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Cdon acts as a Hedgehog decoy receptor during
proximal-distal patterning of the optic vesicle
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Patterning of the vertebrate optic vesicle into proximal/optic stalk and distal/neural retina
involves midline-derived Hedgehog (Hh) signalling, which promotes stalk specification. In the
absence of Hh signalling, the stalks are not specified, causing cyclopia. Recent studies showed
that the cell adhesion molecule Cdon forms a heteromeric complex with the Hh receptor
Patched 1 (Ptc1). This receptor complex binds Hh and enhances signalling activation,
indicating that Cdon positively regulates the pathway. Here we show that in the developing
zebrafish and chick optic vesicle, in which cdon and ptcT are expressed with a complementary
pattern, Cdon acts as a negative Hh signalling regulator. Cdon predominantly localizes to the
basolateral side of neuroepithelial cells, promotes the enlargement of the neuroepithelial
basal end-foot and traps Hh protein, thereby limiting its dispersion. This Ptc-independent
function protects the retinal primordium from Hh activity, defines the stalk/retina boundary
and thus the correct proximo-distal patterning of the eye.
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he Hedgehog (Hh) signalling pathway is a highly

conserved regulator of patterning and homeostatic events

in various developing and adult organs and thus its
activation is under tight control?. Hh ligands are released
through the cooperative activity of the transmembrane protein
Dispatched and heparan sulphate proteoglycans, which are also
crucial to modulate long-range distribution®>. There is also
evidence that cytonemes, long filopodial-like extensions formed
by the producing cells, promote delivery of Hh-containing
vesicles to similar extensions in target cells®®. In the targets,
binding of Hh to a receptor complex containing the seven-pass
membrane protein Patched (Ptc), releases Ptc-mediated
inhibition of the signal transducer protein Smoothened (Smo),
which initiates a cascade of intracellular events that lead to the
transcription of Hh target genes®1°,

Cdon (cell adhesion molecule-related, downre%ulated by
oncogenes)“’lz, the related Boc (Brother of Cdo)’® or their
Drosophila counterparts Thog (Interference hedgehog) and Boi
(Brother of Thog), are additional components of the Hh receptor
complex'*. Cdon and Boc are cell surface glycoproteins that
belong to a subgroup of the immunoglobulin (Ig) super-family of
cell adhesion molecules'. Their ectodomains contain five and
four immunoglobulin-like domains, respectively, followed by
three fibronectin IIT (FNIII) repeats (1-3), which are involved in
Ptc and Hh binding. FnlII(1-2) domains interact with Ptcl®,
whereas the evolutionary conserved FnlIlI(3) domain binds Hh
with high affinity!6~18,

The requirement of a heteromeric interaction between Ptc and
Thog/Boi for both high-affinity Hh binding and presentation of
Ptc at the cell surface was initially demonstrated in Drosophila'®
and then shown to be conserved in vertebrates!®. In mice,
Cdon and Boc and the unrelated Hh binding protein Gasl
(refs 20,21) act as positive and redundant regulators of Hh
signalling in different contexts?>2%, For example, Cdon-deficient
mice are characterized by mild holoprosencephalia (HPE) with
microphthalmia and moderate facial and brain defects of strain
specific penetrance!?>27. These traits are aggravated by the
additional inactivation of Boc, so that Cdon ~/~;Boc ~/ ~ embryos
present a significant loss of the Hh pathway activity?*, which is
further worsened by Gasl inactivation. Indeed Cdon~/—;
Boc™/~;Gas1=/~ compound mutant embryos show a
phenotype similar to that caused by the loss of Sonic hedgehog
(Shh) function: strong facial malformations and failure of partition
of the cerebral hemispheres and eye primordia®2. In zebrafish,
analysis of the uml(boc) mutant supports the idea that Boc acts as a
positive regulator of Hh signalling in the ventral neural tube but
might have an opposite function in the lower jaw?®.

In vertebrates, the morphogenesis of the eye primordium, also
known as optic vesicle, occurs concomitant to its patterning
along the proximal-distal (P-D) axis in medial (prospective optic
stalk) and lateral (prospective retinal) domains. The establish-
ment of this early P-D patterning is defined by the expression of
two pair- and homeobox- containing transcription factors, Pax2
and Pax6, the expression of which is, respectively, restricted to the
optic stalk and the retinal primordium?®=3!, Functional studies
have demonstrated that Hh secreted from the midline of the
ventral forebrain is required to promote Pax2 expression and
thus to establish optic stalk identity>®3>33, A cross-repressing
regulatory loop between Pax2 and Pax6 then refines the pattern,
forming a precise boundary between the retina and the optic
stalk?’. In the absence of Hh signalling, the stalk does not form
and Pax6-positive vesicles do not separate, forming a single
cyclopic eye?.

Notably, in the optic vesicles ptc and cdon are distributed
with a complementary and evolutionary conserved pattern:
Cdon localizes to the distal region overlapping with Pax6

2

expression, whereas ptcl matches Pax2 distribution?®343>

(Fig. 1f-i; Supplementary Fig. 1). Here we have addressed
whether and how cdon contributes to optic vesicle patterning,
using zebrafish and chick embryos as model systems. Our results
indicate that in the eye, Cdon acts as a negative regulator of Hh
signalling. Cdon as well as Boc expand the surface of the basal
end-foot of neuroepithelial cells, bind Hh and prevent its
dispersion, thus limiting long-range signalling, as proposed for
Thog and Boi!®¥38 " This function protects the retinal
primordium from Hh activity, thus enabling a correct P-D
patterning of the eye.

Results

cdon and ptc localize to complementary optic vesicle domains.
Pax2 function is critical to establish optic stalk identity in dif-
ferent vertebrate species®>3>3 and to restrain Pax6 expression, so
that the two genes have a complementary expression restricted to
the proximal/stalk and distal/retinal optic vesicle, respectively>*3?
(Supplementary Fig. 1). Pax2 expression is re§ulated by Hh,
which is strongly expressed in the ventral midline>*323, To get a
better understanding of the role of Hh signalling in the P-D
patterning of the eye, we analysed the distribution of Hh in
zebrafish embryos. Hh was strongly localized to cells of the
ventral midline of the forebrain and in optic stalk cells (Fig. 1a—e).
At early stages of optic vesicle specification, Hh strongly
accumulated at the most ventrally positioned Pax2-positive cells
(Fig. 1c) but its distribution extended dorsolaterally as develop-
ment progressed (Fig. 1d,e). In agreement with this distribution,
the Hh receptor ptcl was expressed in the ventral forebrain
including the prospective optic stalk®? (Fig. 1f,g). In contrast,
cdon, but not the related boc*® (Supplementary Fig. 1w-z), was
strongly localized to the neural retina region (Fig. 1lh,i). This
distribution was conserved in chick and mouse embryos
(Supplementary Fig. 1k-o). In the latter, Cdon protein appeared
to accumulate at the basolateral membrane of the retinal
epithelium starting from EI10, resembling the subcellular
localization described for the Drosophila homologue Thog*3®
(Supplementary Fig. 1t-v).

cdon knockdown alters P-D patterning of the eye primordium.
The complementary pattern of ptcl and cdon expression was
consistent with the idea that, in the eye, the two proteins could act
independently without forming a heteromeric Hh receptor!®,
raising the question of whether and how cdon expression in the
retina contributes to eye development. Answering these
questions, however, requires local or partial interference with
Cdon function because shh colocalizes with cdon at the axial
midline of gastrulating embryos (Fig. 1f,g). To avoid the complete
abrogation of this early function that may be responsible for the
mild holoprosencephalic phenotype of Cdon null mouse
embryos!'!, we reduced cdon expression levels in zebrafish
embryos using specific morpholinos (MOs).

Doses of 160 uM of a MO that efficiently interfered with the
cdon translation start site (Cdon®T¢ MO; Supplementary Fig. 2a—e)
generated morphants, which were characterized by abnormal
folding of the retinal ventronasal quadrant and the presence of an
optic fissure coloboma (lack of fissure fusion; Supplementary
Fig. 2f-i; higher doses led to early lethality), often a consequence of
abnormal optic stalk development>4142, The trunk in morphants,
however, appeared normal with no apparent ventral midline
defects suggesting that cdon knockdown was compatible with axial
midline formation. These anterior defects were not found in
embryos injected with a control MO (MO®) nor were rescued
by the co-injection of a MO against p53 (n=52), which is
activated by MO injection and can contribute to off-target effects*>.
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Figure 1| Expression of cdon and other Hh signalling components during P-D patterning of the optic vesicles. (a-c¢) Ventral views of anterior
zebrafish forebrain at optic vesicle (a is ventral to b) and optic cup (d, e) stages immunostained in toto with antibodies against Pax2 and Shh. (f-i) Dorsal
(fh) and lateral (g,i) views of zebrafish embryos hybridized in toto with probes specific for ptcl and cdon at the 20 somites’ stage (20 ss). (j-k) Coronal
sections of embryos (75-90% epiboly) hybridized for cdon and shh. The white arrows in b,c and e point to Shh immunolabelling in Pax2-positive

cells. Dashed lines in a-d,j and k indicate the embryonic midline. Continuous white and black lines in f-i outline the lens and the embryonic border,
respectively. a, anterior; d, dorsal; os, optic stalk; ov, optic vesicle; p, posterior; v, ventral. Scale bar, 25 um.

Injection of a different cdon MO complementary to the 3 splice
site of exon 8 (Cdon?’® MO) phenocopied cdonT® morphants
(Supplementary Fig. 3a-b).

To investigate more precisely the developmental nature of
these defects, we analysed the expression pattern of well-
established markers of the optic stalk, pax2.1 and fgf8a3>**. In
control embryos, pax2.1 was expressed in the optic stalk,
midbrain-hindbrain boundary (MHB) and along the hindbrain
(Fig. 2a,c,¢). In most cdon*TC and cdon®’™® morphants, pax2.1 was
enlarged invading a portion of the ventral optic cup but reduced
in the hindbrain (124/140 injected embryos; Fig. 2b,d,e;
Supplementary Fig. 3c-d). In lateral views of whole-mounted
cdonATG morphants, there was an approximate doubling of the
visible area of the optic stalks and ventral retina that expressed
pax2.1 (0.007 mm? £ 0.0003 s.e.m; n=45) as compared with
control embryos (0.0033 mm?+0.0002 sem; n=28; T-test,
P<0.001). A similar expansion of the optic stalk in cdonTC
morphants was observed also with an fgf8a probe specific (93/112
injected embryos; Fig. 2f-j). fgf8a distribution was expanded
also in MHB, dorsal diencephalon and telencephalon (Fig. 2fj).
Because coloboma is often associated with ventral retina
defects, we also analysed the expression of two ventral retina
specific markers, pdzrn3 (ref. 45) and rdhl0a (retinol
dehydr(c)'genase 102)%. Their distribution was expanded in
cdonTC" morphants in comparison with that of control
embryos (Supplementary Fig. 3e-h) but this increase was not
associated with an appreciable reduction of the expression of the
dorsal retinal marker tbx5.1 47 (Supplementary Fig. 3i,j).
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Altogether these data support the idea that cdon is specifically
required for restraining the size of the optic stalk and ventral
retina.

cdon counteracts Hh signalling during P-D eye patterning. In
mammals, Cdon acts as a positive modulator of Hh signalling in
the midline and its inactivation in mice causes a microform of
HPE!'L15 associate with a decrease in the Pax2-positive optic stalk
domain?%, a phenotype opposite to that observed in cdon
morphants. As a possible interpretation of this discrepancy, we
postulated that the mouse optic vesicle phenotype might be a
consequence of an early Cdon function, which is instead
preserved in the knocked-down cdonT® morphants, unveiling
a later and tissue-specific cdon function.

This function was consistent with Cdon acting as a negative
modulator of Hh signalling. If this were the case, inactivation of
Hh signalling should rescue the cdon loss of function phenotype.
To test this hypothesis, we interfered with Hh signalling in
cdonTG morphants by incubating the embryos in a medium
containing the Smo antagonist cyclopamine. As expected, this
treatment efficiently abolished the expression of pax2.1 in the
optic stalk of control embryos (Fig. 3a,c). Notably, cyclopamine
also counteracted the expansion of pax2.1 in the optic stalk of
CdonTC morphants, generating embryos with an overtly wild-
type phenotype (34/35 embryos; Fig. 3a,b,d).

Together these experiments point to the idea that Cdon,
when not properly matched by Ptc presence, may act as a
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Figure 2 | The optic stalk is expanded in cdon morphants. (a-j) In situ hybridization analysis for two optic stalk markers, pax2.1 (a-d) and fgf8a
(f-i) at 28 hpf and 24 hpf, respectively. Embryos are shown in lateral (a,b,f,g) and frontal (c,d h,i) views. Expression patterns of both genes are

schematically represented in e and j. In cdon’6

morphants, pax2.7 expression is expanded dorsally in the optic stalk (b,d brackets) when compared with

controls (a,c brackets). Fgf8a expression is expanded caudally and laterally in the optic stalk (g,i arrowhead and dotted lines) as well as in the telencephalon
(g,i) when compared with control embryos (fh arrowhead and dotted lines). di, diencephalon; mes, mesencephalon; MHB, midbrain-hindbrain boundary;

os, optic stalk; rh, rhombencephalon; tel, telencephalon. Scale bars, 100 pm.
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Figure 3 | Cdon acts as a negative modulator of Hh signalling.

(a-d) Lateral views of control or cdonT® morphants treated with DMSO
(vehicle) or cyclopamine from 90% epiboly and analysed with ISH for
pax2.1 expression at 28 hpf. Blocking Hh signalling abolished pax2.1
expression in the optic stalk in wt embryos (c). In cdon*™® morphants,
cyclopamine treatment counteracts the expansion of pax2.7 overexpression
observed in cdon®TSMO injected embryos (a,b,d). The lens and the

body are outlined with black and white dashed lines in (a-d). Arrows
indicate the extent of the pax2.7 expression in the optic stalk. DMSO,
dimethyl sulphoxide; MHB, midbrain-hindbrain boundary; oc, optic cup; os,
optic stalk. Scale bar, 100 um.

negative modulator of Hh signalling in the optic vesicle. This
idea was also supported by the expansion of the expression
domain of nkx2.2, a ventral forebrain Hh target gene?®,

observed in cdon morphants as compared with control embryos
(Supplementary Fig. 3k-o0).

Cdon function in the eye depends on the Hh binding domain.
Studies in vertebrates have suggested that Cdon interacts with
Ptcl through FnlIlI(1-2) domains?®, forming a heteromeric
receptor'®. Cdon further binds Hh through the remaining
FnllI(3) domain!®18. Alignment of the zebrafish, mouse and
human CDON sequence revealed conservation of the residues
defined as relevant for Ptc and Hh binding!>!¢ (Supplementary
Figs 4-7). Furthermore, analysis of the zebrafish cdon genomic
(NC_007129.5) and protein (Q1L8DO0) sequences indicated that it
was possible to design specific splicing MOs, which would cause
skipping of exon 11 or 14 without altering the ]?rotein-reading
frame (Fig. 4a,b). These MOs, designed as cdon*? 8 at the exon-
intron or intron-exon boundaries and named cdon®!,
cdon®P1%nd  cdon®P™14, injected alone (cdon®?™¥) or in
combination (cdon®?!%and ~cdon""19) efficiently generated
mutated Cdon versions, considerably reducing the wild-type
cdon form (Fig. 4). The prevalent mutated forms were, as
expected, a frame-shift mutation (cdonSPlg) or forms that lacked
the functionally relevant sequences of FnIII(3) (cdonP!%) and
FnIlI(2) (cdon?!1%nd cdon®'!19) domains, as determined by
PCR with reverse transcription (RT-PCR) analysis of the
respective morphants (Fig. 4c,f,i), followed by sequencing of the
corresponding bands (Supplementary Fig. 8). Furthermore,
transfection of similar constructs into HEK cells demonstrated
that the deleted versions of the protein were efficiently inserted
into the plasma membrane (Supplementary Fig. 9). We thus
expected that cdon®"19/P114 and cdon®?'™ MO injections would
generate embryos carrying Cdon versions with a reduced
capability of interacting with either Ptcl or Hh.

As observed in cdonT°MO and cdon®?® injected embryos
(Figs 2a-e and 4c-e)l), cdonP14 morphants (58/86) were
characterized by a significant expansion of the %axZ.I—positive
optic stalk domain, phenocopying the cdonTC phenotype
(Fig. 4f-h)l). In contrast, cdon®P!14 splld morphants (110/110)
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resembled wild-type embryos with no changes in the extent of the
pax2.1 domain despite the evident splicing effect generated by the
MOs co-injection (Fig. 4i-kl).

These results support that, during optic vesicle development,
Cdon function depends on Hh binding but likely with a Ptc-
independent mechanism. If this were the case, overexpression of
Cdon or CdonAFnlIII(2) should rescue the phenotype of cdon
morphants, whereas CdonAFnIII(3) should have no effect. To test
this hypothesis we took advantage of the tg(rx3::Gal4) line*®. This
line enables UAS-mediated overexpression of cdon only in the
Rx3-positive domain (Supplementary Fig. 10a—c), thus offering
the possibility of further testing if the zebrafish morphant
phenotype is linked to retinal-specific cdon function. Injection of
UAS:GFP DNA followed by a slightly delayed injection of
cdonT% MO efficiently drove GFP expression in the developing
optic vesicle (Supplementary Fig. 10c) but did not rescue the
expansion of the pax2.1 expression domain caused by cdon
knockdown (Supplementary Fig. 10f). UAS:Cdon and
UAS::CdonAFNIII(2), but not UAS:CdonAFNIII(3) DNA,
instead significantly counteracted the expansion of the pax2.1-
positive optic stalk domain characteristic of the morphants
(Supplementary Fig. 10d-f).

Together these data support that Cdon expression in the retinal
field is required to establish the optic stalk boundary with an Hh
dependent but Ptc-binding independent mechanism.

Retinal Cdon expression preserves the retina/stalk boundary. In
Drosophila both Thog and Boi can sequester the amount of Hh
available thereby limiting long-range signalling!®3¢-38, We thus
hypothesized that Cdon expressed in the retinal primordium
could bind Hh preventing its dispersion into the future retinal
domain. In this case, loss of Cdon function should expose retinal
cells to Hh, thereby expanding the stalk domain.

To test this possibility, we interfered with Cdon expression in a
spatiotemporal controlled manner, taking advantage of the
evolutionary conserved distribution of Cdon in the chick optic
vesicles (Supplementary Fig. 10,s). A cCdonTC-tagged MO was
forced by focal in ovo electroporation into the eye anlage of HH8
embryos, when Cdon expression in vesicle appears
(Supplementary Fig. 11). Targeted embryos showed an expansion
of pax2 expression, which was not observed in embryos
electroporated with an equally tagged cMO or in the
contralateral eye of unilaterally cCdonATC electroporated
embryos (Fig. 5a-d,f). This phenotype resembled that of gain of
midline-derived Hh signalling®>*°. Expansion of pax2 expression
was associated with a clear reduction of Pax6 distribution in the
optic cup (Fig. 5e,g), well in agreement with the notion that Pax2
and Pax6 regulate each other’s activity°.

Together these data indicate that Cdon expression in the retinal
primordium controls the balance between Pax2/Pax6 thereby
establishing the boundary between the optic stalk and the optic
cup. Considering that Pax2 is an Hh target’*3233, the position of
this border depends upon Hh protein distribution, which, in turn,
may be influenced by Cdon acting as a barrier.

Cdon controls Hh dispersion in the neuroepithelium. We next
investigated if Cdon expression modifies the distribution of the
endogenous Hh protein from the ventral hypothalamus. To this
end, we used in ovo electroporation and expressed mouse Cdon
and its deleted derivatives!” ectopically into the optic stalk of
HH8 chick embryos, close to the Hh producing ventral midline.
Successfully targeted embryos were then co-immunostained with
antibodies against Cdon and Shh. In embryos electroporated with
a control membrane Cherry-expressing vector (Fig. 6a-d) or in
the non-electroporated half of the embryo (Fig. 6e-h), Hh signal

was localized in the ventral neuroepithelium with a symmetric
distribution that covered about 125 pum from the midline. This
symmetric distribution was no longer observed when Cdon was
expressed in the adjacent optic stalk neuroepithelium (25/25 of
positive embryos). In this case, the ectopic Cdon-positive cells
closest to the Hh source presented an accumulation of Hh
immunoreactivity, particularly evident at the basolateral side of
the cells. This strong signal was mostly limited to the Cdon-
positive cells proximal to the Shh domain and less evident in
Cdon-positive cells that occupied a position more distal to the
Shh source (Fig. 6e-h; Supplementary Fig. 12d-f,m,n). Notably,
the effect of Cdon on Hh protein distribution was independent of
Cdon interaction with Ptcl because ectopic expression of
CdonAFnlII(1-2) caused a similar predominant accumulation
of Hh at the most proximal Cdon-positive cells (Fig. 6i-1;
Supplementary Fig. 12g-im,n). On the contrary, forced
expression of CdonAFnIII(3) had little effect on the symmetric
Hh distribution (Fig. 6m-p; Supplementary Fig. 12j-n), although
proximal cells expressing this Cdon mutated version appeared to
bind more ligand than control cells, opening the possibility that
Cdon residues other than those present in the FNIII(3) domain
partially contribute to Shh binding. Alternatively, this Cdon
deleted form may enhance the Hh binding efficiency of other
receptors expressed in the neuroepithelium.

Notably, Cdon-positive neuroepithelial cells presented a
significantly enlarged basal end-foot as compared with
Cherry electroporated control cells (Fig. 7a—f,s; Supplementary
Fig. 13a-f). Furthermore, in control cells the end-foot was rather
simple, whereas in Cdon-positive cells the end-foot was decorated
by several filopodial-like extensions that appeared to be a main
site of Hh accumulation (Fig. 7d-f; Supplementary Fig. 13d-f).
Consistent with the idea that Cdon acts as a ‘sink’ for Hh protein,
cells immediately surrounding a Cdon-positive cell were devoid
of Hh immunoreactivity (Fig. 7e,f; Supplementary Fig. 13e,f). A
similar significant enlargement of the basal end-foot associated
with the presence of some cytoplasmic extensions was observed
also in cells that ectopically expressed CdonAFnlIII(1-2)
(Fig. 7g—-i,s; Supplementary Fig. 13g-i), but not in those carrying
the CdonAFnlII(3) protein (Fig. 7j-1s; Supplementary Fig. 13j-1).
Together these results indicate that Cdon influence of basal end-
foot morphology is independent from Cdon interaction with Ptc
but is likely linked to Hh interaction.

Similar results were observed when the related Boc-EGFP was
ectopically expressed in the posterior neural tube supporting the
idea that the two proteins can act in a similar manner?>?4. Boc-
positive neuroepithelial cells accumulated Shh (not shown) and
presented an enlarged basal end-foot decorated by several
filopodial-like extensions (Fig. 7m-r). This end-foot was larger
(6.2um £0.7 s.eem; n=7; P<0.001) than that of GFP-positive
neuroepithelial cells (2.6 um + 0.3 s.e.m.; n=6).

All in all, these results support the idea that Cdon and Boc
localize predominantly at the basal surface of the neuroepithelial
cells enriched in filopodial-like extensions. These protrusions may
serve to enhance Hh binding in Cdon/Boc expressing cells, thus
modifying Hh distribution and thereby its activity.

Discussion

Our study provides evidence that Cdon-mediated interference
with Hh ligand dispersion is a mechanism by which Hh signalling
information can be regulated in vertebrates. We show that Cdon
expression in the retinal neuroepithelium serves to prevent the
activation of the Hh target gene pax2, thereby controlling the
proximal-distal patterning of the optic vesicle. We propose that
mechanistically this occurs because, in the absence of Ptc co-
expression, Cdon acts as a sink for Hh proteins that
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Figure 4 | Cdon interaction with Ptc is dispensable for its function in the optic vesicle. (a) Schematic diagram of the design of the exon skipping MO
used in the study. (b) Schema representing the zebrafish cdon mRNA (zcdon) aligned with the corresponding Cdon protein indicating the domains
targeted by cdonsP'8, cdonsP"a, cdonsP"' and cdonP™ MOs. The exons that encode the 5’ and 3’ UTR regions are depicted in blue; those that, when skipped,
generate a translational frame shift are indicated in red; whereas those that, when skipped, maintain the reading frame are indicated in green.

(¢ £i) RT-PCR analysis of the exon skipping function of cdonsP'8, cdonsP!™* and cdons""a/cdonsP!™d MOs. For detailed information about the resulting bands,
noted 1-9, please refer to Supplementary Fig. 8. (d.e,gh,jk) ISH analysis of pax2.7 expression pattern in cdon™'8 (d,e), cdons?*(g,h) and
cdonsPMe/cdonsP!d (j k) MO injected embryos at 26-28 h.p.f. Pax2.1 expression domain is expanded in cdons”'® (d,e) and cdon*™ morphants (gh) in
comparison with their respective controls, whereas there was no difference in the pax2.7 expression domain of control and cdonsPIMa s cdopsp!id morphants
(.%0. (D Quantification of the optic stalk pax2.1-positive expression domain in embryos injected with the different MOs at 26-28 h.p.f. ***P< 0.007;
Student's t-test). The number of embryos analysed in each case is indicated in each column and are as follows: Cdon®T® MO injection (control, n=28;
MO, n=45); Cdon"'® MO injection (control, n=12; MO, n=44), CdonsP"a and Cdon*"d MOs injection (control, n=26; MO, n=65); Cdons** MO
injection (control, n=22; MO, n=57). Error bars represent s.e.m. Scale bars, 100 um. MWM, molecular weight marker.
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Figure 5 | Localized interference with Cdon expression in the optic vesicles expands the distal optic stalk domain. (a-f) Lateral (a,b) and ventral (c)
views of the control (a) and experimental (b) optic vesicles (ov) of HH14 chick embryos with unilateral focal electroporation of a carboxyfluorescein
conjugated cCdon*™6 MO at HH8. Embryos were hybridized for pax2 (blue signal) and immunostained with anti-fluorescein antibodies (brown signal) to
detect MO distribution (a-d,f). Pax6é immunohistochemistry was performed in cryostat sections of electroporated embryos (e,g). Pax2 expression is
expanded to the entire optic vesicle of cCdon*’® MO-treated embryos (b,c) in comparison with the non-electroporated control eye (a,c). Pax2
expansion is associated with a reduction of Pax6 distribution in the retina (f,g) in contrast to a wild-type condition (d,e). The optic vesicles are outlined with

black (a-¢) or white (g) dashed lines. Scale bar, 50 um.

predominantly accumulate at the filopodial-enriched basolateral
side of Cdon-expressing neuroepithelial cells. A similar sink
mechanism, mediated by Boi or Ihog, seems to limit Hh long-
range distribution in Drosophila>®=38, Therefore we propose that,
in the absence of Ptc interaction, Cdon/Boi/Thog—and perhaps
Boc?®—have an evolutionary conserved function as Hh decoy
receptors. This mechanism of limiting Hh activity acts in parallel
to other, more intensively studied mechanisms, for example,
negative feedback regulation. A case in point is Hh-mediated
control of the expression of the Ptc receptor, which, in turn,
inhibits pathway activation®”.

Our notion of Cdon-mediated regulation of Hh signalling is
supported by the analysis of Cdon effect on Hh protein
distribution and by the consequences of graded and spatiotem-
poral controlled interference with cdon expression in both
zebrafish and chick-developing optic vesicle. The eye phenotype
resulting from this interference was compatible with that
observed after gain of Hh signalling function in the optic vesicle,
which is characterized by the expansion of the pax2-positive optic
stalk domain3*3231  indicating that Pax2 is an Hh target.
Consistent with these observations, cdon knockdown caused an
expansion of pax2.1 eye expression, which was rescued by
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Figure 6 | Cdon overexpression modifies Shh protein distribution in the optic stalk neuroepithelium. (a-p) Confocal analysis of coronal sections

at the level of the optic vesicle of HH14 chick embryos electroporated at HH8 with a construct carrying mCherry (a-d), Cdon (e-h) or its deleted
derivatives lacking the Ptc (CdonAFnllI(1-2)) (i-1) or Shh (CdonAFnllI(3)) (m-p) binding domains. Sections were immunostained with antibodies against
mCherry (a), Cdon (e,im) and Shh (bfjn). Note the localization of Shh protein in Cdon-positive cells—particularly in their basal regions

(f h white arrow)—falling outside of the Shh-expression domain (e-h). A similar accumulation is observed in the presence of the CdonAFnllI(1-2) construct
(i-1 white arrow) but was hardly detectable in mCherry or CdonAFnllI(3) expressing cells falling outside of the Shh domain (a-d and m-p). The
midline is indicated with a yellow dotted line. The normal extent of Shh distribution is indicated with a yellow line, whereas extended Shh localization is
indicated in red. In p the arrowhead points to a Cdon-positive cell within the Shh domain, whereas the arrow points to the first Cdon-positive cell
falling outside the Shh domain. fp, floor plate; os, optic stalk. Scale bar, 50 um.

interfering with Hh signalling activation and by the localized
overexpression of Cdon within the eye field. Furthermore, ventral
retina defects similar to those of cdon morphants have been
reported in other zebrafish lines, in which Hh signalling is
overactivated, for example, as in the blowout>, utal®* and
aussicht lines®3, in Zic2a morphants*” or after Hh overexpression
in zebrafish®*3? and chick embryos®!.

Notably, our findings are also in good agreement with studies
in the teleost fish Astyanax mexicanus, a natural example of the
consequence that Hh signalling expansion has on eye develop-
ment. In their natural environment, the Astyanax mexicanus
exists in two forms: a surface-dwelling river morph and a cave-
living blind morph (cavefish). In the embryonic cavefish, the
ventral expression domains of Hh and tiggy-winkle (twhh), a
family member that shares Hh functions in the developing eye’’,
are expanded in the forebrain®*>, Hh target genes, including
pax2, are hyperactivated and the ventral quadrant of the retina
fails to develop™. These defects coincide with those of the cdon
morphants, tempting us to anticipate that in the cavefish cdon
expression might be altered.

Despite the clear rescue of cdon morphant phenotype by
inhibition of Hh signalling, we could not detect an evident
expansion or upregulation of the expression of Hh target genes
(ptcl gli2, gli2b, gli3, boc and nkx2.1) in cdon morphants, with the
exception of nkx2.2, which is broadly expressed in the anterior
hypothalamic region. Invariance of target gene expression after
gain of Hh function has been reported in other studies, in which
the phenotype could be nonetheless rescued by modifying the
activity of other Hh pathway components**>?. These
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observations may reflect differential sensitivity of target genes
to Hh concentrations®®. Ptc, gli2, gli2b, gli3 and nkx2.1 likely
respond to high midline-derived Hh levels, whereas nkx2.2, given
its broad expression, might be more sensitive to local Hh
modifications caused by interference with Cdon expression.
Cdon has a transient but conserved expression in the
prechordal plate mesendoderm, notochord and ventral neural
tube midline, which all produce Hh proteins. Recent studies have
shown that Thog regulates the release of Hh from the producin
cells with high levels of Thog blocking Hh release or transport*3°,
At the same time, Thog favours the formation of cytonemes that
ensure long-range transport of Hh molecules® and in the
receiving cells increases Hh signalling!®. In a similar manner,
Cdon may control Hh dispersion shaping the gradient
responsible for the specification of ventral fates, including
among them the optic stalk. Thus, complete loss of Cdon
function would overall reduce Hh dispersion leading to a HPE
phenotype, as observed in humans carrying CDON mutant
alleles'® or in Cdon null mice!?*2>%7. Boc, Gasl or LRP2 might
reinforce this Cdon function in vertebrates, as suggested by the
stronger phenotype observed in compound Cdon~'~;Boc ™/~
mouse embryos“. Although we cannot completely exclude that
this compensation might explain the absence of midline defects in
our Cdon morphants, we believe that our downregulation of Cdon
function in both zebrafish and chick bypasses this early function,
which is likely responsible for the reduced expression of Pax2
observed in the optic vesicle of Cdon ™/~ mouse embryos?.
The incomplete downregulation of cdon in zebrafish has,
however, the advantage of unveiling a later Cdon effect:
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Figure 7 | Cdon and Boc promote morphological changes of the neuroepithelial basal side where Shh preferentially accumulates. (a-r) Confocal
analysis of coronal sections at the level of HH14 chicken optic stalk (a-1) and HH10 neural tube (m-r) electroporated at HH8 with a construct carrying
mCherry (a-c) Cdon (d-f), CdonAFnllI(1-2) (g-i), CdonAFnllI(3) (j-1), EGFP-GPI (m-0) or Boc-EGFP (p-r). Sections in (a-1) were immunostained with
antibodies against Cherry (a) Cdon (d,g,j) and Shh (b,e,h k). Images in (n,0) and (q,r) are high magnification views of cells shown in (m,p) respectively. Note
how cells electroporated with Boc-EGFP (q,r, arrows), Cdon (d) or CdonAFnllI(1-2) (g) present an enlarged basal end-foot when compared

with EGFP, mCherry or CdonAFnllI(3) neuroepithelial cells (n,0 and a,j arrows). This enlarged end-foot is a preferential site of Shh accumulation (e fh,i).
Note also the absence of Shh signal in the cells immediately surrounding the Cdon-positive cells (e h, dotted line arrows). This distribution is not observed
n cells expressing mCherry (b,c) or CdonAFnllI(3) (kD). (s) Quantification of the basal end-foot width of neuroepithelial cells electroporated with

Cdon and its deleted versions. The number of cases analysed for each data set is indicated in the respective column. The numbers of quantified cells are
indicated in the graph labels and are as follows: Cherry, n=17; Cdon, n=14; CdonAFnllI(1-2), n=16 and CdonAFnllI(3), n=13. Error bars represent
s.e.m. (**P<0.01, ***P<0.001; Student's t-test). There is no statistical difference in the basal end-foot width between Cdon and CdonAFnllI(1-2) expressing
cells (P=0.066, Student's t-test) or between Cherry and CdonAFnllI(3) expressing cells (P=0.998; Student's t-test). Scale bar, 10 pm.

protecting the retinal neuroepithelium from Hh signalling. In
absence of Ptc, Cdon-mediated tight Hh binding would not lead
to signalling activation but rather to precluding Hh dispersion.
Therefore, the same Thog/Cdon function of tightly binding the
available Hh may limit long-range or enhance signalling
depending on their expression, their distance to the Hh source
or the concomitant presence of the Ptc receptor.

This Ptcl-independent decoy function of Cdon is supported by
the complementary expression pattern of Cdon and Ptc in the eye
and other neural regions. Furthermore, the use of exon skipping
MO demonstrated that CdonAFnlIII(3)—deficient in Hh

binding—mimicked cdonT® morphant phenotype, whereas

removal of cdon Ptc-binding domain had no obvious effect on
eye development. Analysis of the effects of Cdon and its FNIII(2)
and FNIII(3) deleted derivatives in localized rescue experiments
and on the endogenous Hh distribution led to similar conclu-
sions. We show that neuroepithelial cells expressing Cdon
accumulate Hh protein on their surface independently from the
presence of the Ptc interacting domain, indicating that this Cdon
variant still effectively binds Hh, well in agreement with studies
with human CDON mutated alleles!® and with Thog mutant
forms in Drosophila'®. Cdon ectopic expression did not change
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the fate of targeted cells into Hh-producing cells, as determined
by ISH analysis (not shown). Thus, we propose that Cdon as well
as Boc can tightly bind Hh, depleting the amount of morphogen
present in the surrounding cells, as observed in our studies
(Fig. 7). This strong accumulation prevents further diffusion of
the ligand, thereby blocking pathway activation.

What is the destiny of the accumulated Hh protein is just a
matter of speculation at the moment. In a simple view the protein
could be endocytosed and degraded with a mechanism similar to
that described for Glypican3 (ref. 58), Ptc34°%60 or the Hh
interacting protein®. An alternative possibility comes from the
observation that Cdon and Boc expression is associated with the
presence of filopodial-like extensions at the basal side of
neuroepithelial cells. Although shorter, these extensions may be
related to the cytonemes initially described in Drosophila as
structures implicated in morphogen transport®® and recently
proven to be at the base of Hh long-range distribution in
Drosophila® and in the vertebrate limb bud®. Cytonemes are
present in both Hh producing and receiving cells and are
enriched in Thog® or Cdon®. It is possible that in cells that should
not receive Hh signalling, as the presumptive retinal epithelium,
Cdon-enriched extensions could serve to reshuffle Hh to the
nearby Hh responding optic stalk cells. In this way, the activity of
overly dispersed Hh will be maximized by being reconvened at
the responding cells farthest away from the Hh source, thus
reinforcing signalling activation in these cells. Further studies
are needed to establish if these extensions are specific features
of Cdon/Boc expressing cells or are normally present in
all neuroepithelial cells in labile forms undetectable with
conventional fluorescent techniques, which become stabilized bgr
the expression of these proteins, as suggested in Drosophila®.
Notably, basolateral protrusions have been very recently
described in the mouse neural plate®?.

In Drosophila, Boi and Thog have a redundant function in Hh
pathway activation!® and can sequester and titrate the amount of
ligand available for Ptc binding, thus limiting long-range
signalling!®37-38:64, Thog is also involved in cytoneme-based Hh
signalling®. Thus, at least Thog seems to have both a positive and
negative effect on Hh signalling activation®. Our study, together
with the observations that Cdon, Boc and Gasl have redundant
functions as Hh co-receptors!”-2022:2457 indicates that this dual
activity is conserved in the vertebrate Cdon homologue and
perhaps also in Boc. Indeed, Boc overexpression correlates with
the presence of filopodial-like extensions at the basolateral side of
the neuroepithelium (Fig. 7) and its expression seems to protect
mouse i_psilateral projecting retinal ganglion cells from Shh
activity®. Similarly, high levels of Boc expressed in the zebrafish
jaw have been proposed to bind Shh and limit the ability of Hh to
activate chondrogenesis and proliferation in this tissue?$,
Whether Cdon and Boc participate in Hh release/transport, as
Thog does, remains to be determined. Furthermore, it might be
worth exploring whether Cdon has Hh unrelated function in the
developing eye. Indeed independent of its Hh-related activity,
Cdon has been shown to interact with N-cadherin® which, in
turn, is relevant to proper optic fissure closure®’.

Methods

Maintenance of fish lines and chicken embryos. Adult zebrafish (Danio rerio)
and the Tg(rx3:Gal4-VP16) line*® were maintained at 28.5°C on a 14/10h light/
dark cycle. Embryos (AB/Tu or WIK strains) were raised at 28 °C and staged
according to hours post fertilization (h.p.f.) and morphology®. Embryos were
growth in E3 medium (NaCl, 5mM; KCl, 0.17 mM; CaCl,, 0.33 mM; MgSO,,
0.33mM, 5.10% Methylene Blue). We used chicken embryos (Gallus gallus
domestica) of the White Leghorn breed raised in the Santa Isabel farm
(Cordoba, Spain). The procedures used in the study were approved by the Ethical
Committee for Animal Experimentation of the Consejo Superior de Investigaciones
Cientificas (CSIC).
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Embryo injections. The MOs used in this study are listed in Supplementary
Table 1. The MO and cMO are standard control MOs from Gene Tools. MOs
were injected at concentrations listed in Supplementary Table 1 (1nl) by using a
microinjector (Femtojet/ Eppendorf or IM-300/Narishige) in zebrafish embryos at
one-cell stage. To determine cdonTC MO efficiency, the cdonT MO or MO
were co-injected into medaka fish embryos at one-cell stage with the RNA coding
GFP alone or with the cRNA (50 ngpl ™~ 1y of a reporter construct (5'cdon-GFP)
carrying the cdon 5’ sequence upstream of the GFP sequence and the knockdown
of GFP expression was analysed. The exon removal efficiency of cdon®?’s, cdon®
Pl cdopsPl1d and cdonP!' MO was verified by RT-PCR using the cDNA of the
respective morphant embryos at 24 h.p.f. The primers used to test effective exon
skipping are the following: cdon?MO, fwd: 5'-TATCCATCCTGCGAGGT
TTG-3, rev 5'-GACCTCATACAGGCTGGACG-3'; cdon*!!1% and cdon*P11¢ MOs
fwd: 5'-CCAATAAGAATCCCTCCA AAG-3/, rev 5'-CCAGCGTAACAGAATCT
GAG-3'; cdon®P* MO fwd: 5'-ACACTCCATCCAGCAATAAC-3, rev 5'-TCCT
CCATAAGCACATGACG-3'. PCR products were run in agarose gels (1-2%)
and visualized with FastRed (Biotium). The different bands were excised from the
gel, ligated by T-cloning in the pSC-A vector (Stratagene) and sequenced.
Sequences are reported in Supplementary Fig. 8. cdon®® MO injection generated
three aberrant cdon mRNAs: band 2 carrying a deletion of 73 bp that causes a
frame shift; band 3 carrying a 162 bp deletion and band 4 corresponding to the
frame-shift deletion of exon 8 (Fig. 4c). cdon®?"'4 MO injection generated one
aberrant cdon mRNAs: band 6 corresponding to the exonl4 skipping (Fig. 4f).
cdon®11% and cdon®?1¥MOs co-injection generated two aberrant cdon mRNAs:
band 8 carrying a deletion of 29 bp that causes a frame shift and band 9
corresponding to the exon 11 skipping (Fig. 4i). The p53 MO was used according
to Robu et al*3

Tissue processing and immunochemistry. Fish, chicken and mouse embryos
were fixed by immersion in 4% paraformaldehyde-phosphate buffer (wt/vol)
overnight at 4 °C. Embryos were then washed in phosphate buffer saline (PBS),
incubated in a 15% sucrose-PBS solution (wt/vol), embedded and frozen in a 7.5%
gelatin in 15% sucrose solution (wt/vol). Cryostat sections were processed for IHC
or for in situ hybridization (ISH). To detect endogenous Shh distribution, chick
embryos were instead fixed in ethanol 95%/acetic acid 1% for 20 min. Cryostat
sections or whole embryos were stained by a standard protocol using antibodies
against the following antigens: Cdon (1:100, R&D), Pax6 (1:500, Covance), Pax2
(1:500, Zymed), Fluorescein (1:500, Roche), Shh (1:500, 5E1 Hybridoma bank), HA
(1:250, Sigma). For Hh and Pax2 immunostaining in zebrafish, we adapted the
protocol for tissue slices® by boiling the embryos directly in citrate buffer 10 mM
at 110 °C during 5 min. Embryos were thereafter washed in PBS and incubated for
two days in the following primary antibodies: anti-Shh (1:50, R&D) and anti-Pax2
(1:50, Zymed). Incubation with appropriate secondary antibodies was performed
with standard procedures.

In situ hybridization. Chicken embryos were hybridized using digoxigenin- or
fluorescein-UTP-labelled antisense riboprobes for pax2 and cdon. Probes were
visualized with NBT/BCIP (dark blue). Zebrafish embryos were hybridized in toto
by standard procedures using the following digoxigenin-UTP-labelled antisense
riboprobes: tbx5.1, fgf8, pax2.1, ptcl, shh, nkx2.1, nkx2.2 and rdlh10a. Chicken
embryos were hybridized in toto by standard procedures using the following
digoxigenin-UTP-labelled antisense riboprobes: pax2 and cdon. The zebrafish boc
and cdon coding sequences were obtained by RT-PCR from ¢cDNA of embryos
collected at different developmental stages using the following primers (boc: fwd:
5'-CATCGATCCTTTCAATGCAAG-3', rev: 5-GGGAGTATTCTTGTTTCAT
CCA-3'; cdon: fwd: 5'-CATCGGGAGAATGTGTTTCG-3/, rev: 5-TCCACCAAT
ATCTTCATTCG-3') and cloned in pDrive vector (Qiagen).

mRNA and cDNA synthesis and cloning. Embryos were injected with different
splicing MOs at one-cell stage and at 24 h.p.f. were frozen in dry ice. RNA pur-
ification was performed with PureLink miniKit (Invitrogen) and cDNA was syn-
thesized with iScript cDNA synthesis Kit (Bio-Rad). 5 cdon-GFP construct was
obtained by fusing the RT-PCR amplified cdon coding sequence upstream of the
GFP sequence in a pCS2 vector (pCS2-5'cdon-GFP). Capped RNA (cRNA) was
synthesized using pCS2-5'cdon-GFP linearized with NotI as a template and the
mMessage mMachine SP6 Kit (Ambion). The resulting mRNA was purified using
RNeasy Mini Kit (Qiagen). 5'cdon-GFP mRNA was injected (1nl) at 80 ngul ~ 1 To
generate the UAS constructs, mCdon-HA was amplified from pCIG-mCdon using
the Expand High Fidelity PCR system (Roche) and the following primers fwd:
5'-ATAGAATTCACGTGCTGGTTATTGTGCTG-3/, rev: 5-ATAGAATTCAGC
GGCTTCGGCCAGTAACG-3'. The PCR product was cloned with T-cloning in
pSC-A (Stratagene). The vector was digested with EcoRI/Fbal and the band
corresponding to mCdon-HA was cloned into the pCS2 vector digested with
EcoRI. The pCS2-mCdon vector was verified by restriction analysis with EcoRV/
Xhol digestion and by DNA sequencing. Versions of Cdon lacking FnlIII-2 or the
FnllI-3 were generated by PCR amplification with a PfuUltra DNA polymerase
(Agilent) from the pCS2-mCdon vector using the following 5'phosphorilated
primers 5'-CAGGTGGCCGGCTTCCCAAATC-3', 5'-ATGCCTGGAGGAATC
CGTAAG-3’ for deletion of FNIII(2) and 5'-GGAGCTTCCGACTATCCCGTG-3/,
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5'-CACCTGGTAAGGACGGGATGC-3' for deletion of FNIII(3). The amplified
products were ligated (Ligase, Roche) overnight at 16 °C, digested with Dpnl
enzyme to remove the non-amplified DNA and then transformed. The pCS2-
mCdon, containing an HA tag, and its derivatives (pCS2-CdonAFnIII(2) and
pCS2-CdonAFnlII(3)) were transfected in HEK cells and the expected products
were verified by immunostaining and western blot analysis with anti-Cdon and
anti-HA antibodies. pCS2-mCdon, pCS2-CdonAFnlIII(2) and pCS2-CdonAF-
nlII(3) vectors were digested with Clal and the product was treated with Klenow
polymerase for blunting DNA ends. The product was digested with NotI/Sall and
run in an agarose gel. The band of approximately 4 Kb was excised from the gel,
purified and ligated in pBR-Tol2-UAS:MCS-UAS:GFP previously digested with
EcoRV/NotI (in short, UAS::GFP, which was kindly provided by Dr Masa Tada).
The obtained vectors UAS::Cdon, UAS::CdonAFnIII(2) and UAS::CdonAFnIII(3)
were verified by restriction analysis with KpnI and EcoRV/BglII digestion, PCR
amplification and sequencing. Efficient expression and membrane localization of
the constructs were verified by DNA microinjection in the rx3::Gal4 transgenic line
and o-HA immunostaining at 20 h.p.f. (Supplementary Fig. 10).

Deletion constructs of Cdon and Boc. pCIG-mCdon-HA (pCIG-mCdon),
pCIG-rCdon-FnllIA12-HA (CdonAFnlIII(1-2)) and pCIG-mCdon-FnlIIIA3-HA
(CdonAFnlII(3)) vectors were kindly provided by Dr B. Allen?’. pEGFP-mBoc
expression vector (Boc-EGFP) was kindly provided by Dr Ami Okada®. Versions
of Boc lacking FnlII-2 or the FnllI-3 were generated by PCR amplification with a
PfuUltra DNA polymerase (Agilent) from the pEGFP-mBoc plasmid using the
following primers: Boc-GFPAFnIII-2 fwd: 5'-GTGTCAGGCTACAGTGGC-3', rev:
5'-ATGGTCAGGCTGGCTGCT-3'; Boc-GFPAFnIII-3 fwd: 5'-TTTTCTGGTCA
GCCTGGA-3/, rev: 5'-CCTCTCATATACACGGCC-3'. The amplified products
were ligated (Ligase, Roche) overnight at 16 °C, digested with Dpnl enzyme to
remove the non-amplified DNA and then transformed.

Chicken electroporation. Fertilized chicken e% s were incubated at 38 °C to reach
the desired stage. A carboxyfluorescein-tagged’” chicken-specific MO

(cCdon TOMO) was designed to be complementary to the translation start site
sequence of Cdon (NCBI Reference Sequence: XM_417853.4). The MO efficiently
reduced the levels of the endogenous protein (Supplementary Fig. 11). The selected
vectors (1.5 pgpl = 1), cMO or cCdon’TC were injected in ovo in the eye
primordium of HH8 chick embryos right at the appearance of cdon expression in
the forming vesicle. The electrodes were placed at the head sides. Focal electrical
discharges were applied with the following conditions: voltage, 14V; pulses, 5;
interval, 300 ms and pulse length, 50 ms. Thereafter, eggs were sealed and
incubated at 38 °C until embryos reached HH14, when cdon mRNA localizes to the
entire retina (Supplementary Fig. 11). Embryos were then selected according to
GFP expression and fixed for further processing.

Rescue experiments. Cdon*T6MO and UAS::GFP, UAS:Cdon, UAS:CdonAF-
nllI(2), and UAS::CdonAFnlIII(3) DNAs were co-injected in the transgenic

line Tg(rx3:Gal4-VP16). DNA (35 pg) was injected into the cell of one-cell stage
embryos, whereas Cdon*TCMO (1nl of at 160 uM) was introduced in a second
round of injections into the yolk at the two—four-cells stage. Embryos were

let to develop for 26-28h in E3 medium at 28 °C. Embryos showing a homo-
geneous expression of GFP in the retina were selected and further processed
for pax2.1 ISH.

Cell transfection. Sub-confluent Human Embryonic Kidney 293T (HEK293) cells
were transiently co-transfected with the pCIG-Cdon-HA and derivatives or with
the pEGFP-mBoc or derivative-plasmids using the FuGENE HD Transfection
Reagent (Roche). After 48h, cells were visualized by fluorescence in a confocal
microscope or scraped in lysis buffer for western blot analysis.

Western blotting. HEK293 cell or tissue samples (electroporated chicken eyes)
were collected or dissected, treated with lysis buffer (150 mM NaCl, 1% NP40,
50 mM Tris pH8 ) and denatured in protein loading buffer (50 mM Tris-HCI pH
6.8, 2% SDS, 10% glycerol, 1% B-mercaptoethanol, 12.5mM EDTA and 0.02%
bromophenol blue). Proteins were resolved by 6% SDSP-gels, blotted onto a PVDF
membrane, blocked in 5% milk in PBS Tween-20 for 1h, incubated with Cdon
polyclonal antibody (R&D system) or HA polyclonal antibody (Sigma) in blocking
buffer overnight at 4 °C, washed four times with PBST, and incubated for 1 h with
peroxidase-conjugated secondary antibody. Labelled proteins were detected with
the chemiluminescence reagent ECL (Amersham Biosciences).

Treatment with Hh signalling inhibitor. Cyclopamine (Calbiochem) was used to
antagonize Hh signalling. Embryos at 90% epiboly were incubated in E3 medium
containing 100 pM Cya dissolved in dimethyl sulphoxide at 28 °C. Embryos were
fixed in 4% paraformaldehyde at 28 h.p.f.

Imaging. Sections were analysed with a DM or confocal microscope, whereas
whole embryos were observed with a stereomicroscope (Leica Microsystems).

Digital images were obtained using DFC500, DFC350 FX cameras (Leica) or
confocal microscopy (Zeiss) and processed with Photoshop CS5 or Image] (Fiji)
software.

Quantification and statistical analysis. For pax2.1 quantifications, embryos were
mounted in glycerol 85% and photographed in lateral views at x 160 to quantify
the area of the pax2.1-positive optic stalk domain. Comparison of nkx2.2 and
nkx2.1-positive domains in control and morphant embryos was performed using
dorsal view images of whole embryos and determining the mediolateral extent of
the signal. Quantitative analysis of Shh levels in electroporated cells was performed
using confocal images of transversal sections of control and experimental embryos
at the level of the optic stalk. In each one of the selected sections (one section per
embryo, 7-14 embryos per case were analysed), Shh levels were measured in two
adjacent regions (proximal and distal) outside of the endogenous Shh source. These
values were plotted separately. Quantitative analysis of width of the basal end-foot
area was performed using confocal images of Cherry, Cdon or deleted derivatives
overexpressing cells. Quantifications were performed using Image] (NIH). Data
analyses were performed with the IBM SPSS statistic software. All the data sets
presented a normal distribution (Kolmogorov-Smirnov test). Analysis of the data
was performed using ¢-test for two groups and analysis of variance for larger
groups. Statistical differences between pools of treated (MO, drugs, overexpression)
and control embryos were determined with the Pearson’s 2 test. In all graphs the
error bars indicate s.e.m.

References

1. Ingham, P. W, Nakano, Y. & Seger, C. Mechanisms and functions of Hedgehog
signalling across the metazoa. Nat. Rev. Genet. 12, 393-406 (2011).

2. Ryan, K. E. & Chiang, C. Hedgehog secretion and signal transduction in
vertebrates. J. Biol. Chem. 287, 17905-17913 (2012).

3. Bornemann, D. ], Duncan, J. E,, Staatz, W., Selleck, S. & Warrior, R. Abrogation
of heparan sulfate synthesis in Drosophila disrupts the Wingless, Hedgehog and
Decapentaplegic signaling pathways. Development 131, 1927-1938 (2004).

4. Callejo, A. et al. Dispatched mediates Hedgehog basolateral release to form the
long-range morphogenetic gradient in the Drosophila wing disk epithelium.
Proc. Natl Acad. Sci. USA 108, 12591-12598 (2011).

5. Ma, Y. et al. Hedgehog-mediated patterning of the mammalian embryo
requires transporter-like function of dispatched. Cell 111, 63-75 (2002).

6. Bischoff, M. et al. Cytonemes are required for the establishment of a normal
Hedgehog morphogen gradient in Drosophila epithelia. Nat. Cell. Biol. 15,
1269-1281 (2013).

7. Rojas-Rios, P., Guerrero, I. & Gonzalez-Reyes, A. Cytoneme-mediated delivery
of hedgehog regulates the expression of bone morphogenetic proteins to
maintain germline stem cells in Drosophila. PLoS Biol. 10, €1001298 (2012).

8. Sanders, T. A., Llagostera, E. & Barna, M. Specialized filopodia direct long-
range transport of SHH during vertebrate tissue patterning. Nature 497,
628-632 (2013).

9. Denef, N., Neubuser, D., Perez, L. & Cohen, S. M. Hedgehog induces opposite
changes in turnover and subcellular localization of patched and smoothened.
Cell 102, 521-531 (2000).

. Taipale, J., Cooper, M. K., Maiti, T. & Beachy, P. A. Patched acts catalytically to
suppress the activity of Smoothened. Nature 418, 892-897 (2002).

. Cole, F. & Krauss, R. S. Microform holoprosencephaly in mice that lack the Ig
superfamily member Cdon. Curr. Biol. 13, 411-415 (2003).

12. Kang, J. S. et al. CDO: an oncogene-, serum-, and anchorage-regulated member

of the Ig/fibronectin type III repeat family. J. Cell Biol. 138, 203-213 (1997).

13. Kang, J. S., Mulieri, P. J., Hu, Y., Taliana, L. & Krauss, R. S. BOC, an Ig
superfamily member, associates with CDO to positively regulate myogenic
differentiation. EMBO J. 21, 114-124 (2002).

14. Sanchez-Arrones, L., Cardozo, M., Nieto-Lopez, F. & Bovolenta, P. Cdon and
Boc: Two transmembrane proteins implicated in cell-cell communication. Int. .
Biochem. Cell Biol. 44, 698-702 (2012).

15. Bae, G. U. et al. Mutations in CDON, Encoding a Hedgehog receptor, result in
Holoprosencephaly and defective interactions with other hedgehog receptors.
Am. J. Hum. Genet. 89, 231-240 (2011).

. McLellan, J. S. et al. The mode of Hedgehog binding to IThog homologues is not
conserved across different phyla. Nature 455, 979-983 (2008).

17. Tenzen, T. et al. The cell surface membrane proteins Cdo and Boc are
components and targets of the Hedgehog signaling pathway and feedback
network in mice. Dev. Cell. 10, 647-656 (2006).

18. Yao, S., Lum, L. & Beachy, P. The ihog cell-surface proteins bind Hedgehog and
mediate pathway activation. Cell 125, 343-357 (2006).

19. Zheng, X., Mann, R. K., Sever, N. & Beachy, P. A. Genetic and biochemical
definition of the Hedgehog receptor. Genes Dev. 24, 57-71 (2010).

20. Allen, B. L., Tenzen, T. & McMahon, A. P. The Hedgehog-binding proteins
Gasl and Cdo cooperate to positively regulate Shh signaling during mouse
development. Genes Dev. 21, 1244-1257 (2007).

21. Martinelli, D. C. & Fan, C. M. Gasl extends the range of Hedgehog action by
facilitating its signaling. Genes Dev. 21, 1231-1243 (2007).

1

(=]

1

—

1

[=2)

|5:4272 | DOI: 10.1038/ncomms5272 | www.nature.com/naturecommunications 1

© 2014 Macmillan Publishers Limited. All rights reserved.


http://www.nature.com/naturecommunications

ARTICLE

22.

23.

24.

25.

26.

27.

28.

29.

30.

3

—

3

o

33.

34.

3

w

36.

37.

38.

39.

4

f=}

4

—

42.

43.

44.

45.

46.

47.

48.

49.

50.

5

—

Allen, B. L. et al. Overlapping roles and collective requirement for the
coreceptors GAS1, CDO, and BOC in SHH pathway function. Dev. Cell 20,
775-787 (2011).

Izzi, L. et al. Boc and Gasl each form distinct Shh receptor complexes

with Ptchl and are required for Shh-mediated cell proliferation. Dev. Cell 20,
788-801 (2011).

Zhang, W., Hong, M., Bae, G. U,, Kang, J. S. & Krauss, R. S. Boc modifies the
holoprosencephaly spectrum of Cdo mutant mice. Dis. Model Mech. 4, 368-380
(2011).

Hong, M. & Krauss, R. S. Cdon mutation and fetal ethanol exposure synergize
to produce midline signaling defects and holoprosencephaly spectrum disorders
in mice. PLoS Genet. 8, €1002999 (2012).

Zhang, W. et al. Ocular abnormalities in mice lacking the immunoglobulin
superfamily member Cdo. FEBS J. 276, 5998-6010 (2009).

Zhang, W. et al. Cortical thinning and hydrocephalus in mice lacking the
immunoglobulin superfamily member CDO. Mol. Cell. Biol. 26, 3764-3772
(2006).

Bergeron, S. A., Tyurina, O. V., Miller, E., Bagas, A. & Karlstrom, R. O. Brother
of cdo (umleitung) is cell-autonomously required for Hedgehog-mediated
ventral CNS patterning in the zebrafish. Development 138, 75-85 (2011).
Schwarz, M. et al. Spatial specification of mammalian eye territories by
reciprocal transcriptional repression of Pax2 and Pax6. Development 127,
4325-4334 (2000).

Ekker, S. C. et al. Patterning activities of vertebrate hedgehog proteins in the
developing eye and brain. Curr. Biol. 5, 944-955 (1995).

. Macdonald, R. et al. The Pax protein Noi is required for commissural axon

pathway formation in the rostral forebrain. Development 124, 2397-2408
(1997).

. Macdonald, R. et al. Midline signalling is required for Pax gene regulation and

patterning of the eyes. Development 121, 3267-3278 (1995).

Chiang, C. et al. Cyclopia and defective axial patterning in mice lacking Sonic
hedgehog gene function. Nature 383, 407-413 (1996).

Lee, J. et al. Zebrafish blowout provides genetic evidence for Patched1-mediated
negative regulation of Hedgehog signaling within the proximal optic vesicle of
the vertebrate eye. Dev. Biol. 319, 10-22 (2008).

. Mulieri, P. J., Okada, A., Sassoon, D. A., McConnell, S. K. & Krauss, R. S.

Developmental expression pattern of the cdo gene. Dev. Dyn. 219, 40-49
(2000).

Bilioni, A. et al. Balancing Hedgehog, a retention and release equilibrium given
by Dally, Thog, Boi and shifted/DmWif. Dev. Biol. 376, 198-212 (2013).
Hartman, T. R. et al. Drosophila Boi limits Hedgehog levels to suppress follicle
stem cell proliferation. J. Cell Biol. 191, 943-952 (2010).

Yan, D. et al. The cell-surface proteins Dally-like and Thog differentially
regulate Hedgehog signaling strength and range during development.
Development 137, 2033-2044 (2010).

Torres, M., Gomez-Pardo, E. & Gruss, P. Pax2 contributes to inner ear
patterning and optic nerve trajectory. Development 122, 3381-3391 (1996).

. Concordet, J. P. et al. Spatial regulation of a zebrafish patched homologue

reflects the roles of sonic hedgehog and protein kinase A in neural tube and
somite patterning. Development 122, 2835-2846 (1996).

. Chang, L., Blain, D., Bertuzzi, S. & Brooks, B. P. Uveal coloboma: clinical and

basic science update. Curr. Opin. Ophthalmol. 17, 447-470 (2006).

Sehgal, R,, Karcavich, R., Carlson, S. & Belecky-Adams, T. L. Ectopic Pax2
expression in chick ventral optic cup phenocopies loss of Pax2 expression. Dev.
Biol. 319, 23-33 (2008).

Robu, M. E. et al. p53 activation by knockdown technologies. PLoS Genet. 3,
€78 (2007).

Lupo, G. et al. Dorsoventral patterning of the Xenopus eye: a collaboration of
Retinoid, Hedgehog and FGF receptor signaling. Development 132, 1737-1748
(2005).

Dente, L. et al. Cloning and developmental expression of zebrafish pdzrn3. Int.
J. Dev. Biol. 55, 989-993 (2011).

Lupo, G. et al. Retinoic acid receptor signaling regulates choroid fissure closure
through independent mechanisms in the ventral optic cup and periocular
mesenchyme. Proc. Natl Acad. Sci. USA 108, 8698-8703 (2011).

Isaac, A. et al. Tbx genes and limb identity in chick embryo development.
Development 125, 1867-1875 (1998).

Weiss, O., Kaufman, R., Michaeli, N. & Inbal, A. Abnormal vasculature
interferes with optic fissure closure in Imo2 mutant zebrafish embryos. Dev.
Biol. 369, 191-198 (2012).

Sanek, N. A,, Taylor, A. A., Nyholm, M. K. & Grinblat, Y. Zebrafish zic2a
patterns the forebrain through modulation of Hedgehog-activated gene
expression. Development 136, 3791-3800 (2009).

Holtz, A. M. et al. Essential role for ligand-dependent feedback antagonism of
vertebrate hedgehog signaling by PTCHI1, PTCH2 and HHIP1 during neural
patterning. Development 140, 3423-3434 (2013).

. Zhang, X. M. & Yang, X. J. Temporal and spatial effects of Sonic hedgehog

signaling in chick eye morphogenesis. Dev. Biol. 233, 271-290 (2001).

52. Lee, J. et al. An ENU mutagenesis screen in zebrafish for visual system mutants
identifies a novel splice-acceptor site mutation in patched2 that results in
Colobomas. Invest. Ophthalmol. Vis. Sci. 53, 8214-8221 (2012).

53. Heisenberg, C. P., Brennan, C. & Wilson, S. W. Zebrafish aussicht mutant
embryos exhibit widespread overexpression of ace (fgf8) and coincident defects
in CNS development. Development 126, 2129-2140 (1999).

54. Menuet, A., Alunni, A, Joly, J. S., Jeffery, W. R. & Retaux, S. Expanded
expression of Sonic Hedgehog in Astyanax cavefish: multiple consequences
on forebrain development and evolution. Development 134, 845-855
(2007).

55. Yamamoto, Y., Stock, D. W. & Jeffery, W. R. Hedgehog signalling controls eye
degeneration in blind cavefish. Nature 431, 844-847 (2004).

56. Ingham, P. W. Hedgehog signaling. Cold Spring Harb. Perspect. Biol. 4, 2011221
(2012).

57. Zhang, W., Kang, J. S., Cole, F., Yi, M. J. & Krauss, R. S. Cdo functions at
multiple points in the Sonic Hedgehog pathway, and Cdo-deficient mice
accurately model human holoprosencephaly. Dev. Cell 10, 657-665 (2006).

58. Capurro, M. L et al. Glypican-3 inhibits Hedgehog signaling during
development by competing with patched for Hedgehog binding. Dev. Cell 14,
700-711 (2008).

59. Chen, Y. & Struhl, G. Dual roles for patched in sequestering and transducing
Hedgehog. Cell 87, 553-563 (1996).

60. Torroja, C., Gorfinkiel, N. & Guerrero, I. Patched controls the Hedgehog
gradient by endocytosis in a dynamin-dependent manner, but this
internalization does not play a major role in signal transduction. Development
131, 2395-2408 (2004).

61. Chuang, P. T. & McMahon, A. P. Vertebrate Hedgehog signalling modulated by
induction of a Hedgehog-binding protein. Nature 397, 617-621 (1999).

62. Ramirez-Weber, F. A. & Kornberg, T. B. Cytonemes: cellular processes that
project to the principal signaling center in Drosophila imaginal discs. Cell 97,
599-607 (1999).

63. Williams, M., Yen, W., Lu, X. & Sutherland, A. Distinct apical and basolateral
mechanisms drive planar cell polarity-dependent convergent extension of the
mouse neural plate. Dev. Cell 29, 34-46 (2014).

64. Bilioni, A. et al. Balancing hedgehog, a retention and release equilibrium given
by Dally, Thog, Boi and shifted/dWif. Dev. Biol. 376, 198-212 (2012).

65. Sanchez-Arrones, L. et al. Shh/Boc signaling is required for sustained
generation of ipsilateral projecting ganglion cells in the mouse retina.

J. Neurosci. 33, 8596-8607 (2013).

66. Lu, M. & Krauss, R. S. N-cadherin ligation, but not Sonic hedgehog binding,
initiates Cdo-dependent p38alpha/beta MAPK signaling in skeletal myoblasts.
Proc. Natl Acad. Sci. USA 107, 4212-4217 (2010).

67. Masai, L. et al. N-cadherin mediates retinal lamination, maintenance of
forebrain compartments and patterning of retinal neurites. Development 130,
2479-2494 (2003).

68. Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B. & Schilling, T. F.
Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253-310
(1995).

69. Liu, H. X. et al. Multiple Shh signaling centers participate in fungiform papilla
and taste bud formation and maintenance. Dev. Biol. 382, 82-97 (2013).

70. Voiculescu, O., Papanayotou, C. & Stern, C. D. Spatially and temporally
controlled electroporation of early chick embryos. Nat. Protoc. 3, 419-426
(2008).

Acknowledgements

We are in debt with P. Esteve and F. Cavodeassi for support and critically reading the
manuscript. We thank the CBMSO Image analysis platform and the Zebrafish Platform
at the CABD, Seville for their invaluable help. We are also grateful to Masa Tada, Ami
Okada, Ben Allen and Adi Inbal for reagents and material and to Noemi Tabanera,
Alfonso Gutiérrez and Isidro Dompablo for the excellent technical support and fish
caring. This work was supported by grants from the Spanish Ministerio de Economia y
Competitividad (MINECO) (BFU2010-16031), Comunidad Auténoma de Madrid
(CAM, CELL-DD S$2010/BMD-2315), the Centro de Investigacion Biomédica en Red de
Enfermedades Raras (CIBERER) del Instituto Carlos III (ISCIII) to P.B., MINECO
(BFU2011-25987) to L.G. and an Institutional Grant from the Fundacion Ramon Areces.
M.J.C. was supported by a predoctoral contract from the MINECO (BES-2008-005457).
L.S.-A. holds a postdoctoral contract from the CSIC (JAEDOC-012) and Fondo Social
Europeo. Work in the Wilson group was supported by grants from the MRC G0501487
and G0900994 (G.G. and SSW.W.) and Wellcome Trust (089227/Z09/Z S.W.W.).

Author contributions

M.J.C. participated in all experiments presented in this work, analysed data and
contributed to experimental design and manuscript writing. L.S.-A. performed studies in
chick embryos and analysed the data. A.S. performed histological and confocal work
and analysed the data. C.S.-C. performed experiments related to Boc function.
S.W.W., G.G. and I.G. contributed to experimental design and revised the manuscript.

|5:4272 | DOI: 10.1038/ncomms5272 | www.nature.com/naturecommunications

© 2014 Macmillan Publishers Limited. All rights reserved.


http://www.nature.com/naturecommunications

ARTICLE

Artwork was generated by M.J.C. and L.S.A. P.B. directed the work, analysed data and How to cite this article: Cardozo, M-]. et al. Cdon acts as a Hedgehog decoy
wrote the manuscript. receptor during proximal-distal patterning of the optic vesicle. Nat. Commun. 5:4272
doi: 10.1038/ncomms5272 (2014).

Additional information

Supplementary Information accompanies this paper at http://www.nature.com/ This work is licensed under a Creative Commons Attribution 4.0
naturecommunications v, International License. The images or other third party material in this
article are included in the article’s Creative Commons license, unless indicated otherwise

Competing financial interests: The authors declare no competing financial interests. : o o ! . .
in the credit line; if the material is not included under the Creative Commons license,

Reprints and permission information is available online at http://npg.nature.com/ users will need to obtain permission from the license holder to reproduce the material.
reprintsandpermissions/ To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
|5:4272 | DOI: 10.1038/ncomms5272 | www.nature.com/naturecommunications 13

© 2014 Macmillan Publishers Limited. All rights reserved.


http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturecommunications

	title_link
	Results
	cdon and ptc localize to complementary optic vesicle domains
	cdon knockdown alters P-—D patterning of the eye primordium
	cdon counteracts Hh signalling during P-—D eye patterning

	Figure™1Expression of cdon and other Hh signalling components during P-—D patterning of the optic vesicles.(a-c) Ventral views of anterior zebrafish forebrain at optic vesicle (a is ventral to b) and optic cup (d, e) stages immunostained in toto with anti
	Cdon function in the eye depends on the Hh binding domain

	Figure™2The optic stalk is expanded in cdon morphants.(a-j) In situ hybridization analysis for two optic stalk markers, pax2.1 (a-d) and fgf8a (f-i) at 28thinsphpf and 24thinsphpf, respectively. Embryos are shown in lateral (a,b,f,g) and frontal (c,d,h,i)
	Figure™3Cdon acts as a negative modulator of Hh signalling.(a-d) Lateral views of control or cdonATG morphants treated with DMSO (vehicle) or cyclopamine from 90percnt epiboly and analysed with ISH for pax2.1 expression at 28thinsphpf. Blocking Hh signall
	Retinal Cdon expression preserves the retinasolstalk boundary
	Cdon controls Hh dispersion in the neuroepithelium

	Discussion
	Figure™5Localized interference with Cdon expression in the optic vesicles expands the distal optic stalk domain.(a-f) Lateral (a,b) and ventral (c) views of the control (a) and experimental (b) optic vesicles (ov) of HH14 chick embryos with unilateral foc
	Figure™4Cdon interaction with Ptc is dispensable for its function in the optic vesicle.(a) Schematic diagram of the design of the exon skipping MO used in the study. (b) Schema representing the zebrafish cdon mRNA (zcdon) aligned with the corresponding Cd
	Figure™6Cdon overexpression modifies Shh protein distribution in the optic stalk neuroepithelium.(a-p) Confocal analysis of coronal sections at the level of the optic vesicle of HH14 chick embryos electroporated at HH8 with a construct carrying mCherry (a
	Figure™7Cdon and Boc promote morphological changes of the neuroepithelial basal side where Shh preferentially accumulates.(a-r) Confocal analysis of coronal sections at the level of HH14 chicken optic stalk (a-l) and HH10 neural tube (m-r) electroporated 
	Methods
	Maintenance of fish lines and chicken embryos
	Embryo injections
	Tissue processing and immunochemistry
	In situ hybridization
	mRNA and cDNA synthesis and cloning
	Deletion constructs of Cdon and Boc
	Chicken electroporation
	Rescue experiments
	Cell transfection
	Western blotting
	Treatment with Hh signalling inhibitor
	Imaging
	Quantification and statistical analysis

	InghamP. W.NakanoY.SegerC.Mechanisms and functions of Hedgehog signalling across the metazoaNat. Rev. Genet.123934062011RyanK. E.ChiangC.Hedgehog secretion and signal transduction in vertebratesJ. Biol. Chem.28717905179132012BornemannD. J.DuncanJ. E.Staat
	We are in debt with P. Esteve and F. Cavodeassi for support and critically reading the manuscript. We thank the CBMSO Image analysis platform and the Zebrafish Platform at the CABD, Seville for their invaluable help. We are also grateful to Masa Tada, Ami
	ACKNOWLEDGEMENTS
	Author contributions
	Additional information




