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Abstract

During the initial stages of the base excision DNA repair (BER) pathway, DNA glycosylases are

responsible for locating and removing the majority of endogenous oxidative base lesions. The

bifunctional formamidopyrimidine DNA glycosylase (Fpg) and endonuclease VIII (Nei) are

members of the Fpg/Nei family, one of the two families of glycosylases that recognize oxidized

DNA bases, the other being the HhH/GPD (or Nth) superfamily. Structural and biochemical

developments over the past decades have led to novel insights into the mechanism of damage

recognition by the Fpg/Nei family of enzymes. Despite the overall structural similarity among

members of this family, these enzymes exhibit distinct features that make them unique. This

review summarizes the current structural knowledge of the Fpg/Nei family members, emphasizes

their substrate specificities, and describes how these enzymes search for lesions.
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I. Introduction

Escherichia coli formidopyrimidine (Fapy) DNA glycosylase (Fpg) was originally

discovered in Tomas Lindahl’s laboratory as a DNA glycosylase that removes methylFapyG

from alkylated DNA (1). The E. coli gene for Fpg was subsequently cloned (2) and the

protein further characterized in a number of laboratories (3-6). E. coli mutM mutants were

identified in Jeffrey Miller’s laboratory as mutators that gave rise to G→T transversions (7).

When the MutM protein was subsequently purified, it was found to be identical to Fpg (8).

Following these initial findings there were a number of biochemical studies showing that 8-

oxoguanine (8-oxoG) was also a substrate for Fpg and that Fpg preferred 8-oxoG over

methylFapyG (9,10). Because of this substrate preference and because guanine is the most

readily oxidized DNA base, the conclusion was drawn that 8-oxoguanine was the

biologically relevant substrate for Fpg. These studies led to the formulation of the GO model

for 8-oxoG repair (11) which proposed that when guanine is oxidized to 8-oxoguanine, it is
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removed by Fpg. If 8-oxoG is not removed prior to replication, A is often inserted opposite

the 8-oxoG by DNA polymerases (12-15). If this occurs, the A can be removed by another

glycosylase called MutY (16). The GO model also included MutT that removes 8-

oxoguanine nucleoside triphosphates from the nucleotide pool by hydrolyzing them to 8-

oxodGMP (17). Taken together these data supported the idea that 8-oxoguanine is a

biologically important, potentially mutagenic oxidative DNA lesion. However recent studies

have shown that unmethylated FapyG is also a good substrate for Fpg (18,19) and like 8-

oxoG, A can also be incorporated opposite FapyG (20,21) and the incorporated A can be

removed by MutY (22). FapyG, which is formed from the same adduct radical as 8-oxoG

(23), appears to be responsible for a substantial number of mutations originally attributed to

8-oxoG and thus is also a biologically relevant substrate (24).

E. coli nei (endonuclease VIII) was originally discovered in the Wallace laboratory as an

activity that recognizes oxidized pyrimidines (25,26). The gene was cloned and the protein

sequence was shown to be very similar to that of Fpg (27). nei mutants had little or no

phenotype, but, when coupled with an nth mutation, they were mutators leading to C→T

transitions (27). The nth gene encodes endonuclease III which also recognizes oxidized

pyrimidines with a substrate specificity that substantially overlaps that of Nei (for reviews

see (28,29)).

It was not until the twenty-first century and the sequencing of the human genome that in

silico analysis allowed the Wallace, Mitra, and Seeberg laboratories to identify, clone and

characterize three Fpg/Nei homologs in mammalian cells, the so-called Neil1 (nei-like),

Neil2 and Neil3 proteins (30-34). Mouse Neil1 and Neil3 were also found in mice

nullizygous for nth (35). The substrate specificities of human NEIL1 and NEIL2 have been

well-characterized (30-34,36-40). In addition, NEIL1 forms specific interactions with a

number of replication proteins and is cell cycle regulated (41-44). Thus, it has been

proposed that NEIL1 acts as a cow catcher ahead of the replication fork, eliminating

potentially mutagenic lesions (42-44). NEIL2 prefers lesions in single-stranded DNA over

duplex DNA and interacts with a number of transcription factors including RNA polymerase

II and has been suggested to act in transcription-coupled repair (45). Although attempts had

been made to determine the activity of NEIL3 (33,46,47), it has only been recently that

NEIL3 has been purified and characterized (24,48) and its glycosylase activity shown to be

similar to that of NEIL2 (24). In mice, Neil3 is present during embryonic development (49)

and was found in brain stem cells (49,50). In humans, expression of NEIL3 has only been

observed in thymus (51).

II. Fpg/Nei Phylogeny

Sequence alignments of members of the Fpg/Nei family of glycosylases indicate that they

share many structural and biochemical features (34). Some of the hallmark motifs of this

family include conserved residues in the helix-two-turns-helix motif (H2TH), a zinc finger

motif, and a common catalytic mechanism involving either an N-terminal proline (for

example in NEIL1 and NEIL2) or a valine residue (as in human NEIL3 and the giant

mimivirus Nei2 (MvNei2)) as the active site nucleophile. Despite these commonalities, each

glycosylase prefers a different spectrum of oxidative lesions. Moreover, some of these
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subfamilies have changed significantly in sequence from their common ancestor, making it

difficult to infer the evolution of these enzymes.

Phylogenetic analysis and functional studies of the Fpg/Nei family indicate that in

Actinobacteria alone, six gene clades occur, two within the Nei proteins and four within the

Fpg clade (52). The plant and fungi clade is clearly part of the Fpg family while within

metazoans, Neil2 and Neil3 form their own clade separate from Neil1. The Neil1 protein,

like members of the plant and fungi Fpg/Nei proteins, does not have the canonical zinc

finger, but possesses a “zincless-finger” motif, which lacks the four characteristic cysteine

residues that coordinate a zinc ion. This motif superimposes well with the zinc finger

domains of EcoNei and EcoFpg, despite the absence of sequence homology. In contrast to

Neil1, both Neil2 and Neil3 possess a zinc finger domain: the former contains a C-H-C-C-

type zinc finger whereas the latter has a RanBP-type zinc finger very similar to the one

found in bacterial Fpg. Some shared conserved structural features suggest that the zincless

fingers evolved independently of the zinc finger motifs. Recent evidence suggests that the

Neil2 and Neil3 proteins evolved from a common ancestor while Neil1 evolved separately

(Barrantes-Reynolds, unpublished data).

We speculate that horizontal gene transfer, a common occurrence in bacteria, seems to be a

likely event in the initial evolution of EcoNei proteins from a common ancestor which

contained at least one Fpg/Nei homolog and exhibited features similar to EcoFpg (53).

Vertical evolution may have been responsible for the transfer of an early Fpg/Nei gene to

early eukaryotes in which these Fpg/Nei homologs led to the diversification of the Fpg/Nei

proteins in higher eukaryotes (34,52,53).

III. Fpg/Nei Structures

A. Introduction

Over the past decade, there has been a significant increase in the number of crystal

structures of Fpg/Nei glycosylases (54-69). The advent of techniques such as reductive

cross-linking using sodium borohydride has played an essential role in trapping stable

protein-DNA complexes for the purposes of crystallization and to elucidate the mechanism

and role of these intricate enzymes ((54-56,64-66,70,71) and for reviews see (70,71)). Other

approaches successfully used to produce stable glycosylase/DNA complexes include the

generation of site-directed mutants of active site residues to abolish catalysis and the use of

non-cleavable substrates such as tetrahydrofuran (THF) that mimics an abasic (AP) site

(60,72) and non-cleavable cyclopentane FapyG (cFapyG) (68). A summary of all the

currently available crystal structures of the Fpg/Nei family of glycosylases and their

substrate preferences is listed in Table 1. Crystal structures of Fpg proteins from various

bacterial species like Thermus thermophilus (Tth) Fpg (without DNA)(54), Escherichia coli

(EcoFpg) (55), Geobacillus stearothermophilus Fpg (BstFpg) (57,59,64-66) and

Lactococcus lactis Fpg (LlaFpg) (58,60,63,68,69) complexed with DNA substrates have

been determined. The Fpg/DNA complexes include Schiff base intermediates, non-covalent

complexes with AP-site analogs, and recognition or end-product complexes. Although the

structure of EcoNei as a Schiff base intermediate in a complex with DNA was solved (56), it

wasn’t until recently that the unliganded structure of EcoNei was determined which revealed
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a unique and interesting interdomain global conformational change upon DNA binding (62).

Furthermore, the structures of unliganded human NEIL1 (61), unliganded MvNei1 and

MvNei1 in a complex with THF were subsequently obtained (67). The first crystal structures

of an Nei bound to damaged bases were recently reported: MvNeil1 was captured in a

complex with DNA containing either thymine glycol (Tg) or 5-hydroxyuracil (5-OHU). 104

Overall, the structures of the Fpg and Nei proteins are similar, with a distinct 2-domain

architecture connected by a flexible hinge region (Figure 1A and B using EcoFpg and

EcoNei as examples) (55,56,72). In general, the N-terminal region is predominantly β-sheet

rich and is composed of a β-sandwich flanked by α-helices. The C-terminal domain

comprises α-helices, two of which form a conserved H2TH motif, as well as two anti-

parallel β-strands that fold into a zinc finger motif. These signature motifs are characteristic

of both Fpg and Nei subfamilies. The zinc finger and H2TH motifs have been shown to be

absolutely required for Fpg to bind to DNA (72-74). In addition to structural similarity, the

members of this superfamily exhibit a similar multi-step catalytic mechanism that generally

involves a nucleophilic attack at the C1′ position of the target nucleotide by an N-terminal

proline residue (in the case of Fpg, Nei, and NEIL1) (75,76). A comparison of these

structures is further discussed below.

B. Substrate Preference

Bacterial Fpg proteins characteristically excise oxidized purines, whereas bacterial Nei and

the Neil proteins excise oxidized pyrimidines (for reviews see (28,29,34,71,72)).

Interestingly, the Fpg proteins share similar substrate specificity with Ogg whereas the

substrate specificity of the Nei family members overlaps with that of the Nth family.

However, all Fpg/Nei family members share sequence homology. Glycosylases vary in their

discrimination of the bases opposite the lesion as well as their preference for the nature of

the DNA, i.e. single-stranded DNA, double-stranded DNA, or bubble-containing substrates.

Fpg primarily exhibits a substrate preference for purines such as 8-oxoG and FapyG, albeit

oxidized pyrimidines are also removed (77,78) whereas bacterial Nei and the rest of the

eukaryotic family members such as NEIL1 and NEIL2 recognize a wider array of substrates.

Recently, it was determined that EcoFpg is more efficient at removing

spiroiminodihydantoin (Sp), a further oxidation product of 8-oxoG, from double-stranded

DNA substrates than 8-oxoG itself (79,80). EcoNei, like endonuclease III, recognizes Tg,

dihydrothymine (DHT), β-ureidoisobutyric acid and urea residues (for reviews see

(28,29,34,72,76). EcoNei can also recognize 5-hydroxycytosine (5-OHC), 5-hydroxyuracil

(5-OHU) and uracil glycol (81). MvNei1 and NEIL1 share substrate preferences for

oxidized pyrimidines in duplex DNA and also recognize and process lesions from single-

stranded DNA (82,83). Although 8-oxoG is not a preferred substrate for NEIL1, its further

oxidation products guanidinohydantoin (Gh) and Sp are both excellent substrates for these

enzymes when paired opposite C rather than A (39,40,83). The NEIL1 protein also excises

Tg, 5,6-dihydrouracil (DHU), FapyA and FapyG, as well as 5-OHU, 5-OHC, and oxanine

(30,31,84-86). Bacterial Fpg (87,88) and all the eukaryotic members of the Fpg/Nei family

recognize lesions in single-stranded DNA (31,36,83). NEIL2 and MmuNeil3 prefer to excise
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lesions present in single-stranded, bubble or forked DNA structures over duplex DNA

(24,36,39,42-44,48).

C. Comparison of Structures of the Fpg/Nei Family

As mentioned above, there are currently crystal structures of Fpg proteins from four

bacterial species, namely TthFpg, EcoFpg, BstFpg, and LlaFpg (54,55,57-60,63-66,68,69).

All four proteins share the same domain structure and considerable sequence homology.

Structures of intermediates covalently linked to duplex DNA indicate that the DNA binds to

the enzyme in a positively charged groove that runs roughly orthogonal to the DNA axis

(55,59). Bacterial Fpg binds DNA in the minor groove and the damaged base is extruded

through the major groove. The DNA appears to be severely kinked at the lesion point (~66o

roll angle in the case of EcoFpg (55)) upon enzyme binding thereby allowing the extruded

base to be positioned in the active site for catalysis. The minor groove is widened

considerably at the lesion site, however, the rest of the DNA duplex surrounding the lesion

retains canonical B-form (55,59). Upon nucleotide eversion, three highly conserved residues

in the bacterial Fpg proteins namely Met74, Arg109 and Phe111 (in EcoFpg) fill the void

that is created and stabilize the opposite base (Figure 2A) (55). Met74 is part of the β4/5

loop and occupies the position of the extruded base by entering through the minor groove

while Arg109 and Phe111 are part of a loop connecting strands β7 and β8. Phe111 is wedged

between the base opposite the lesion (a cytosine) and the neighboring base, and causes

unstacking of these bases leading to the severe kinking of the DNA. Additionally, Arg109

forms H-bonds with the opposite base leading to discrimination against A as the opposite

base (55,89).

The analogous residues in MvNei1 (Leu84, Arg114, and Phe116) (61), human NEIL1

(Met81, Arg118, and Phe120) (67) and Arabidopsis thaliana Fpg (AthFpg) (Met78, Arg126

and Phe128) (Stephanie Duclos, Pierre Aller, Pawel Jaruga, Miral Didzaroglu, Susan S.

Wallace and Sylvie Doubie, manuscript submitted to DNA Repair) are similar to those seen

in the bacterial Fpg proteins which discriminate against A as a base opposite the lesion (89).

In contrast, EcoNei inserts three consecutive residues Gln69, Leu70 and Tyr71 into the void

created upon base extrusion (56). The three residues are located on a loop connecting β4 and

β5. Tyr71 is wedged between the orphaned base and its 3′ neighbor and stabilizes the

severely kinked DNA. The void-filling residues are lacking in MmuNeil3, which appears to

be related to the preference of this enzyme for single-stranded DNA (Minmin Liu, Kayo

Imamujra, Sylvie Dolublie and Susan S. Wallace, manuscript in preparation).

In addition to the void-filling residues, the Fpg/Nei proteins contain an absolutely conserved

Lys residue (Lys57 in EcoFpg) and a conserved Asn (Asn169 in EcoFpg), which is part of

the H2TH motif (55). Lys 57 forms salt-bridges with P−1 and P−2 while Asn169 forms

bonds through backbone and side-chain amides to P−1 and P0 of the DNA (Figure 2B and

C). Another highly conserved residue in the Fpg/Nei family of proteins is Arg259 (in

EcoFpg), which is part of the zinc finger motif and is involved in the formation of salt

bridges with the phosphodiester backbone (55) (Figure 2B). In the bacterial Fpg and

eukaryotic Fpg/Nei proteins, there is no gross conformational change in the overall domain

structure upon DNA binding (55,57,59,64,72). On the other hand, the side-chains of the
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void-filling residues and conserved residues in the hallmark motifs, show small changes.

The development of disulfide-crosslinking techniques used to study the structure of BstFpg

bound to lesion-containing DNA and undamaged DNA indicate that the enzyme possesses

intrahelical recognition of the damage and can detect the subtle differences between the

damaged base and its undamaged counterpart even at an initial encounter ((64,65) and see

below). Comparing 8-oxoG with guanine in DNA suggests that the enzyme induces a local

conformational change in the DNA backbone in which the sugar pucker (C2′-endo) adopts a

different conformation (C4′-exo) to prevent a steric clash between the 8-oxo group of 8-

oxoG and the C2′ of the sugar (64).

A loop region (called the αF-β9/10 loop) in the α-helical C-terminal domain of the Fpg

proteins is presumed to be involved in lesion recognition. In the unliganded structure of

TthFpg, this lesion recognition loop is ordered (54), but in structures of BstFpg bound to

DNA containing an AP site, the density for this loop disappears suggesting that this region is

disordered (57). In the presence of lesion-containing DNA in complex with catalytically

inactive enzyme, the density for this loop resurfaces indicating conformational mobility

upon catalysis (59,64,65). This loop plays a key role in the recognition of 8-oxoG: a

projection from the loop wraps around the damaged base forming an extensive network of

hydrogen bonds (59). This same loop was shown to wrap around FapyG in the LlaFpg

structure (60). The major difference between the binding of Fpg to 8-oxoG and FapyG lies

in the fact that binding in the extrahelical base-binding pocket of Fpg for the former lesion

occurs in the syn conformation whereas FapyG is in the anti conformation. However, despite

the difference in base conformations, a similar type of interaction exists between the main-

chain carbonyl carbons of conserved residues S218 (in LlaFpg) and S221 (in BstFpg), which

bind to the protonated N1 and N7 of FapyG and 8-oxoG, respectively. Similarly, the

conserved I220 (in LlaFpg) and the analogous V223 (in BstFpg) use their main-chain group

for hydrogen bonding with the carbonyl moiety at position 6 of both lesions (60).

The αF-β9/10 loops of bacterial Fpgs are functionally similar and are of comparable length

(~27 residues) and conformation. In contrast, in the eukaryotic members of the family,

which do not recognize 8-oxoG, this putative lesion-recognition loop is generally shorter or

even missing as in the case of NEIL1 (61), AthFpg (Stephanie Duclos, Pierre Aller, Pawel

Jaruga, Miral Didzaroglu, Susan S. Wallace and Sylvie Doublie, Manuscript submitted to

DNA Repair) and MmuNeil3 (Liu et. al., manuscript in preparation). A superposition of

BstFpg bound to DNA (containing 8-oxoG:C, (59)) with the unliganded human NEIL1 (61)

and the MvNei1 enzymes illustrates that this loop wraps around the lesion only in the case

of BstFpg (Figure 3). In contrast, in the case of NEIL1, the loop is replaced by an α-helix;

the loop is shorter in MvNei1, and in both cases this segment is unable to wrap around the

lesion (Figure 3). These data are consistent with the fact that 8-oxoG is not a good substrate

for NEIL1 or any of the eukaryotic and mimivirus enzymes that are missing this loop. In

fact, deletion of the αF-β9/10 loop in EcoFpg yielded a variant that retains catalytic ability

on oxidized pyrimidines and FapyG, but not 8-oxoG, implying that this loop is important for

stabilizing 8-oxoG and not the other lesions (Stephanie Duclos, Pierre Aller, Pawel Jaruga,

Miral Didzaroglu, Susan S. Wallace and Sylvie Doublie, Manuscript submitted to DNA

Repair).
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The bacterial Nei proteins are composed of members that share several characteristics with

Fpg but also provide some unique variations. The crystal structure of EcoNei reveals a

similar structural fold and conservation of motifs present in the Fpg proteins (56,62). A

striking difference between the unliganded and DNA-bound EcoNei structures is a large

conformational change of about 50 degrees between the N- and C-terminal domains. This is

the only DNA glycosylase to date that has been reported to display a DNA-induced global

conformational change, in which the glycosylase transforms from an elongated “open” form

to a “closed” DNA-bound form (56,62). This conformational change was not observed for

the MvNei1 protein upon DNA binding (67).

The structure of human NEIL1 reveals the presence of a structural motif composed of two

antiparallel β-strands that mimic the zinc finger fold. This motif superimposes well with the

zinc finger of EcoNei and the bacterial Fpg proteins (59,61) (Figure 3). However, the

canonical Cys residues, and the loops connecting the β-strands of the zinc finger are missing

in NEIL1, which prevents the coordination of a zinc atom (Figure 3). This motif termed

“zincless-finger” contains a highly conserved Arg277 residue which, when mutated,

significantly diminishes glycosylase activity (56,61). This zincless motif is also harbored by

MvNei1 (61,67), and the plant and fungal Fpg glycosylases (Stephanie Duclos, Pierre Aller,

Pawel Jaruga, Miral Didzaroglu, Susan S. Wallace and Sylvie Doublie, Manuscript

submitted to DNA Repair).

In summary, members of the Fpg/Nei family are structurally similar, but display significant

variations in conserved domains/motifs involved in DNA interactions. One of the main

differences between EcoNei and the bacterial Fpg proteins is the composition of the void-

filling, intercalation triad. In EcoNei, all three residues are located on the same β4/β5 loop

and are consecutive, i.e. Gln69, Leu70 and Tyr71. In bacterial Fpg proteins, NEIL1,

MvNei1 and AthFpg as mentioned above, the residues that constitute the triad reside in two

different loops. Another difference between EcoFpg and the eukaryotic family members lies

in the lesion-recognition loop located in the C-terminal domain of both proteins. In bacterial

Fpg, the damaged base is everted from the DNA helix and is enveloped in a deep pocket,

which is capped by the lesion recognition loop at one end (Figure 3). This loop is missing in

EcoNei and the eukaryotic members for which a structure exists, including NEIL1, AthFpg

and Neil3 and appears to be required for excising 8-oxoG. The vast repertoire of substrates

of the Fpg/Nei family members and their different preferences for opposite bases and DNA

substrates (single-stranded, double-stranded, or bubble DNA substrates) warrants further

structural and biochemical scrutiny.

IV. Glycosylases Search for Lesions

It has long been a question in the field as to how DNA glycosylases locate the lesions they

recognize in a sea of undamaged bases. This issue is complicated by the fact that a

glycosylase flips out the damage from the DNA helix into its active site pocket in order to

perform its enzymatic function. Furthermore, glycosylases do not use biochemical energy

and rely on thermal energy so that lesions are found through random collisions between the

glycosylase and the DNA molecule. Because of this, three-dimensional diffusion is

considered to be too inefficient to account for the number of lesions the glycosylase must

Prakash et al. Page 7

Prog Mol Biol Transl Sci. Author manuscript; available in PMC 2014 July 17.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



excise. Glycosylases are thought to bind to a non-specific site on the DNA molecule and

slide along the DNA by one-dimensional diffusion until the enzyme finds the lesion or

disassociates from DNA. There have been a number of hypotheses proposed for the lesion

search itself. One model suggests that the glycosylase binds to an extruded DNA lesion and

then moves along the DNA testing every single base (90). This appears to be unlikely since

both kinetics (91) and single-molecule studies (92,93) have shown that glycosylases scan

DNA close to diffusion limits making it thermodynamically impossible to sequentially

extrude and examine every base. In the second model, the DNA glycosylase traps a

randomly extruded damaged base. This extrusion is more likely with lesions since hydrogen

bonding and stacking interactions would be altered compared to the normal bases. This

appears to be the mechanism used by uracil DNA glycosylase (94). In the third model,

glycosylases slide along the DNA molecule and are able to recognize their particular

substrate by specific interactions between the glycosylase and the DNA molecule. This

model has been suggested by structural studies (64,65) and by a recent single-molecule

study (95).

Two groups have attempted to address the question of how glycosylases search for a lesion

using single-molecule approaches (92,93,95). In the first study (92), human OGG1

(oxoguanine DNA glycosylase, a member of the HhH superfamily) labeled with Cy3, was

observed to undergo one-dimensional sliding along DNA that was stretched by shear flow.

A similar diffusive motion was observed with BstFpg. These same authors showed that the

one-dimensional diffusion constants measured were consistent with the glycosylases

diffusing along the DNA helix in a rotational manner (93). In a recent study from our

laboratory (95), quantum dot-labeled E. coli Fpg, Nei, and Nth were imaged in the absence

of flow. In this study the glycosylases were shown to diffuse along the DNA with a broad

distribution of rates that ranged over two orders of magnitude. This broad distribution was

common to all three glycosylases suggesting that both the Fpg/Nei family and HhH

superfamily scan using a similar mechanism. When the diffusive behavior was analyzed

further, the three glycosylases were shown to exhibit a continuum of motion that was in

keeping with rotational diffusion along the DNA molecule and that ranged from a slow,

subdiffusive to a faster, unrestricted diffusive behavior.

As described earlier, members of the Fpg/Nei family of DNA glycosylases have three void-

filling residues that are inserted into the DNA helix and aid in flipping out the damaged

base, and as well stabilize the DNA helix (55,56,59,64-67). The HhH superfamily uses a

similar mechanism (96,97). Interestingly, a crystal structure of BstFpg crosslinked to

undamaged DNA revealed that one of these void-filling residues, a phenylalanine, was

found to be wedged into the helix occupying a position analogous to its position in the Fpg

complex bound to damage-containing DNA (64) (Figure 2A). These data, together with

kinetics data (98,99), suggest that the phenylalanine may be acting as a wedge that scans for

deformability of the base pair such as in the sugar pucker. Interestingly, when the

corresponding E. coli wedge residue, Phe111, was mutated to an alanine, there was a

significant increase in the mean diffusion constant compared to the wild-type protein (95).

Moreover, the diffusive properties characteristic of wild-type were altered, that is, the slow,

subdiffusive population of glycosylases was selectively lost. Similar results were observed
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when the analogous residues in Nei and Nth were mutated (Dunn et al. unpublished

observations) suggesting that the slow subdiffusive glycosylases are those interrogating the

DNA for damages. Taken together, the data support the idea that the Fpg/Nei family of

DNA glycosylases diffuse one-dimensionally along the DNA molecule with diffusion

constants that are consistent with rotation around the DNA molecule, presumably in the

minor groove where they bind. It also appears that at least part of the glycosylase search

mechanism may be accomplished by insertion of a particular wedge residue that senses the

topography of the minor groove and pauses either to check for damage at random locations

or in response to subtle deformations of the DNA helix.

V. Concluding Remarks

Advances in the structural biology and biochemistry of glycosylases have led to a better

understanding of how these complex enzymes recognize and excise damaged bases. Based

on current in vitro studies, we can speculate on the mechanisms of specific lesion

recognition. However, despite the vast knowledge gained, several unanswered questions still

remain. For instance, we know that the Fpg/Nei family members recognize a broad range of

substrates but it is not clear how these enzymes discriminate among each of these lesions

and how they distinguish these from undamaged bases. Moreover, as some glycosylases are

active at different times in the cell cycle and interact with a number of protein partners, how

are these enzymes involved in processes such as DNA replication or transcription?

Additionally, it remains difficult to classify certain members of the Fpg/Nei family under a

specific subfamily. For example, even though members of the Fpg/Nei family of proteins are

structurally similar, some elements such as the intercalation triad present in NEIL1 and

MvNei1 suggest that these members could be classified under the Fpg sub-family contrary

to the Nei sub-family after which they were originally named. Many aspects of phylogenetic

characterization, lesion recognition, substrate specificities and the biological functions of

this glycosylase family still remain to be elucidated.
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Figure 1. Overall structural comparison between EcoFpg and EcoNei
A. EcoFpg bound to DNA. Both and N- and C-terminal domains are colored in purple (PDB

ID 1K82) (55). B. EcoNei bound to DNA. N- and C-terminal domains are shown in pale

pink. (IK3W from the PDB) (56). Zinc atoms are shown as gray spheres in both cases and

the DNA is displayed as a ribbon. PyMol was used to generate the Figures (DeLano

Scientific, The PyMOL Molecular Graphics System, Version 1.2r3pre, Schrödinger, LLC.).

Prakash et al. Page 16

Prog Mol Biol Transl Sci. Author manuscript; available in PMC 2014 July 17.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2. Specific interactions between EcoFpg and DNA
A. Triad of void-filling residues Met74, Phe111 and Arg109 that intercalate into the DNA

causing severe kinking at the site of the damage. B. Interaction of conserved residues Lys57,

Asn169 and Arg259 with DNA phosphates surrounding the ring-opened deoxyribitol moiety

(dRb1) (PDB ID code 1K82 (55)). C. DNA sequence context present in the crystal structure

of EcoFpg bound to DNA indicating the typical nomenclature used to describe the

phosphates and the bases surrounding the lesion. The lesion is indicated by G* while C(0) is

the opposite base, both of which are indicated in red lettering.
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Figure 3. Superposition of BstFpg (E3Q mutant, green) bound to DNA containing 8-oxoG with
human NEIL1 (orange) and MvNei1 (beige)
Overall the three proteins superimpose well with an RMSD of 1.1 Å – 1.3 Å upon aligning

C-α of analogous residues from the NEIL1 and MvNei1 with BstFpg (performed using

COOT (100) and Superimpose (M. Rould, personal communication)). Key differences

among the three enzymes are the zinc/zinc-less finger in Fpg vs. NEIL1 and MvNei1, and

the presence of the lesion-recognition loop in Fpg. The 8-oxoG containing DNA is displayed

as a ball and stick model. (PDB ID codes for the BstFpg protein, NEIL1 and MvNei1 are

1R2Y, 1TDH and 3A42 respectively).
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