2

6.
59

23
.2

7
T

L

pe
ri

od
 2

0
20

00
00

00
17

1.
44

1.
95

43
.3

9
1.

83
11

.0
5

2.
83

7.
15

T
L

pe
ri

od
 5

00
00

0
20

00
00

00
26

2.
78

4.
60

6.
31

4.
74

23
.3

2
8.

56
25

.6
8

28
44

.3
7

ra
nd

om
20

00
00

00
26

2.
25

3.
34

4.
87

6.
35

5.
02

11
.7

5
22

.0
5

5.
69

3E
co

li.
dn

a
14

77
63

63
5

2.
23

2.
67

3.
43

4.
00

13
.8

5
6.

14
19

.6
2

43
3.

54

4C
hl

am
yd

op
hi

la
.d

na
48

56
12

3
6

0.
61

0.
67

0.
90

1.
71

3.
24

1.
93

5.
24

4.
80

6S
tr

ep
to

co
cc

i.d
na

11
63

58
82

5
1.

63
1.

79
2.

38
2.

88
7.

08
4.

98
14

.8
8

4.
26

A
 th

al
ia

na
 C

hr
4.

dn
a

12
06

14
90

7
1.

27
1.

74
2.

40
3.

02
5.

13
5.

37
15

.7
1

3.
52

C
 e

le
ga

ns
 C

hr
1.

dn
a

14
18

80
20

5
1.

61
1.

95
2.

65
3.

21
6.

91
5.

69
17

.1
8

6.
92

E
 c

ol
i.d

na
46

38
69

0
4

0.
41

0.
51

0.
58

1.
36

1.
72

1.
96

5.
04

1.
37

H
 s

ap
ie

ns
 C

hr
22

.d
na

34
55

37
58

5
4.

40
5.

66
8.

21
7.

76
15

.3
1

15
.5

9
49

.7
0

10
.9

8

bi
bl

e
40

47
39

1
63

0.
51

0.
48

0.
80

1.
24

1.
38

1.
56

4.
64

1.
08

et
ex

t
10

52
77

33
9

14
6

19
.4

0
23

.0
9

43
.4

6
26

.5
6

62
.6

3
54

.7
0

M
L

11
9.

96

et
ex

t 5
0M

50
00

00
00

12
0

8.
13

9.
74

17
.2

6
11

.9
4

26
.4

0
24

.4
6

88
.5

7
79

.0
7

gc
c

86
63

04
00

15
0

13
.8

4
15

.5
8

24
.5

0
15

.8
4

46
.2

0
33

.6
2

13
5.

12
80

.7
8

gc
c

50
M

50
00

00
00

12
1

7.
21

9.
56

13
.2

6
8.

31
28

.4
3

17
.7

3
68

.6
5

26
4.

90

ho
w

to
39

42
21

04
19

7
5.

96
6.

35
10

.2
6

8.
41

17
.6

4
16

.6
7

64
.7

3
16

.3
3

jd
k

69
72

88
98

11
3

12
.0

7
12

.5
4

26
.8

6
12

.7
4

39
.9

2
24

.6
6

10
2.

76
58

.2
2

jd
k

50
M

50
00

00
00

11
0

8.
32

8.
30

17
.0

5
8.

91
26

.3
0

17
.5

8
71

.3
1

36
.9

8

lin
ux

11
62

54
72

0
25

6
19

.2
7

19
.3

4
29

.6
7

21
.1

7
61

.9
9

44
.4

7
M

L
58

.7
1

lin
ux

 5
0M

50
00

00
00

25
6

7.
62

7.
60

10
.5

0
8.

84
27

.5
4

18
.1

8
76

.1
0

31
.9

2

re
ut

er
s

11
47

11
15

0
93

19
.7

6
25

.0
8

60
.7

2
25

.0
7

74
.7

8
49

.1
7

M
L

87
.5

7

re
ut

er
s

50
M

50
00

00
00

91
7.

84
9.

53
20

.4
1

10
.2

4
26

.9
4

20
.2

9
77

.2
5

33
.6

8

J Discrete Algorithms (Amst). Author manuscript; available in PMC 2015 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Rajasekaran and Nicolae Page 16

D
at

as
et

R
un

 t
im

e

N
am

e
L

en
gt

h
|Σ

|
R

ad
ix

SA
B

P
R

2
B

P
R

.9
D

iv
Su

f
So

rt
Q

Su
f

So
rt

SA
IS

sk
ew

D
ee

p
Sh

al
lo

w

rf
c

11
64

21
90

0
12

0
21

.1
8

22
.0

8
42

.7
5

22
.5

5
66

.2
8

47
.9

9
M

L
42

.1
4

rf
c

50
M

50
00

00
00

11
0

8.
23

8.
39

14
.8

5
9.

24
24

.8
0

19
.6

1
76

.6
4

16
.6

3

sp
ro

t
10

96
17

18
6

66
18

.4
8

22
.7

9
47

.0
7

25
.5

2
69

.5
8

50
.4

0
M

L
48

.6
9

sp
ro

t 5
0M

50
00

00
00

66
7.

57
9.

10
16

.8
1

10
.8

8
28

.0
7

21
.6

9
78

.4
7

20
.0

3

w
3c

10
42

01
57

8
25

6
18

.8
2

18
.7

8
35

.9
4

20
.0

1
74

.0
9

38
.2

9
M

L
19

64
.8

0

w
3c

 5
0M

50
00

00
00

25
5

7.
93

8.
33

17
.6

7
8.

73
25

.9
5

17
.2

6
71

.4
2

36
.5

9

w
or

ld
24

73
39

9
94

0.
30

0.
27

0.
42

0.
91

0.
86

0.
91

2.
35

0.
78

J Discrete Algorithms (Amst). Author manuscript; available in PMC 2015 July 01.

