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Gene set analysis methods aim to determine whether an a priori defined set of genes shows statistically significant difference
in expression on either categorical or continuous outcomes. Although many methods for gene set analysis have been proposed,
a systematic analysis tool for identification of different types of gene set significance modules has not been developed previously.
This work presents an R package, called MAVTgsa, which includes three different methods for integrated gene set enrichment
analysis. (1)The one-sidedOLS (ordinary least squares) test detects coordinated changes of genes in gene set in one direction, either
up- or downregulation. (2)The two-sidedMANOVA (multivariate analysis variance) detects changes both up- and downregulation
for studying two ormore experimental conditions. (3) A random forests-based procedure is to identify gene sets that can accurately
predict samples from different experimental conditions or are associated with the continuous phenotypes. MAVTgsa computes the
𝑃 values and FDR (false discovery rate) 𝑞-value for all gene sets in the study. Furthermore, MAVTgsa provides several visualization
outputs to support and interpret the enrichment results. This package is available online.

1. Introduction

DNA microarray technology enables simultaneous moni-
toring of the expression level of a large number of genes
for a given experimental study. Much initial research on
methods for data analysis has focused on the techniques to
identify a list of differentially expressed genes. After selection
of a list of differentially expressed gene, the list is then
examined with biologically predefined gene sets to determine
whether any sets are overrepresented in the list compared
with the whole list ([1–3]). Mootha et al. [4] proposed
gene set enrichment analysis (GSEA), which considers the
entire distribution of a predefined gene set rather than a
subset from the differential expression list. GSEA provides
a direct approach to the analysis of gene sets of interest
and the results are relatively easy to interpret. Furthermore,
microarray experiments inherit various sources of biolog-
ical and technical variability, and analysis of a gene set is

expected to be more reproducible than an individual gene
analysis.

GSEA is a statistical approach to determine whether a
functionally related set of genes expresses differently (enrich-
ment and/or deletion) under different experimental condi-
tions. The GSEA approach has inspired the development of
various statistical tests for identifying differentially expressed
gene sets [5–16]. There are two fundamental hypotheses for
GSEA: competitive hypothesis and self-contained hypothesis
[8]. The competitive hypothesis tests if the association of a
gene set with the phenotype is equal to those of the other
gene sets.The self-contained hypothesis tests if the expression
of a gene set differs by the experimental condition. In either
test, resampling methods are typically used to generate the
null distribution of test statistics. The null distributions of
statistic under the competitive hypothesis are generated by
gene sampling; the null distributions under the self-contained
hypothesis are generated by subject-sampling. Various GSEA
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statistics have been proposed for testing either the compet-
itive hypothesis or self-contained hypothesis. There are also
hybrid-type methods that utilize gene and sample sampling
(e.g., [5, 9]). The differences of the two hypotheses were
evaluated and summarized in Nam and Kim [14] and Dinu
et al. [15]. Gene sampling under the competitive hypothesis
simply reassigns the genes into different gene sets. As a
result, the sampled distributions are not independent. On
the other hand, subject sampling is consistent with the null
hypothesis, which the null distributions of statistical tests
are identically and independently distributed. In addition,
the self-contained hypothesis is a generalization from iden-
tification of differentially expressed genes to identification
of differentially expressed gene sets. Therefore, we consider
self-contained hypothesis and corresponding permutation
𝑃 values in this paper.

In this paper, a statistical test to determine whether some
functionally predefined classes of genes express differently
under different experimental conditions is referred to as
gene set analysis (GSA). When there are two experimental
conditions, a GSA can be a one-sided or two-sided test. A
one-sided test is to detect the changes of gene expressions in
the gene set in one direction, either up- or downregulation.
The two-sided test is to detect the changes in both up-
and downregulation [6, 15]. When the goal is to detect
coordinated changes in one direction, the one-sided hypoth-
esis is appropriate. However, in an exploratory context, it
is impossible to prespecify how individual genes in a gene
set will respond in different conditions. Hence, two-sided
hypothesis is generally suggested.

The original GSEA statistic was developed for a one-
sided test to identify downregulated genes in type 2 diabetes
mellitus subjects [4]. Other one-sided tests included T-like
statistic [8]; MaxMean statistic [9]; standardized weighted
sum statistic [10]; and OLS statistics [6]. Chen et al. [6]
showed that OLS statistic performed well for GSA statistics
in one-sided test. Two-sided tests were considered in most
GSA statistics (e.g., [7, 11–17]). Tsai and Chen [16] proposed
a multivariate analysis of variance (MANOVA) GSA test
for two or more conditions. The MANOVA approach was
compared with principal component analysis [13], SAM-GS
[15], GSEA [5], MaxMean [9], analysis of covariance [7], and
Goeman’s global test [11]. They found that MANOVA test
performed the best in terms of control of type I error and
power.

The GSEA software only performs one-sided test in two
conditions at a time [4]. Another software provides either
one-sided or two-sided test; for example, BRB-Array tools
[18] provided LS (KS) statistics, Goeman’s global test, and
MaxMean test. When the null hypothesis is that no genes in
the gene set are differentially expressed, the two-sided ismore
appropriate than other methods.

When the purpose of study is to build up prediction
rule based on gene expression profile, utilizing the existing
biological knowledge, such as biological pathway or cellular
function information, has been showed to improve the clas-
sification accuracy (e.g., [19–21]). The selection of predictors
can be either preselected by testing or chosen based on
classification algorithm, and the final identified predictors are

also considered as differential expressed. Hsueh et al. [22] and
Pang et al. [23] proposed a random forests-based differential
analysis of gene set data in terms of predictive performance
of gene sets. The analysis contained not only a classifier but
also the feature importance of the input gene sets.

The gene set analysis has been considered to accommo-
date continuous phenotype. Linear combination test [17] has
been extended from binary to continuous phenotype (LCT)
by utilizing linear regression function [24]. Significance
analysis of microarrays for gene sets (SAM-GS) [15] and
global test [11] have also been extended in a generalized linear
model (GLM) framework. Dinu et al. [24] compared the type
I error rates and powers for the three methods and con-
cluded that LCT approach is powerful and computationally
attractive. The random forests-based approach could be also
applied to continuous phenotype bymodifying random forest
classification to random forest regression. A small simulation
experiment to compare the random forests-based and LCT is
reported in this paper.

The main purpose of this paper is to present the MAVT-
gsa R package tool for GSA for study with categorical
phenotypes or continuous phenotypes. The OLS one-sided
test, MANOVA test, and random forest-based analysis are
implemented in MAVTgsa. When categorical phenotypes
involve more than two classes, the three multiple comparison
procedures are implemented: Dunnett, Tukey, and sequential
pairwise comparison. The program provides two visualiza-
tion plots: GSA plot, a 𝑃 value plot of GSA for all gene sets
in the study, and GST, a plot of the empirical distribution
function of the ranked test statistics of a selected gene set.
The researcher is able to summarize and visualize the gene
expression data in gene set analysis. More importantly, the
adjusted 𝑃 value of family-wise error rate (FWER) [25] and
FDR step-up procedure [26] are computed in this package.
When the outcome of interest is a continuous phenotype,
the random-forests based analysis is applied in the regression
context. Figure 1 describes the procedure of how to imple-
ment theMAVTgsa package for gene set enrichment analysis.

Section 2 describes the methods implemented in the
MAVTgsa package. In Section 3, we present a description
of the MAVTgsa package including data input, optional
parameters, output, and result visualization. In Section 4,
we apply to two real data sets, P53, and breast cancer, for
illustration. This paper is concluded by a summary.

2. Methods

2.1. The OLS Test. The OLS test was developed to detect
changes in one direction, either up- or downregulation, for a
study with two experimental conditions. Consider a gene set
consisting of m genes with two conditions of sample size n1
and n2. Let 𝑦𝑖𝑗 = (𝑦𝑖𝑗1, . . . , 𝑦𝑖𝑗𝑚) be the𝑚-vector of intensities
for simple 𝑗 (𝑗 = 1, . . . , 𝑛

𝑖
) in 𝑖th condition (𝑖 = 1, 2). Denote

the standardized variable 𝑦∗
𝑖𝑗𝑘
= (𝑦
𝑖𝑗𝑘
− 𝑦
𝑘
)/𝑠
𝑘
, where 𝑦

𝑘
is

the overall sample mean for the 𝑘th gene and 𝑠
𝑘
is the pooled

standard deviation. Let 𝑧
𝑖𝑘
= Σ
𝑗
𝑦
∗

𝑖𝑗𝑘
/𝑛
𝑖
be the mean of the

standardized variable for the 𝑘th in the 𝑖th condition. Denote
the z
𝑖
= (𝑧
𝑖1
, . . . , 𝑧

𝑖𝑚
) as the 𝑚-vector of the standardized
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Figure 1: A schematic flowchart of GSEA using the MAVTgsa package.

mean variable 𝑧
𝑖𝑗
’s for the 𝑖th condition (𝑖 = 1, 2). Let d

𝑖
be an

𝑚-dimensional vector for the mean difference between two
conditions d

𝑖
= (z
1
− z
2
). The O’Brien’s OLS statistic [27] is

𝑇ols =
1󸀠d
𝑖

(1󸀠V
𝑖
1)1/2
, (1)

where 1 is a 𝑚
𝑖
× 1 vector of 1’s and V

𝑖
is the pooled sample

covariance matrix of d
𝑖
. If d
𝑖
is a multivariate normal, then

the OLS statistic 𝑇ols has an approximately 𝑡 distribution with
𝑛
1
+ 𝑛
2
− 2 degrees of freedom.

The one-sided OLS statistic is the most widely used
global test for the analysis of multiple clinical endpoints [27].
This test is very powerful when the changes in the gene
expression are in the same direction.The direction of changes
of significant gene set can be checked from the OLS statistic
The OLS statistics account for gene set size and correlation
structure [6]. In addition, the permutation 𝑃 values for the
OLS test are suggested to compute as the level of significance.

2.2. The MANOVA Test. Consider a gene set consisting ofm
genes with c conditions of sample size n1, . . . ,nc. Let 𝑦𝑖𝑗 =
(𝑦
𝑖𝑗1
, . . . 𝑦
𝑖𝑗𝑚
) be the 𝑚-vector of intensities for simple 𝑗 (𝑗 =

1, . . . , 𝑛
𝑖
) in 𝑖th condition (𝑖 = 1, . . . , 𝑐).TheMANOVAmodel

[16] can be expressed as 𝑦
𝑖𝑗
= 𝜇
𝑖
+ 𝑒
𝑖𝑗
, where 𝑒

𝑖𝑗
is 𝑚-vector

of residuals with Var(𝑒
𝑖𝑗
) = Σ and 𝜇

𝑖
is the𝑚-vector of means

for the 𝑖th condition. MAVTgsa occupied the Wilks’ Λ as the
statistic for MANOVA test. The formula of Wilks’ Λ is given
as

Λ = Π
1

(1 + 𝜆
𝑘
)
, (2)

where 𝜆
𝑘
’s are the eigenvalues of the matrix 𝑆 (= 𝐸−1𝐻),

and 𝐸 is within sum of squares matrix (sample covariance
matrix) and𝐻 is between sumof squaresmatrix.The number
of eigenvalues 𝑘 is equal to the minimum of the number of
genes (m) and the number of conditions minus 1 (c − 1).
When the number of genes in the gene set is greater than

the number of samples, the matrix 𝐸 is singular and ill-
conditioned. The shrinkage covariance matrix estimator (𝑠∗

𝑖𝑗
)

proposed by Schafer and Strimmer [28] is applied to estimate
the sample covariance matrix and given as

𝑠
∗

𝑖𝑗
= {
𝑠
𝑖𝑖

if 𝑖 = 𝑗
𝑟
∗

𝑖𝑗√𝑠𝑖𝑖𝑠𝑗𝑗 if 𝑖 ̸= 𝑗 (3)

and 𝑟∗
𝑖𝑗
= 𝑟
𝑖𝑗
min{1,max(0, 1 − 𝜆̂∗)}, where 𝑠

𝑖𝑖
and 𝑟

𝑖𝑗
,

respectively, denote the empirical sample variance and sam-
ple correlation, and the optimal shrinkage intensity 𝜆̂∗ is
estimated by

𝜆̂
∗
=

∑
𝑖 ̸= 𝑗

V̂ar (𝑟
𝑖𝑗
)

∑
𝑖 ̸= 𝑗
𝑟
2

𝑖𝑗

. (4)

The distribution of Wilks’ Λ under the null hypothesis of no
difference in responses among the conditions was estimated
by the permutation method. The Wilks’ Λ test is equivalent
to Hotelling’s 𝑇2 test when there are only two conditions.The
Hotelling’s 𝑇2 statistic is

𝑇
2
=
𝑛
1
𝑛
2

𝑛
1
+ 𝑛
2

(𝑥
1
− 𝑥
2
)
𝑡
𝑆
−1

𝑝
(𝑥
1
− 𝑥
2
) , (5)

where 𝑥
𝑖
and 𝑆

𝑖
denote the sample mean vector and sample

covariance matrix of the 𝑖th group (𝑖 = 1, 2), respectively,
and 𝑆

𝑝
= ((𝑛

1
− 1)𝑆
1
+ (𝑛
2
− 1)𝑆
2
)/(𝑛
1
+ 𝑛
2
− 2) denotes

the pooled covariancematrix. Using the shrinkage covariance
matrix and permutation test, the 𝑃 values of the Hotelling’s
𝑇
2 test are computed. The 𝑃 values of the MANOVA test are

computed using the permutation method.
The MANOVA test is a multivariate generalization of

the univariate analysis of variance (ANOVA) as Hotelling’s
𝑇
2 test is the generalization of the univariate 𝑡-test. The

parametric MANOVA and 𝑇2 test statistics are commonly
used for analyzing multivariate data.TheMANOVA test uses
a shrinkage covariance matrix estimator [28] to incorporate
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the correlations structure among the genes in the test statistic
and account for the singularity and ill-condition of the sample
covariance matrix. The MANOVA test uses the permutation
method to compute the 𝑃 values. Tsai and Chen [16] have
compared theMANOVA test with several GSEA tests includ-
ing the two one-sided tests: GSEA [5] andMaxMean [9], and
four two-sided tests: ANCOVA [7], Global [11], PCA [13], and
SAM-GS [15]. Their simulation showed that MANOVA test
performs well in terms of controlling the type I error and
power as compared to other tests, except that the ANCOVA
[7] was more powerful when the variances were equal across
all genes in the gene set.

2.3. Random-Forests BasedAnalysis. Therandom forests (RF)
[29] is a popular classification and regression algorithm
based on an ensemble of many classification/regression
trees combined with a bootstrap sample out of the original
dataset. The error rate of a classification tree or the mean
of squared error (MSE) of a regression tree is calculated
by the observations outside the bootstrap sample called the
out-of-bag (OOB) data. Lower error rate and MSE indicates
that the corresponding gene set is with higher prediction
accuracy for a categorical phenotype and higher percent
variance explained for a continuous phenotype, respectively.
The variable selection for each split at the nodes of trees is
conducted only from a small random subset of the predictors,
so that there is no need to deal with the “small 𝑛 large 𝑝”
problem. A permutation based 𝑃 value can be obtained as

𝑃-value =
∑
𝑁

𝑘=1
𝐼 {𝑅
(𝑘)
≤ 𝑅
0
}

𝑁
, (6)

where 𝑅
0
is the observed score from the random forests

analysis, 𝑅(𝑘) is the score in the 𝑘th permutation, and 𝑁 is
the total number of permutations. The score is calculated as
the OOB error rate and MSE for the categorical and contin-
uous phenotypes, respectively. The gene set is considered as
significantly expressed if the correspondent 𝑃 value is less
than or equal to the significance level 𝛼. To measure the
importance of each predictor variable, the random forests
algorithm assesses the importance of a variable by looking at
howmuch prediction error increases orMSE decreases when
that variable of the (OOB) data is permuted, while remaining
variables are left unchanged. Here, the mean decrease in
the Gini index (MDG) and the mean decrease in MSE are
employed as the importancemeasures of genes for categorical
and continuous phenotypes, respectively.

2.4. Multiple Comparisons Methods. In MANOVA test, the
null hypothesis is rejected if one or more of the mean
differences or some combination of mean differences among
the genes in gene set differs from zero. If the null hypothesis
is rejected, three multiple comparison procedures are imple-
mented to identify which two conditions differ in expression
between gene sets for studies with more than two condi-
tions. Three multiple comparisons methods are Dunnett,
Tukey, and sequential pairwise comparison. Dunnett test is
specifically designed for situations where all groups are to
be compared against the “reference” group. Tukey test is for

all pairwise comparisons. When the conditions are in order,
sequential pairwise comparison is appropriate to be occupied
for comparing with previous condition.

3. MAVTGSA Package Description

MAVTgsa is a software tool to evaluate the expressions
of a priori defined gene sets under different experimental
conditions. The package implements essentially the method
described in the previous section and the main functions are
MAVTn() andMAVTp().

3.1. MAVTn. For experiments with two or more than two
conditions, the input parameters to perform the testing are
described as follows.

MAVTn(DATA, GS, Alpha, nbPerm, MCP)

(i) DATA is a gene expression data matrix with samples
in columns. The first row contains the information
of the experimental condition of each sample. The
remaining rows contain gene expression.

(ii) GS is a binary matrix coded 0 or 1 with genes in rows.
Each column represents a predefined gene set, with
row equal to 1 indicating that the gene is in the gene
set, and 0 otherwise.

(iii) Alpha is the significance level.
(iv) nbPerm specifies the number of permutations, and at

least 5,000 is recommended.
(v) MCP specifies one of three multiple comparison

methods, Dunnett = 1, Tukey = 2, and sequential
pairwise comparison = 3. MCP can be ignored when
the number of experimental conditions is 2.

The output of the MAVTn() function is a list of objects
which contains the following.

(i) 𝑃 value: a list of the gene sizes and the 𝑃 values
and adjusted 𝑃 values of the statistical tests for GSA.
The adjusted 𝑃 values of the family-wise error rate
(FWE) [25] and the FDR step-up procedure [26] are
computed using permutation method. In case of two
experimental conditions, the 𝑃 values and adjusted 𝑃
values for OLS and Hotelling’s 𝑇2 test are listed. In
case of more than two conditions, the 𝑃 values for
MANOVA and post hoc tests are listed.

(ii) Significant gene set: a list of the 𝑃 values of individual
genes for those significant gene sets in statistical test
of GSA.

In addition, a plot of 𝑃 values for all gene sets is drawn
to examine the adequacy of the assumptions on which the
distributions of the test statistics are based.

Example of applying MAVTn to a simulated 3 conditions
data is as follows:

R>mu <− c(rep(1,5),rep(5,5))
R> Sigma <− diag(1,10)
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R> set.seed (10) # fix random seed
R> GE <− rmvnorm (15,mu,Sigma) # generate 15 sam-
ples with 10 gene expression
R > set.seed(10) # fix random seed
R > GS <− matrix (1∗(runif (40,0,1)<=0.7),
ncol=4,nrow=10) # simulate gene set matrix
R> cl <− c(rep(1,5),rep(2,5),rep(3,5)) #clinical treat-
ment
R> data <− rbind(cl,t(GE))
R>MAVTn(data,GS,MCP = 1).

3.2.MAVTp. For experiments with categorical or continuous
phenotypes, the input parameters to perform the random
forests analysis are described as follows.

MAVTp(DATA, GS, nbPerm, Numoftree, Type, Impt)
(i) DATA is a gene expression data matrix with samples

in columns. The first row contains the information
of the experimental condition of each sample. The
remaining rows contain gene expression. If the first
row is a factor, RF classification is assumed, otherwise
RF regression is assumed.

(ii) GS could be a binarymatrix coded 0 or 1 with genes in
rows. Each column represents a predefined gene set,
with row equal to 1 indicating that the gene is in the
gene set, and 0 otherwise.

(iii) nbPerm specifies the number of permutations.
(iv) Numoftree specifies the number of trees to grow.
(v) Type indicates categorical or continuous phenotype.
(vi) Impt is an option for outputting the important

measure.
The output of the MAVTp() function is a list of objects

which contains the following.
(i) 𝑃 value: a list of the 𝑃 values of the random forests for

GSA.
(ii) Important gene set: a list of the importance measure-

ment of individual genes for those significant gene
sets.

Example of applying MAVTp to a simulated continuous
phenotype data is as follows:

R>mu <− c(rep(1,5),rep(5,5))
R> Sigma <− diag(1,10)
R> set.seed(15) # fix random seed
R> GE <− rmvnorm(15,mu,Sigma) # generate 15 sam-
ples with 10 gene expression
R> y = mvrnorm (1,rep(0,10),diag(rep(1,10))) # gener-
ate continuous phenotype
R> data <− rbind(y,GE)
R> GS <− matrix (1∗(runif (30,0,1)<=0.7),ncol =
3,nrow=10) # simulate gene set matrix
R> test rf con <− MAVTp(data,GS,nbPerm=1000,
numoftree=500,type=“cont”,impt= TRUE).
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Figure 2: The GSA-plot for OLS test and Hotelling’s 𝑇2 test in P53
study. Both 𝑃 values in OLS test (black line) and 𝑇2 test (red line)
are not close to the diagonal dash line. That means both tests could
identify that several gene sets showed truly significant of the testing
hypotheses.

3.3. Visualization Plots. Two visualization plots are imple-
mented, GSA and GST. The GSA plot (Figure 2) provides a
𝑃 value plot of all gene sets considered in the study. The 𝑃
value plot is the plot of ordered 𝑃 value versus its rank.The 𝑃
value plot can provide an overall assessment of differences in
expression among conditions for all gene sets considered in
the study. Under the null hypothesis of no differences, the 𝑃
values should be uniformly distributed on the interval (0, 1);
the 𝑃 value plot should be a straight line. If a null hypothesis
is not true, then its 𝑃 value will tend to be small. The GST
plot displays the relative direction (in two conditions) and
statistics ranking for genes in a gene set. The GST plot is
derived from the SAFE plot which provides the empirical
distribution function for the ranked statistics of a given gene
category [30]. The GST plot displays the ranked test statistics
(red line) and empirical cumulative distribution function of
these test statistics for expressed genes in a gene set (solid
line). Tick marks above the plot display the location of genes
with gene names. The shaded regions are set to represent
the statistics that the 𝑃 values below the given alpha value
(Figures 3–5). The input parameters to perform the analysis
are described as follows. Two examples are presented in next
section to show the output of GST plot.

4. Results

4.1. P53 Study. The MAVTgsa was applied to a P53 dataset.
The P53 dataset is from a study to identify targets of the
transcription factor P53 from 10,100 gene expression profiles
in the NCI-60 collection of cancer cell lines. There are 308
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Table 1: The original 𝑃 values and adjusted 𝑃 values (FDR and FWE) of the OLS and Hotelling’s 𝑇2 test of P53 data.

GS name GS size OLS 𝑇
2

𝑃 value FDR FWE 𝑃 value FDR FWE
hsp27Pathway 15 0∗ 0 0 0.0001∗ 0.0015 0.0003
p53hypoxiaPathway 20 0∗ 0 0 0∗ 0 0
p53Pathway 16 0∗ 0 0 0∗ 0 0
P53 UP 40 0∗ 0 0 0∗ 0 0
Radiation sensitivity 26 0.0001∗ 0.0062 0.0741 0∗ 0 0
rasPathway 22 0.0015∗ 0.0770 0.3618 0.0989 0.2621 0.0576
HTERT DOWN 64 0.0029∗ 0.1276 0.5490 0.0383 0.1636 0.1239
ST Interleukin 4 Pathway 24 0.0079∗ 0.3042 0.2743 0.0039∗ 0.0375 0.1799
ck1Pathway 15 0.0089∗ 0.3046 0.3107 0.0068∗ 0.0582 0.1486
ngfPathway 19 0.0105 0.3102 0.2071 0.1313 0.2952 0.0862
inflamPathway 28 0.0133 0.3102 0.0737 0.0308 0.1492 0.0674
lairPathway 15 0.0134 0.3102 0.1119 0.0393 0.1636 0.2736
no2il12Pathway 17 0.0136 0.3102 0.2248 0.0245 0.1417 0.0549
cytokinePathway 21 0.0141 0.3102 0.2706 0.0290 0.1492 0.0217
badPathway 21 0.0157 0.3224 0.4702 0.0001∗ 0.0015 0
∗Denote 𝑃 values < 0.01.
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Figure 3: GST-plot for the gene set rasPathway in P53 dataset. The
solid line is the empirical cumulative distribution function of the
rank 𝑡-statistics for 10,100 genes in the array. The two-tailed shaded
regions represent the 𝑡-statistics that had the 𝑃 value less than 0.01.
There are 22 tick marks above the plot which display the location
of the 𝑃 value of the genes from the gene set. The gene set shows
underexpressed.

gene sets in the P53 study. The mutation status of the P53
gene has been reported for 50 cell lines included 17 wild-type
and 33 mutation samples. The dataset is publicly available at
the GSEA website (http://www.broad.mit.edu/gsea/). Table 1
shows the result of fifteen gene sets in which the 𝑃 values for
OLS test are the top fifteen smallest 𝑃 values under 10,000
permutations (𝑛𝑏𝑃𝑒𝑟𝑚 = 10, 000). The significant level is
set as 0.01 (𝑎𝑙𝑝ℎ𝑎 = 0.01). The 𝑃 values for OLS test and
MANOVA (Hotelling’s 𝑇2) were calculated and listed the
𝑃 values of individual genes for those significant gene sets.
The 𝑃 values from the OLS test are different from the 𝑃
values from two-sided 𝑇2. The gene set rasPathway, HTERT
DOWN, and ngfPathway are highly significant (𝑃 < 0.01)
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Figure 4: GST-plot for the gene set badPathway in P53 dataset. The
solid line is the empirical cumulative distribution function of the
rank 𝑡-statistics for 10,100 genes in the array. The two-tailed shaded
regions represent the 𝑡-statistics that had the 𝑃 value less than 0.01.
There are 21 tick marks above the plot which display the location of
the 𝑃 value of the genes from the gene set. The gene set shows both
under- and overexpressed.

by OLS test, but they are not significant in Hotelling’s 𝑇2 test.
In contrary, the gene set badPathway is highly significant in
Hotelling’s𝑇2 test but not inOLS test. Figure 2 is theGSA-plot
for two groups. Figures 3 and 4 are the GST plots for the gene
set rasPathway and badPathway, respectively. In Figure 3, two
of 22 genes are underexpressedwith the𝑃 value less than 0.01.
On the other hand, one of the 21 genes in badPathway shows
underexpressed and one shows overexpressed in Figure 4.
The results indicate that the power of methods to detect
differential expressed gene set depends on the global pattern
of genes within gene set. Combining the information from
the two tests and GSA-plot will be useful to get biological
meaningful interpretation.
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Figure 5: GST-plot for the gene set cell cycle control in breast
cancer dataset.The solid line is the empirical cumulative distribution
function of the rank 𝐹-statistics for 1,113 genes in the array. The
shaded regions represent the 𝐹-statistics that had the 𝑃 value less
than 0.01. There are 5 tick marks above the plot which display the
location of the 𝑃 value of the genes from the gene set.

4.2. Breast Cancer Dataset. We applied the MAVTgsa to a
breast cancer dataset [31] and illustrate the RF, MANOVA,
and a multiple comparison analysis. The dataset consisted
of three conditions with 1,113 genes and 96 samples. Three
conditions were tumor grades 1, 2, and 3 with the sample sizes
of 11, 25, and 60, respectively. There were nine cancer related
pathways for gene set analysis. Table 2 shows the 𝑃 values of
the MANOVA and the post hoc Dunnett’s analysis for each
of the nine pathways. Figure 5 is the GST plots for the 31
genes in the gene set cell cycle control. Five of the 31 genes are
differential expressed with 𝑃 value less than 0.01 in the breast
cancer samples. In this analysis the total computation time
used to perform the analysis was approximately four hours
and 10 minutes with nbPerm = 10,000. A classification rule to
classify the three tumor grades is also constructed. The error
rates of 10-fold cross-validation are given in Table 2.

4.3. Simulation Study. In order to understand how well the
random forests-based analysis performs for continuous phe-
notypes, we conducted a number of simulations to evaluate
the performance in terms of type I error and power and
compare to the LCT method [24]. The simulation design
was similar to that considered by Dinu et al. [24]. For each
gene set of size 𝑝 24, we generated a 𝑝 by 𝑛 gene expression
matrix 𝑋

𝑛×𝑝
with sample size of 𝑛 and a linear model was

used to simulate the phenotype data associated with the
gene set 𝑋. The gene expressions matrix 𝑋 was generated
from a multivariate normal distribution with mean from a
uniform (0, 10) distribution, variance from a uniform (1, 5)
distribution, and a mixed intragene set correlation structure
as follows:

𝜌
𝑖𝑗
=

{{

{{

{

𝜌, 1 ≤ 𝑖 ̸= 𝑗 ≤ 𝑝
1
;

𝜌
|𝑖−𝑗|
, 𝑝
1
+ 1 ≤ 𝑖 ̸= 𝑗 ≤ 2𝑝

1
;

0, otherwise,
(7)

where the correlation 𝜌 was set at 0, 0.3, 0.5, and 0.9 in
this study. For each gene set, a continuous phenotype vector

𝑌
𝑛×1

is generated from a multivariate normal distribution
MVN(𝑋𝜇, I), where 𝜇 is the effect size vector with length 𝑝
and I the identity covariance matrix. In the null model, with
no association of gene expressions on the phenotype, we set
𝜇 to be 0 to investigate the type I error and the simulation
scenarios varied according to sample sizes (𝑛 = 10, 20, or 50),
gene set sizes (𝑝=20, 100, or 200), and the levels of correlation
among genes (𝜌 = 0, 0.3, 0.5, or 0.9) within a gene set at
different number of genes (𝑝

1
= 5, 20, or 40). In the alternative

model, the sample size and gene set size were, respectively,
fixed at 20 and 100, as well as only 10 of genes were simulated
to be associated with the phenotype to investigate power of
two gene set analysis methods. First, we randomly generated
5 of the first 20 components of 𝜇 from normal distribution
𝑁(], |]|) and another five of the next 20 components of𝜇 from
normal distribution 𝑁(−], |]|) as up- and downregulated
genes, respectively. The rest of components of 𝜇 were set to
be 0. The effect sizes (]) for the associations were set at 0.2,
0.6, 1.0, 1.4, and 1.8. For each scenario, the simulation data
were replicated 1000 times to estimate type I error rate or
power.The 𝑃 values were based on 1000 permutations. Power
was then estimated as the proportion of significance using
the nominal level of 0.05. Table 3 showed the empirical type
I errors using the nominal level of 0.05 for each scenario.
The type I errors from the random forests method were
reasonably close to or below the nominal level, while the LCT
method appeared to have an inflated type I error rate in most
cases. It indicates that the RF method gives a conservative
conclusion. Such conservativeness may lead to power loss
in detecting a difference. Figure 6 illustrated the empirical
powers using the nominal level of 0.05 for 𝜌 = 0.0, 0.3, 0.6,
and 0.9. As expected, the RF method was slightly inferior to
the LCTmethod, while LCTwas unable to adequately control
the type I error rate. However, with increasing of correlations
among genes, both methods appeared to be equivalent. The
powers of both methods increased gradually with increasing
correlations.

In addition, to explore the robustness of the RF method
with regard to nonlinear association data, the continuous
phenotype vector 𝑌

𝑛×1
was generated from a multivariate

normal distribution MVN(exp(𝑋𝜇), I). Figure 7 showed the
average power over 1000 simulations for each method using
the nominal level of 0.05. As a result, the RF provided a more
powerful test than the LCT method to detect the non-linear
association between gene sets and continuous phenotypes.

5. Conclusion

TheMAVTgsa package performs a systematic gene set analy-
sis for identification of different types of gene set significance
modules.The user can select the most appropriate analysis or
combine them to provide insight into gene sets that respond
in a similar manner to varying phenotypes and that might
therefore be coregulated. For studies with more than two
conditions,MAVTgsa not only provides theMANOVA test to
identify gene sets consisting of differentially expressed genes
but also implements three multiple comparison methods for
post hoc analysis. The method implemented in MAVTgsa
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Table 2: Results of the MANOVA, 10-fold CV error, and post hoc test (Dunnett’s method) of breast cancer data with three groups for nine
pathways.

GS name GS size MANOVA
𝑃-value

10-fold CV adjusted 𝑃 value Multiple comparisons
Error rate FDR FWE 𝑇

2
−𝑇
1

𝑇
3
− 𝑇
1

androgen receptor signaling 72 0.0000∗ 0.3438 0 0 0.2088 0.0027
apoptosis 187 0.0031∗ 0.3542 0.0047 0.1751 0.5836 0.0517
cell cycle control 31 0.0000∗ 0.3333 0 0 0.3823 0.0002
notch delta signalling 34 0.0040∗ 0.3750 0.0051 0.2179 0.4558 0.0468
P53 signalling 33 0.0001∗ 0.2917 0.0002 0.0078 0.4891 0.0029
ras signalling 266 0.0049∗ 0.3542 0.0055 0.5569 0.9132 0.0239
tgf beta signaling 82 0.0564 0.3438 0.0564 0.4885 0.6840 0.0664
tight junction signaling 326 0.0001∗ 0.3854 0.0002 0.0294 0.2937 0.0058
wnt signaling 176 0.0004∗ 0.3542 0.0007 0.3299 0.6117 0.0037
∗Denote 𝑃 values < 0.01 in Wilks’ Λ test.
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Figure 6: Power comparisons of two GSA methods for a linear association between gene sets and continuous phenotypes: random forests
and LCT.



BioMed Research International 9

Po
w

er

0.5 1.0 1.5 0.5 1.0 1.5

0.5 1.0 1.5

0.2

0.4

0.6

0.8

1.0

Po
w

er

0.2

0.4

0.6

0.8

1.0

Po
w

er

0.2

0.4

0.6

0.8

1.0

Po
w

er

0.5 1.0 1.5

0.2

0.4

0.6

0.8

1.0

RF
LCT

RF
LCT

𝜌 = 0.6 𝜌 = 0.9

𝜌 = 0 𝜌 = 0.3

� �

��

Figure 7: Power comparisons of twoGSAmethods for a nonlinear association between gene sets and continuous phenotypes: random forests
and LCT.

package has the advantage of real application. First, the
MAVTgsa package provides the adjusted 𝑃 values using
both family-wise error rate (FWER) [25] and the FDR
step-up procedure [26] using permutation method. Second,
MAVTgsa is a permutation-based method to compute 𝑃
values and adjusted 𝑃 values. Third, MAVTgsa displays the
results for individual genes test of significant gene sets.
Finally,MAVTgsa draws theGSTplot to display the empirical
cumulative function for the ranked test statistics of a given
gene set with the gene location and gene name above the plot.
These allow the user to analyze the interesting gene set of the
data easily. In addition,MAVTgsa provides a random forests-
based procedure to identify gene sets in terms of predictive
performance or in association with the continuous pheno-
types. Random forests method has been proved to perform

well in comparison with the other classification methods and
successfully applied to various problems. Most importantly,
it can accommodate multiclass and continuous phenotypes
for the GSA, even if the associations between gene sets and
phenotypes are nonlinear and involve complex high-order
interaction effects.

6. Hard Ware and Software Specifications

The implementation and examples run of this package were
conducted on a laptop computer with 2.8GHz CPU and
3.0GB RAM under the Microsoft Windows XP Professional
SP3 using the R software version 2.14.1.
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Table 3: Type I error rate comparisons of two GSA methods for
continuous phenotype, RF, and LCT, at a significance level of 0.05.

Method 𝜌 = 0.0 𝜌 = 0.3 𝜌 = 0.6 𝜌 = 0.9

𝑛 = 10, 𝑝 = 20, 𝑝
1
= 5

RF 0.050 0.049 0.046 0.036
LCT 0.052 0.060 0.044 0.052

𝑛 = 20, 𝑝 = 100, 𝑝
1
= 20

RF 0.051 0.042 0.049 0.052
LCT 0.060 0.051 0.050 0.064

𝑛 = 50, 𝑝 = 200, 𝑝
1
= 40

RF 0.052 0.040 0.040 0.052
LCT 0.060 0.044 0.048 0.066

7. Availability

TheMAVTgsa package is available from http://cran.r-project
.org/web/packages/MAVTgsa/.
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