1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny Yd-HIN

"% NIH Public Access

(A & Author Manuscript
st

NATTG,
fiy

Published in final edited form as:
J Discrete Algorithms (Amst). 2014 July 1; 27: 21-28. doi:10.1016/j.jda.2014.03.001.

An Elegant Algorithm for the Construction of Suffix Arrays

Sanguthevar Rajasekaran! and Marius Nicolael
Sanguthevar Rajasekaran: rajasek@engr.uconn.edu; Marius Nicolae: marius.nicolae@engr.uconn.edu
Dept. of Computer Science and Engineering, Univ. of Connecticut, Storrs, CT, USA

Abstract

The suffix array is a data structure that finds numerous applications in string processing problems
for both linguistic texts and biological data. It has been introduced as a memory efficient
alternative for suffix trees. The suffix array consists of the sorted suffixes of a string. There are
several linear time suffix array construction algorithms (SACAs) known in the literature.
However, one of the fastest algorithms in practice has a worst case run time of O(n?). The problem
of designing practically and theoretically efficient techniques remains open.

In this paper we present an elegant algorithm for suffix array construction which takes linear time
with high probability; the probability is on the space of all possible inputs. Our algorithm is one of
the simplest of the known SACAs and it opens up a new dimension of suffix array construction
that has not been explored until now. Our algorithm is easily parallelizable. We offer parallel
implementations on various parallel models of computing. We prove a lemma on the ¢-mers of a
random string which might find independent applications. We also present another algorithm that
utilizes the above algorithm. This algorithm is called RadixSA and has a worst case run time of
O(n log n). RadixSA introduces an idea that may find independent applications as a speedup
technique for other SACAs. An empirical comparison of RadixSA with other algorithms on
various datasets reveals that our algorithm is one of the fastest algorithms to date. The C++ source
code is freely available at http://www.engr.uconn.edu/~man09004/radixSA.zip.

Keywords
suffix array construction algorithm; parallel algorithm; high probability bounds

1. Introduction

The suffix array is a data structure that finds numerous applications in string processing
problems for both linguistic texts and biological data. It has been introduced in [1] as a
memory efficient alternative to suffix trees. The suffix array of a string Tis an array A, (|T |

© 2014 Elsevier B.V. All rights reserved.

Authors contributions

SR and MN designed and analyzed the algorithms. MN implemented RadixSA and carried out the empirical experiments. SR and MN
analyzed the empirical results and drafted the manuscript.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

http://www.engr.uconn.edu/~man09004/radixSA.zip

1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Rajasekaran and Nicolae Page 2

= |A] = n) which gives the lexicographic order of all the suffixes of T. Thus, A[i] is the
starting position of the lexicographically i-th smallest suffix of T.

The original suffix array construction algorithm [1] runs in O(n log n) time. It is based on a
technique called prefix doubling: assume that the suffixes are grouped into buckets such that
suffixes in the same bucket share the same prefix of length k. Let b; be the bucket number
for suffix i. Let g; = (bj, bj+k). Sort the suffixes with respect to g; using radix sort. As a
result, the suffixes become sorted by their first 2k characters. Update the bucket numbers
and repeat the process until all the suffixes are in buckets of size 1. This process takes no
more than log n rounds. The idea of sorting suffixes in one bucket based on the bucket
information of nearby suffixes is called induced copying. It appears in some form or another
in many of the algorithms for suffix array construction.

Numerous papers have been written on suffix arrays. A survey on some of these algorithms
can be found in [2]. The authors of [2] categorize suffix array construction algorithms
(SACA) into five based on the main techniques employed: 1) Prefix Doubling (examples
include [1] - run time = O(n log n); [3] - run time = O(n log n)); 2) Recursive (examples
include [4] - run time = O(n log log n)); 3) Induced Copying (examples include [5] -

run time=0(n \/@)); 4) Hybrid (examples include [6] and [7] - run time = O(n? log n));
and 5) Suffix Tree (examples include [8] - run time = O(n log o) where ¢is the size of the
alphabet).

In 2003, three independent groups [7, 9, 10] found the first linear time suffix array
construction algorithms which do not require building a suffix tree beforehand. For example,
in [7] the suffixes are classified as either L or S Suffix i is an L suffix if it is
lexicographically larger than suffix i + 1, otherwise it is an Ssuffix. Assume that the number
of L suffixes is less than n/2, if not, do this for Ssuffixes. Create a new string where the
segments of text in between L suffixes are renamed to single characters. The new text has
length no more than n/2 and we recursively find its suffix array. This suffix array gives the
order of the L suffixes in the original string. This order is used to induce the order of the
remaining suffixes.

Another linear time algorithm, called skew, is given in [9]. It first sorts those suffixes i with i
mod 3 # 0 using a recursive procedure. The order of these suffixes is then used to infer the
order of the suffixes with i mod 3 = 0. Once these two groups are determined we can
compare one suffix from the first group with one from the second group in constant time.
The last step is to merge the two sorted groups, in linear time.

Several other SACAs have been proposed in the literature in recent years (e.g., [11, 12]).
Some of the algorithms with superlinear worst case run times perform better in practice than
the linear ones. One of the currently best performing algorithms in practice is the BP R
algorithm of [12] which has an asymptotic worst-case run time of O(n?). BP R first sorts all
the suffixes up to a certain depth, then focuses on one bucket at a time and repeatedly refines
it into sub-buckets.

J Discrete Algorithms (Amst). Author manuscript; available in PMC 2015 July 01.

1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Rajasekaran and Nicolae Page 3

In this paper we present an elegant algorithm for suffix array construction. This algorithm
takes linear time with high probability. Here the probability is on the space of all possible
inputs. Our algorithm is one of the simplest algorithms known for constructing suffix arrays.
It opens up a new dimension in suffix array construction, i.e., the development of algorithms
with provable expected run times. This dimension has not been explored before. We prove a
lemma on the ¢-mers of a random string which might find independent applications. Our
algorithm is also nicely parallelizable. We offer parallel implementations of our algorithm
on various parallel models of computing.

We also present another algorithm for suffix array construction that utilizes the above
algorithm. This algorithm, called RadixSA, is based on bucket sorting and has a worst case
run time of O(n log n). It employs an idea which, to the best of our knowledge, has not been
directly exploited until now. RadixSA selects the order in which buckets are processed
based on a heuristic such that, downstream, they impact as many other buckets as possible.
This idea may find independent application as a standalone speedup technique for other
SACAs based on bucket sorting. RadixSA also employs a generalization of Seward’s copy
method [13] (initially described in [14]) to detect and handle repeats of any length. We
compare RadixSA with other algorithms on various datasets.

2. A Useful Lemma

Let ¥ be an alphabet of interest and let S= ;S ... S, € ¥". Consider the case when Sis
generated randomly, i.e., each s is picked uniformly randomly from > (1 <i <n). Let L be
the set of all ¢-mers of S Note that [L| = n - £+ 1. What can we say about the independence
of these /-mers? In several papers analyses have been done assuming that these /-mers are
independent (see e.g., [15]). These authors point out that this assumption may not be true but
these analyses have proven to be useful in practice. In this Section we prove the following
Lemma on these ¢-mers.

Lemma 1—Let L be the set of all /-mers of a random string generated from an alphabet 3.
Then, the ¢-mers in L are pairwise independent. These ¢-mers need not be k-way
independent for k> 3.

Proof: Let Aand B be any two ¢-mers in L. If x and y are non-overlapping, clearly, Prob[A =
B] = (1/0)¢, where o= |%|. Thus, consider the case when x and y are overlapping.

Let Pi=S§S+1 ... Se-1, forl<i<(n-£+1). LetA=Pjand B=Pjwithi<jandj< (i +¢
—-1). Alsoletj=i+kwhere lL<k< (£-1).

Consider the special case when k divides ¢. If A= B, then it should be the case that § = S+ =
S+2k = = S+ §41 = Skl = Szl = 0= Seg+ls 5 AN Sak-1 = Saok-1 = §43k-1 = =
S+e+k-1- In other words, we have k series of equalities. Each series is of length (¢/k) + 1. The

probability of all of these equalities is ()E/k(L)f/k ... (l)f/k:(l)é.

1
o o

J Discrete Algorithms (Amst). Author manuscript; available in PMC 2015 July 01.

1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Rajasekaran and Nicolae Page 4

As an example, let S= abcdefghi, ¢ = 4, k=2, A= Py, and B = Ps. In this case, the following
equalities should hold: a=c=eand b =d =f. The probability of all of these equalities is
(1/0)%(110)2 = (110)* = (Ll0)".

Now consider the general case (where k may not divide ¢). Let ¢ = gk + r for some integers q
and r where r < k. If A =B, the following equalities will hold: § = S+ = S+2k = =
Si+|(C+k-1)/k ks Si+1 = S+1+k = Si+142k = = S+1+[(C+k-2)/k ks 7 and Si+k-1 = Si+k-1+k =
Si+k=1+2k = "= Si+k=1+[(0/K) | k-

Here again we have k series of equalities. The number of elements in the gth series is
14 | Ltk for 1 < q < k. The probability of all of these equalities is (1/0)* where

k
=3, 1)

_ | (g+Dk4r—1 (g+1)k+r—2 (¢+1)k
o= | {WL a1k ot |l
k

+ L(qﬂlgkﬂJ n i

(q+12)kf2J 4ot L(qﬂ)k (k—r)
=(g+1)r+(k—r)g=kq+r=C¢.

The fact that the ¢-mers of L may not be k-way independent for k = 3 is easy to see. For
example, let S= abcdefgh, £ =3, A= Py, B=P3,and C= P4. What is Prob.[A=B=CJ? If A
= B =C, then it should be the case thata=c, b=d=a, b=c= ¢ and c =f. In other words,
a=b=c=d=ex=f. The probability of this happening is (1/0)° # (1/0)8.

Note: To the best of our knowledge, the above lemma cannot be found in the existing
literature. In [16] a lemma is proven on the expected depth of insertion of a suffix tree. If
anything, this only very remotely resembles our lemma but is not directly related. In
addition the lemma in [16] is proven only in the limit (when n tends to o).

Our Basic Algorithm

Let S= g5y 'S, be the given input string. Assume that Sis a string randomly generated
from an alphabet X. In particular, each s is assumed to have been picked uniformly
randomly from X (for 1 <i < n). For all the algorithms presented in this paper, no
assumption is made on the size of X. In particular, it could be anything. For example, it
could be O(1), O(n°) (for any constant c), or larger.

The problem is to produce an array A[1 : n] where A[i] is the starting position of the ith
smallest suffix of S for 1 <i < n. The basic idea behind our algorithm is to sort the suffixes
only with respect to their prefixes of length O(log n) (bits). The claim is that this amount of
sorting is enough to order the suffixes with high probability. By high probability we mean a
probability of = (1 — n™%) where « is the probability parameter (typically assumed to be a
constant =1). The probability space under concern is the space of all possible inputs.

Let § stand for the suffix that starts at position i, for 1 <i < n. In other words, § = §S+1
Sy Let Pj = 5541 *S4¢-1, fori < (n—=¢). When i > (n - £), let P; = §. The value of ¢ will
be decided in the analysis. A pseudocode of our basic algorithm follows.

J Discrete Algorithms (Amst). Author manuscript; available in PMC 2015 July 01.

1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Rajasekaran and Nicolae Page 5

Algorithm SA1

Sort Py, Py, ..., P, using radix sort;

The above sorting partitions the P;’s into buckets where equal ¢-mers are in the same bucket;
Let these buckets be By, By, ..., B,,where m< n;

fori:=1tomdo

if |Bj] > 1 then sort the suffixes corresponding to the ¢-mers in B; using any relevant algorithm;

Lemma 2—Algorithm SA1 has a run time of O(n) with high probability.

Proof: Consider a specific P; and let B be the bucket that P; belongs to after the radix
sorting step in Algorithm SA1. How many other P;’s will there be in B? Using Lemma 1,
Prob.[P; = Pj] = (1/0)". This means that Prob.[3j : i # j&P; = Pj] < n(1/0)". As aresult, Prob.
[3i : Bj| > 1] < ?(Ua)’. If €2 ((a + 2) log,n), then, n?(1/0)! < n™c.

In other words, if = ((a + 2) log,, n), then each bucket will be of size 1 with high
probability. Also, the radix sort will take O(n) time. Note that we only need to sort O(log n)
bits of each P; (1 <i < n) and this sorting can be done in O(n) time (see e.g., [17]).

Observation 1—We could have a variant of the algorithm where if any of the buckets is of
size greater than 1, we abort this algorithm and use another algorithm. A pseudocode
follows.

Algorithm SA2

1 Sort Py, Py, ..., P, using radix sort;
The above sorting partitions the P;’s into buckets where equal ¢-mers are in the same bucket;
Let these buckets be By, B, ..., B, where m<n;

2 if|B|=1foreachi,1<i<m

3 then output the suffix array and quit;

4 else use another algorithm (let it be Algorithm SA) to find and output the suffix array;

Observation 2—Algorithm SA1 as well as Algorithm SA2 run in O(n) time on at least (1
- n~9) fraction of all possible inputs. Also, if the run time of Algorithm SA is t(n), then the
expected run time of Algorithm SA2 is (1 — n~90O(n) + n~4(O(n) + t(n)). For example, if
Algorithm SA is the skew algorithm [9], then the expected run time of Algorithm SA2 is
O(n) (the underlying constant will be smaller than the constant in the run time of skew).

Observation 3—In general, if T (n) is the run time of Algorithm SA2 lines 1 through 3
and if t(n) is the run time of Algorithm SA, then the expected run time of Algorithm SA2 is
(1 =n=)T (n) + (T (n) + t(n)).

The case of non-uniform probabilities—In the above algorithm and analysis we have
assumed that each character in Sis picked uniformly randomly from . Let = {a, ay, ...,

J Discrete Algorithms (Amst). Author manuscript; available in PMC 2015 July 01.

1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Rajasekaran and Nicolae Page 6

ay}- Now we consider the possibility that forany 5 € S Prob.[s =g] =pj, 1<i<sn1<j<
¢
—RBl— T 2
o. For any two ¢-mers A and B of Swe can show that Prob.[A=B]= (ijlpj) . In this
case, we can employ Algorithms SA1 and SA2 with ¢ = (a + 2) logyp n, where

P=37" ¥

Observation 4—Both SAL and SA2 can work with any alphabet size. If the size of the
alphabet is O(1), then each P; will consist of O(log n) characters from X. If |X| = ©(n°) for
some constant c, then P; will consist of O(1) characters from . If |Z| = o(n®) for any
constant ¢, then each P; will consist of a prefix (of length O(log n) bits) of a character in .

3. Parallel Versions

In this Section we explore the possibility of implementing SA1 and SA2 on various models
of parallel computing.

3.1. Parallel Disks Model

In a Parallel Disks Model (PDM), there is a (sequential or parallel) computer whose core
memory is of size M. The computer has D parallel disks. In one parallel 1/0, a block of size
B from each of the D disks can be fetched into the core memory. The challenge is to devise
algorithms for this model that perform the least number of 1/0 operations. This model has
been proposed to alleviate the 1/0 bottleneck that is common for single disk machines
especially when the dataset is large. In the analysis of PDM algorithms the focus is on the
number of parallel 1/Os and typically the local computation times are not considered. A
lower bound on the number of parallel I/Os needed to sort N elements on a PDM is

X 1135&//3 . Numerous asymptotically optimal parallel algorithms have been devised for
sorting on the PDM. For practical values of N, M, D, and B, the lower bound basically
means a constant number of passes through the data. Therefore, it is imperative to design
algorithms wherein the underlying constants in the number of 1/Os is small. A number of
algorithms for different values of N, M, D, and B that take a small number of passes have

been proposed in [18].

One of the algorithms given in [18] is for sorting integers. In particular it is shown that we

can sort N random integers in the range [1, R] (for any R) in (1+1/) pos(N/2) 41 passes through

the data, where vis a constant < 1. This bound holds with probability = (1 - N™9), this
probability being computed in the space of all possible inputs.

We can adapt the algorithm of [18] for constructing suffix arrays as follows. We assume that
the word length of the machine is O(log n). This is a standard assumption made in the
algorithms literature. Note that if the length of the input string is n, then we need a word
length of at least log n to address the suffixes. To begin with, the input is stored in the D
disks striped uniformly. We generate all the ¢-mers of Sin one pass through the input. Note
that each ¢-mer occupies one word of the machine. The generated ¢-mers are stored back
into the disks. Followed by this, these ¢-mers are sorted using the algorithm of [18]. At the

J Discrete Algorithms (Amst). Author manuscript; available in PMC 2015 July 01.

1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Rajasekaran and Nicolae Page 7

end of this sorting, we have mbuckets where each bucket has equal ¢-mers. As was shown
before, each bucket is of size 1 with high probability.

We get the following:

Theorem 1—We can construct the suffix array for a random string of length nin

(1+,/)%+2 passes through the data, where vis a constant < 1. This bound holds for =

(1 — n™9) fraction of all possible inputs.

3.2. The Mesh and the Hypercube

Optimal algorithms exist for sorting on interconnection networks such as the mesh (see e.g.,
[19] and [20]), the hypercube (see e.g., [21]), etc. We can use these in conjunction with
Algorithms SA1 and SA2 to develop suffix array construction algorithms for these models.
Here again we can construct all the ¢-mers of the input string. Assume that we have an
interconnection network with n nodes and each node stores one of the characters in the input
string. In particular node i stores s, for 1 <i < n. Depending on the network, a relevant
indexing scheme has to be used. For instance, on the mesh we can use a snake-like row-
major indexing. Node i communicates with nodesi +1,i+ 2, ..., i + ¢ - 1to get §+1, S+2,
..., S+¢-1. The communication time needed is O(log n). Once the node i has these characters
it forms P;. Once the nodes have generated the ¢-mers, the rest of the algorithm is similar to
the Algorithm SAL or SA2. As a result, we get the following:

Theorem 2—There exists a randomized algorithm for constructing the suffix array for a
random string of length n in O(log n) time on a n-node hypercube with high probability. The
run time of [21]’s algorithm is O(log n) with high probability, the probability being
computed in the space of all possible outcomes for the coin flips made. Also, the same can
be done in O(v7) time on a V7 X v/ mesh with high probability.

Observation—Please note that on a n-node hypercube, sorting n elements will need Q(log
n) time even if these elements are bits, since the diameter of the hypercube is Q(log n). For

the same reason, sorting n elements on a v2 X /7 mesh will need 2(v/7) time since
2(vn—1) js the diameter.

3.3. PRAM Algorithms

In [9] several PRAM algorithms are given. One such algorithm is for the EREW PRAM that
has a run time of O(log? n), the work done being O(n log n). We can implement Algorithm
SA2 on the EREW PRAM so that it has an expected run time of O(log n), the expected work
done being O(n log n). Details follow. Assume that we have n processors. 1) Form all
possible ¢-mers. Each ¢-mer occupies one word; 2) Sort these ¢-mers using the parallel
merge sort algorithm of [22]; 3) Using a prefix computation check if there is at least one
bucket of size > 1; 4) Broadcast the result to all the processors using a prefix computation;
5) If there is at least one bucket of size more than one, use the parallel algorithm of [9].

Steps 1 through 4 of the above algorithm take O(log n) time each. Step 5 takes O(log? n)
time. From Observation 3, the expected run time of this algorithm is (1 — n™%)O(log n) +

J Discrete Algorithms (Amst). Author manuscript; available in PMC 2015 July 01.

1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Rajasekaran and Nicolae Page 8

n~(O(log n) + O(log? n)) = O(log n). Also, the expected work done by the algorithm is
(1-n"%O(n log n)+n~%O(n log n)+ O(n log? n)) = O(n log n).

4. Practical Implementation

In this section we discuss the design and implementation of the RadixSA algorithm. The
following is the pseudocode of the RadixSA algorithm:

Algorithm RadixSA

radixSort all suffixes by d characters
let b[i] = bucket of suffix i
fori:=ndownto1do
if (b[i].size > 1) then
if detectPeriods(b[i])then
handlePeriods(b[i]);

N o o M w DN P

else radixSort all suffixes j € b[i] with respect to b[j + d]

A bucket is called singleton if it contains only one suffix, otherwise it is called non-
singleton. A singleton suffix is the only suffix in a singleton bucket. A singleton suffix has
its final position in the suffix array already determined.

We number the buckets such that two suffixes in different buckets can be compared by
comparing their bucket numbers. The for loop traverses the suffixes from the last to the first
position in the text and sorts the bucket in which the current suffix resides. This order
ensures that after each step, suffix i will be found in a singleton bucket. This is easy to prove
by induction. Thus, at the end of the loop, all the buckets will be singletons. If each bucket is
of size O(1) before the for loop is entered, then it is easy to see that the algorithm runs in
O(n) time. In lines 5 and 6 we detect periodic regions of the input. This is discussed in the
next section.

Even if the buckets are not of constant size (before the for loop is entered) the algorithm is
still linear if every suffix takes part in no more than a constant number of radix sort
operations. The order in the for loop is deceptively simple but it sorts the buckets in an order
which favors quick breakdown of non-singleton buckets. Intuitively, say a pattern P =
ayaraz ... ay appears multiple times in the input. After the initial radix sort, we will have the
suffixes which start with a; in a bucket by, the suffixes which start with a, in a bucket b,
and so on. Assume that the initial sorting depth D is much smaller than k. If we sort these
buckets in the order by, by, ..., b most of them remain the same, except that now we know
we have them sorted by at least 2D characters. On the other hand, our algorithm will sort
these buckets in the order by, b1, ..., by. If bucket by separates into singleton buckets after
sorting, then all the other buckets will subsequently separate into singletons. This way, every
suffix in these buckets is placed in a singleton bucket at a constant cost per suffix. Due to
this traversal order, in practice, our algorithm performs a small number of accesses to each
suffix, as we show in the results section.

J Discrete Algorithms (Amst). Author manuscript; available in PMC 2015 July 01.

1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Rajasekaran and Nicolae Page 9

4.1. Periods

Table 4 shows an example of how the algorithm works. Each column illustrates the state of
the suffix array after sorting one of the buckets. The order in which buckets are chosen to be
sorted follows the pseudocode of RadixSA. The initial radix sort has depth 1 for illustration
purpose. The last column contains the fully sorted suffix array.

However, the algorithm as is described above has a worst case runtime of O(n Vn) (proof
omitted). We can improve the runtime to O(n log n) as follows. If, during the for loop, a
bucket contains suffixes which have been accessed more than a constant C number of times,
we skip that bucket. This ensures that the for loop takes linear time. If at the end of the loop
there have been any buckets skipped, we do another pass of the for loop. After each pass,
every remaining non-singleton bucket has a sorting depth at least C + 1 times greater than in
the previous round (easy to prove by induction). Thus, no more than a logarithmic number
of passes will be needed and so the algorithm has worst case runtime O(n log n).

In lines 5 and 6 of the RadixSA pseudocode we detect periodic regions of the input as
follows: if the suffixes starting at positionsi, i —p, i —2p, ... appear in the same bucket b,
and bucket b is currently sorted by d = p characters, it is easy to see that we have found a
periodic region of the input, where the period P is of length p. In other words, suffix i is of
the form P §p+1. ., SUffix i = pis of the form P P S§.p+1. pn, suffix i — 2p is of the form P P
P S+p+1...n@nd so on. We can easily see that these suffixes can be placed in separate
buckets based on the relationship between suffixes i and i + p by the following rule. If suffix
i is less than suffix i + p, then suffix i — p is less than suffix i, suffix i — 2pis less thani - p,
and so on. The case where i is greater than i + p is analogous.

The depth of each bucket increases after each sorting, therefore periods of any length are
eventually detected. This method can be viewed as a generalization of Seward’s copy
method [13] where a portion of text of size p is treated as a single character.

4.2. Implementation Details

Radix sorting is a central operation in RadixSA. We tried several implementations, both
with Least Significant Digit (LSD) and Most Significant Digit (MSD) first order. The best of
our implementations was a cache-optimized LSD radix sort. The cache optimization is the
following. In a regular LSD radix sort, for every digit we do two passes through the data:
one to compute bucket sizes, one to assign items to buckets. We can save one pass through
the data per digit if in the bucket assignment pass we also compute bucket sizes for the next
round [23]. We took this idea one step forward and we computed bucket counts for all
rounds before doing any assignment. Since in our program we only sort numbers of at most
64 bits, we have a constant number of bucket size arrays to store in memory. To sort small
buckets we employ an iterative merge sort.

To further improve cache performance, in the bucket array we store not only the bucket start
position but also a few bits indicating the length of the bucket. Since the bucket start
requires [log n] bits, we use the remaining bits, up to the machine word size, to store the

J Discrete Algorithms (Amst). Author manuscript; available in PMC 2015 July 01.

1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Rajasekaran and Nicolae Page 10

bucket length. This prevents a lot of cache misses when small buckets are the majority. For
longer buckets, we store the lengths in a separate array which also stores bucket depths.

The total additional memory used by the algorithm, besides input and output, is 5n + o(n)
bytes: 4n for the bucket array, n bytes for bucket depths and lengths, and a temporary buffer
for radix sort.

5. Experimental Results

One of the fastest SACAS, in practice, is the Bucket Pointer Refinement (BPR) algorithm
[12]. Version 0.9 of BPR has been compared [12] with several other algorithms: deep
shallow [24], cache and copy by Seward [13], gsufsort [25], difference-cover [26], divide
and conquer by Kim et al. [4], and skew [9]. BPR 0.9 has been shown to outperform these
algorithms on most inputs [12]. Version 2.0 of BPR further improves over version 0.9. We
compare RadixSA with both versions of BPR.

Furthermore, a large set of SACASs are collected in the jSuffixArrays library [27] under a
unified interface. This library contains Java implementations of: DivSufSort [28], QsufSort
[25], SAIS [11], skew [9] and DeepShallow [24]. We include them in the comparison with
the note that these Java algorithms may incur a performance penalty compared to their C
counterparts.

We tested all algorithms on an Intel core i3 machine with 4GB of RAM, Ubuntu 11.10
Operating System, Sun Java 1.6.0 26 virtual machine and gcc 4.6.1. The Java Virtual
Machine was allowed to use up to 3.5 GB of memory. As inputs, we used the datasets of
[12] which include DNA data, protein data, English alphabet data, general ASCII alphabet
data and artificially created strings such as periodic and Fibonacci stringsl.

For every dataset, we executed each algorithm 10 times. The average run times are reported
in table 2 where the best run times are shown in bold. Furthermore, we counted the number
of times RadixSA accesses each suffix. The access counts are shown in figure 1. For almost
all datasets, the number of times each suffix is accessed is a small constant. For the
Fibonacci string the number of accesses is roughly logarithmic in the length of the input.

6. Discussion and Conclusions

In this paper we have presented an elegant algorithm for the construction of suffix arrays.
This algorithm is one of the simplest algorithms known for suffix arrays construction and
runs in O(n) time on a large fraction of all possible inputs. It is also nicely parallelizable. We
have shown how our algorithm can be implemented on various parallel models of
computing.

We have also given an extension of this algorithm, called RadixSA, which has a worst case
runtime of O(n log n). RadixSA uses a deceptively simple heuristic to select the order in
which buckets are processed so as to reduce the number of operations performed. As a

LFibonacci strings are similar to Fibonacci numbers, but addition is replaced with concatenation (Fg = b, F1 = &, Fj is a concatenation
of Fj—1 and Fj-2).

J Discrete Algorithms (Amst). Author manuscript; available in PMC 2015 July 01.

1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Rajasekaran and Nicolae Page 11

result, RadixSA performed a small number of accesses per suffix on all but one of the inputs
tested (the Fibonacci string). This heuristic, together with a careful implementation designed
to increase cache performance, makes RadixSA very efficient in practice.

The RadixSA heuristic could find application as an independent speedup technique for other
algorithms which use bucket sorting and induced copying. For example, BPR could use it to
determine the order in which it chooses buckets to be refined. A possible research direction
is to improve RadixSA’s heuristic. Buckets can be processed based on a topological sorting
of their dependency graph. Such a graph has at most n/2 nodes, one for each non singleton
bucket, and at most n/2 edges. Thus, it has the potential for a lightweight implementation.

An interesting open problem is to devise a randomized algorithm that has a similar
performance.

Acknowledgments

This work has been supported in part by the following grants: NSF 0829916 and NIH RO1LM010101.

References

1. Manber, U.; Myers, G. Suffix arrays: a new method for on-line string searches. Proceedings of the
first annual ACM-SIAM symposium on Discrete algorithms, SODA *90; Philadelphia, PA, USA:
Society for Industrial and Applied Mathematics; 1990. p. 319-327.

2. Puglisi S, Smyth W, Turpin A. A taxonomy of suffix array construction algorithms. ACM Comput
Surv. 39(2)10.1145/1242471.1242472

3. Larsson, J.; Sadakane, K. Tech Rep LU-CS-TR: 99-214 [LUNFD6/(NFCS-3140)/1-20/(1999)].
Department of Computer Science, Lund University; Sweden: 1999. Faster suffix sorting.

4. Kim, D.; Jo, J.; Park, H. A fast algorithm for constructing suffix arrays for fixed size alphabets. In:
Ribeiro, CC.; Martins, SL., editors. Proceedings of the 3rd Workshop on Experimental and Efficient
Algorithms (WEA 2004). Springer-Verlag; Berlin: 2004. p. 301-314.

5. Baron D, Bresler Y. Antisequential suffix sorting for bwt-based data compression. IEEE
Transactions on Computers. 2005; 54 (4):385-397.

6. Itoh, H.; Tanaka, H. Proceedings of the sixth Symposium on String Processing and Information
Retrieval. IEEE Computer Society; Cancun, Mexico: 1999. An efficient method for in memory
construction of suffix arrays; p. 81-88.

7. Ko P, Aluru S. Space efficient linear time construction of suffix arrays. CPM. 2003:200-210.

8. Kurtz S. Reducing the space requirement of suffix trees, Software. Practice and Experience. 1999;
29 (13):1149-1171.

9. Kérkkainen J, Sanders P. Simple linear work suffix array construction. ICALP. 2003:943-955.
10. Kim D, Sim J, Park H, Park K. Linear-time construction of suffix arrays. CPM. 2003:186-199.

11. Nong, G.; Zhang, S.; Chan, W. Linear suffix array construction by almost pure induced-sorting.
Data Compression Conference; 2009. p. 193-202.

12. Schirmann KB, Stoye J. An incomplex algorithm for fast suffix array construction. Softw: Pract
Exper. 2007; 37 (3):309-329.

13. Seward, J. On the performance of bwt sorting algorithms. Proceedings of the Conference on Data
Compression, DCC *00; Washington, DC, USA: IEEE Computer Society; 2000. p. 173

14. Burrows M, Wheeler D. A block-sorting lossless data compression algorithm. Tech Rep. 1994; 124
15. Buhler J, Tompa M. Finding motifs using random projections. RE-COMB. 2001:69-76.

16. Szpankowski, W. Average Case Analysis of Algorithms on Sequences. John Wiley & Sons, Inc;
2001.

17. Horowitz, E.; Sahni, S.; Rajasekaran, S. Computer Algorithms. Silicon Press; 2008.

J Discrete Algorithms (Amst). Author manuscript; available in PMC 2015 July 01.

1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Rajasekaran and Nicolae

18

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

Page 12

. Rajasekaran S, Sen S. Optimal and practical algorithms for sorting on the pdm. IEEE Trans
Computers. 2008; 57 (4):547-561.

Thompson C, Kung HT. Sorting on a mesh-connected parallel computer. Commun ACM. 1977; 20
(4):263-271.

Kaklamanis, C.; Krizanc, D.; Narayanan, L.; Tsantilas, T. Randomized sorting and selection on
mesh-connected processor arrays (preliminary version). Proceedings of the third annual ACM
symposium on Parallel algorithms and architectures, SPAA ’91; New York, NY, USA: ACM;
1991. p. 17-28.

Reif J, Valiant L. A logarithmic time sort for linear size networks. J ACM. 1987; 34 (1):60-76.
Cole R. Parallel merge sort. SIAM J Comput. 1988; 17 (4):770-785.

LaMarca, A.; Ladner, RE. The influence of caches on the performance of sorting. Proceedings of
the eighth annual ACM-SIAM symposium on Discrete algorithms, SODA ’97; Philadelphia, PA,
USA: Society for Industrial and Applied Mathematics; 1997. p. 370-379.

Manzini G, Ferragina P. Engineering a lightweight suffix array construction algorithm.
Algorithmica. 2004; 40:33-50.

Larsson N, Sadakane K. Faster suffix sorting. Theor Comput Sci. 2007; 387 (3):258-272.
Burkhardt, S.; Karkkainen, J. Fast lightweight suffix array construction and checking. In: Baeza-
Yates, R.; Chavez, E.; Crochemore, M., editors. Combinatorial Pattern Matching, Vol. 2676 of
Lecture Notes in Computer Science. Springer; Berlin / Heidelberg: 2003. p. 55-69.

Osinski, S.; Weiss, D. jsuffixarrays: Suffix arrays for java. 2002-2011. http://
labs.carrotsearch.com/jsuffixarrays.html

Mori, Y. Short description of improved two-stage suffix sorting algorithm. 2005. http://
homepage3.nifty.com/wpage/software/itssort.txt

J Discrete Algorithms (Amst). Author manuscript; available in PMC 2015 July 01.

http://labs.carrotsearch.com/jsuffixarrays.html
http://labs.carrotsearch.com/jsuffixarrays.html
http://homepage3.nifty.com/wpage/software/itssort.txt
http://homepage3.nifty.com/wpage/software/itssort.txt

Page 13

Rajasekaran and Nicolae

B Number of accesses per suffix

. PlIOM
m— NOS OEM
I OCM
m \OS }OidS
mmm Jouds
m NOS OH
___EJ3
m NOS Si9)nal
I S.i9)nal
m— \0S XNul|
m— XNulj
m NOS P!
P!
. O}MOYy
m NOS 226
006
m NOS IX9)9
I }X3}2
= 3q!q
N BUp'Zziyo suaides™ H
NN BUpP'1j0D 3
HEm eup’ LYy~ suebaje 9
EEN BUpPpIYD euelleY) Y
[] N:ﬁ._uoooou.n_w.:.Ww
mmm eup-ejiydopAweyoy
N BUP'1|023E
HEm wopuel
s 000005 Polad
= (02 pouad
0001 pouad

S |0 0BU O]l

< o

NIH-PA Author Manuscript

Figure 1.

Average number of times RadixSA accesses each suffix, for datasets from [12].

NIH-PA Author Manuscript

NIH-PA Author Manuscript

J Discrete Algorithms (Amst). Author manuscript; available in PMC 2015 July 01.

1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duasnuely Joyny vd-HIN

Rajasekaran and Nicolae

Table 1

Page 14

Example of suffix array construction steps for string ‘cdaxcdayca“. b[suffix] stands for the bucket of suffix.

Underlines show the depth of sorting in a bucket at a given time. The initial radix sort has depth 1 for

illustration purpose.

Initial buckets | Sort b[a] | Sort b[ca]

Sort b[dayca] | Sort b[cdayca]

a

a

a

| a

| a

|

|
axcdayca |axcdayca |axcdayca

|

|

ayca | axcdayca
axcdayca ayca | ayca ayca | ayca

ca ca ca ca | ca

cdayca cdayca cdayca cdayca cdaxcdayca
cdaxcdayca cdaxcdayca | cdaxcdayca | cdaxcdayca cdayca
dayca dayca dayca daxcdayca | daxcdayca
daxcdayca daxcdayca daxcdayca dayca | dayca
xcdayca | xcdayca | xcdayca | xcdayca | xcdayca
yca | yca | yca | yca | yca

J Discrete Algorithms (Amst). Author manuscript; available in PMC 2015 July 01.

Page 15

Rajasekaran and Nicolae

89°€g seul | ezoz | weoz vZ'0T oz | €56 v8'L 16 | 00000005 INOS s12Ina
1518 IN | LTy | 8LvL 1062 2209 | sosz | o6t | e6 | osTTTLvT siainal
Z6'TE oT'9L | 8T8T | v5ue v8'8 050T | 092 292 | 9sz | ooooooos INOS Xnui|
12'85 IN | vy | 6619 T2 196z | et | 1z6T | 9se | ozivezott xnul|
86'9€ €T, | 85T | og9z 16'8 s0uT | oes zes | ot | ooooooos INOS P!
2285 9,201 | 9%z | z6'6¢E viet 989z | vset | L0et | €11 | 96882269 Al
£e'9T ervy | o9t | wout 8 9201 | €9 96'G | 46T | voTzzvee omoy
06792 5989 | €141 | svse €8 9zeT | 996 1z, | T2t | 00000005 INOG 996
82°08 zrset | zoee | ozow v8'sT osvz | 8ssT | weer | osT | oovososs 296
L0'6L 1588 | ovvz | ov9e V61T 911 | L6 er's | ozt | 00000005 INOG 1X@19
96'6TT I | orvs | €929 95'92 orey | 60cz | over | ovT | eesszzs0T NCIE]
80T vov | 95T 8e'T Ve 080 | 8v0 150 g9 | T1eELVOY sl
86°0T o6y | 66ST | TEST 9.1 128 | 995 or'y s | sszessve | eupzzayo susides H
IET v0s | 96T 2T 9e'T 850 | 190 0 v | 06989y eUp'1I00 3
26'9 81T | 697G 16'9 7€ 59z | S6T 19T s | ocossTyT | eupTayo sueBeje o
z5°e 1261 | €5 £T'S 20e ovz | v 17T L | o6y190zT | Euppy0 eueley v
9Ty 88wl | 86w 8072 88 gez | 6L €97 S | z88se9rT | eupriavoooidensg
08’7 vzs | €61 vZ'e LT 060 | 190 190 9 | ezrossy | eupenydopAweiyoy
voeey 2961 | ¥T'9 S8'eT 00'% ere | 197 €22 s | e9sosuvt eup'1]003g
69' s0zz | SLTT 20' g9 187 | vee T 9z | 0000000z wopues
1E'vv8z 895z | o958 ze'eT viy €9 | 09 8.2 9z | 0000000z 000005 powiad
L sTL | €82 SO'TT €8T 6y | 96T A /T | 00000002 0z pouad
g lzez | 659 0z sTE 15 | est e 9z | 0000000z 000T poped
8Y'69€ A oz 189 sovT | svet 88'L z | oooooooz 1o%euoqI4
mojleys deag | mads | sivs | mosinsd | Hosinsna | 6'ddg | zddg | vsxped | Izl | uibus aureN
Wil uny Jeseleq
*Inoy

T UBY) 810W SUBaW 1 ‘AIoWwa JO N0 SUBaW Al "WI 1S90 8] Saledlpul Uy Pjog "suni QT JaA0 pabesaAr ‘spuodss ul ale sswin uny “T'9'y 996 pue 9z
0°9'T AL UNS ‘WalsAS Bunesado 0T TT MUNgN “INVY JO 99 YNM aulyoew €1 JHOD |81U] 1a-¥9 B U0 [ZT] wolj s1aserep uo sawin uni Jo uoskiedwo)

NIH-PA Author Manuscript

NIH-PA Author Manuscript

¢ ?olgel

NIH-PA Author Manuscript

J Discrete Algorithms (Amst). Author manuscript; available in PMC 2015 July 01.

Page 16

Rajasekaran and Nicolae

8.0 §e'e 160 980 160 44\ 120 00 ¥6 66EELYC pliom
65°9¢€ Cr'TL | 9CLT §6'G¢ €L8 JA WA €€8 €6'L GG¢ | 00000009 INOS oeM
08'796T TN 6¢'8E 60'v. 1002 ¥6'SE 8187 88T 9G¢ | 8.ST0¢v0T oaEM

€0°0¢ Ly'8L | 69'T¢ 10'8¢ 88°0T 1897 0T'6 A 99 00000005 INOS 10uds
69'87 TN 0v'0S 85'69 ¢5'Se L0°Ly | 6LCC 87’87 99 | 98T.T960T j0ids
€997 ¥9'9L | T96T 08'v¢ vZ'6 S8'VT 6€'8 €8 0TT | 00000005 NOS o4
ey TN 66'LY 8¢'99 §9'¢e §l'¢y | 80¢CC 8T'T¢ 0¢T | 006TCv9TT o

mojleys dsag | mays | SIVS | MOSINSD | MOSINSAIA | 6'¥dg | ¢ddg | vsxipey | I uibuaT] awreN

Wil uny 18sereq

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

J Discrete Algorithms (Amst). Author manuscript; available in PMC 2015 July 01.

