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Abstract: Cerenkov luminescence tomography (CLT) was developed to 
reconstruct a three-dimensional (3D) distribution of radioactive probes 
inside a living animal. Reconstruction methods are generally performed 
within a unique framework by searching for the optimum solution. 
However, the ill-posed aspect of the inverse problem usually results in the 
reconstruction being non-robust. In addition, the reconstructed result may 
not match reality since the difference between the highest and lowest 
uptakes of the resulting radiotracers may be considerably large, therefore 
the biological significance is lost. In this paper, based on the minimization 
of a conformance error, a probability method is proposed that consists of 
qualitative and quantitative modules. The proposed method first pinpoints 
the organ that contains the light source. Next, we developed a 0-1 linear 
optimization subject to a space constraint to model the CLT inverse 
problem, which was transformed into a forward problem by employing a 
region growing method to solve the optimization. After running through all 
of the elements used to grow the sources, a source sequence was obtained. 
Finally, the probability of each discrete node being the light source inside 
the organ was reconstructed. One numerical study and two in vivo 
experiments were conducted to verify the performance of the proposed 
algorithm, and comparisons were carried out using the hp-finite element 
method (hp-FEM). The results suggested that our proposed probability 
method was more robust and reasonable than hp-FEM. 
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1. Introduction 

Molecular imaging was designed to visualize the qualitative or quantitative measurements of 
biological processes at the molecular or cellular levels in vivo [1, 2]. The main advantage of 
molecular imaging lies in its ability to characterize diseased tissue without being invasive. 
Compared with other molecular imaging techniques, optical imaging has such advantages as 
nano–molar sensitivity, a high spatial resolution, a short imaging time, and low cost [3, 4]. 
Ever since Cerenkov radiation light was used by Cho et al. to perform direct optical imaging 
[5], Cerenkov imaging has been employed in molecular imaging. Unlike anatomical imaging, 
Cerenkov imaging is a type of functional imaging technique. When we deal with organs with 
the same density but different radiotracer uptakes, their anatomical imaging may be invalid; 
however, Cerenkov imaging can be used to distinguish them. Cerenkov imaging can be 
divided into two types: Cerenkov luminescence imaging (CLI) [6–16] and Cerenkov 
luminescence tomography (CLT) [17–26]. CLI is a type of 2D planar imaging, whereas CLT 
was developed to reconstruct the 3D distribution of radiotracers inside a living animal. 

The CLT problem is an inverse one, which is the search for unknown sources through an 
analysis of the measured photon flux density on a boundary. A solution to the inverse 
problem can generally be divided into two types. One is a statistical method, e.g., a Monte 
Carlo [26, 27] or Bayesian [28, 29] method. The other is optimization using a least-squares 
criterion [18, 19, 30, 31], a regularization method [18–23], a level set method [32, 33], etc. As 
a new molecular modality, the methods used for CLT reconstruction are mainly focused on 
optimization. 

Historically, the first extension of CLI to CLT was a homogeneous model based on the 
assumption that the optical properties inside a mouse are homogeneous and uniform [18]. The 
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CLT model was solved iteratively using a preconditioned conjugate gradient method with 
Tikhonov regularization (TR) for bioluminescence tomography (BLT) [18, 30]. Because this 
assumption is not necessarily true, Hu et al. performed a heterogeneous CLT reconstruction 
[20], in which the adaptive hp-finite element method (hp-FEM) [34], originally designed for 
BLT, was employed for CLT reconstruction. In addition, finite element equations were also 
solved through TR. Both approaches employed a single band-pass filter. Spinelli et al. 
developed a multispectral method for CLT reconstruction [19], in which a regularized non-
negative least square algorithm was designed for optimization [19, 31]. However, the detected 
multispectral data were weaker after the application of filters, which increased the difficulty 
in reconstructing the source. Hu et al. also proposed a hybrid spectral CLT method [21]. This 
method employed white light images for reconstruction without the use of a filter. The optical 
parameters were estimated by weighing four band-pass optical parameters, i.e., 515-575 nm, 
575-650 nm, 695-770 nm, and 810-875nm at approximately 57.2%, 27.6%, 12.4%, and 2.8% 
respectively. After obtaining the optical parameters, the hp-FEM method [34] was also 
employed as a reconstruction method. Recently, Cerenkov excited tomography was designed 
for clinical interest [25, 26]. The Cerenkov excited tomography showed advances in the 
reconstruction of a deep target via Cerenkov photons. 

A permissible region (PR) is usually used as the a priori information to improve the 
robustness of the finite element method (FEM) for diffuse optics reconstruction. In [22], the 
authors presented a single photon emission computed tomography (SPECT)-guided 
reconstruction method for CLT, in which a priori information of the permissible source 
region from the SPECT imaging results was incorporated to enhance the robustness of the 
reconstruction. Apart from the a priori information, when the TR method is employed to 
solve the optimization problem, an optimal can be another method to improve the robustness. 
It was reported that 1L  regularization was more suitable than 2L  regularization [35, 36]. 

These early reconstruction approaches were consistently committed to control errors to 
obtain a unique reconstruction. However, this was a difficult task. For this paper, we were 
committed to obtaining a non-unique description within the probability framework. A novel 
probability method for CLT based on conformance error minimization was designed in this 
work. It mainly contained two modules, i.e., qualitative and quantitative modules. A 
qualitative module gives an approximate estimation of the source by indicating a luminous 
organ. The quantitative module further describes the probability of the source location rather 
than seeking a unique solution of the photon density in that specified organ. 

The five methodological contributions of this paper were as follows: 

1) A conformance error was provided for optimal assessment. This was beneficial to 
increase the robustness. 

2) A 0-1 linear optimization subject to a space constraint was used to model the CLT 
inverse problem. 

3) The inverse problem was transformed into a forward problem by employing a region 
growing method to solve the optimization. 

4) A probability source (PS), which offers a probability distribution of the nodes in the 
PR being a light source, was defined. The statistical description increased the 
reasonableness of the reconstruction. 

5) Comparison experiments demonstrated the advantages of the proposed method 
including its robustness, accuracy, and reasonableness. 

The remainder of this paper is organized as follows. The related basis and hp-FEM are 
introduced in Section 2. In Section 3, the proposed method used for CLT reconstruction to 
improve the robustness and increase the reasonableness is presented in detail. The numerical 
and in vivo comparative experiments are described in Sections 4 and 5 respectively. Finally, a 
discussion and some concluding remarks are presented in Section 6. 
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2. hp-FEM 

Conventionally, a photon transport in tissue can be modeled using a diffusion equation (DE) 
[34, 37–40]. The steady-state DE is modeled as ( ) ( ) ( ) ( ) ( )aD x x x S x xμ−∇ ⋅ ∇Φ + Φ = ∈ Ω  , 

where ( )xΦ is the photon flux density at point x ; ( )[ ] 1
( ) 3 ( ) (1 ) ( )a sD x x g xμ μ −

= + − , ( )a xμ  and 

( )s xμ  are the absorption and scattering coefficients respectively, g  is the anisotropy 

parameter, which can be obtained from optical sensing techniques [41–43]; ( )S x denotes the 
internal source density; and Ω  is the region of interest (ROI). 

The inverse problem has no unique solution. Theoretical studies on the non-uniqueness of 
the solution to the inverse model were reported in [44–46]. The non-uniqueness of the 
solution is due to the nature that the photon flux density ( )xΦ  is only partially known on the 
boundary ∂Ω . Therefore, the inverse problem is generally an ill-posed one. 

Together with the Robin boundary condition, FEM was used to calculate the solution to 
DE [37–40]. In these studies, after a separation of the variables, the system equation of the 
DE was presented as follows [37–40]: 

 ,p mAS = Φ  (1) 

where m
mRΦ ∈  is the nodal photon density measured on the boundary ∂Ω , p

nS R∈  is the 

permissible source vector, and m nA R ×∈  is the coefficient matrix. The main outline of hp-
FEM [34] is given in Algorithm 1. 
Algorithm 1. The outline of hp-FEM algorithm, where p-refinement and h-refinement are subdivisions of a 
tetrahedron. 
 Input: 

mΦ , λ , gε , Sε , εΦ , K  

 do 
  

Form and solve the objective function: { }2 2

inf sup

( ) ( )
min ( )

p

k

p p m p

k k k kL L
S S S

S A S S
Ω Ω≤ ≤

Θ = − Φ + λ  

  do 
  Optimize ( )

p

k
SΘ  

  Calculate the gradient norm 
k

i
g

Θ
 

  Calculate the step distance 
k

i

S
d  

  while 
k

i

g
g

Θ
> ε  and 

k

i

S
d

Θ
> ε  

  Calculate 
c p

k k k
A SΦ =  

  p-refinement or h-refinement for selected elements
  Update the permissible region
  k = k + 1 
 while 

c m

k Φ
Φ − Φ > ε  and k K<  

 Output: the reconstructed source 
p

k
S  

3. Proposed method 

To improve the robustness of the reconstruction, we proposed a novel probability method 
based on conformance error minimization (shown in Fig. 1), which contained three modules: 
(1) rough positioning (Fig. 1(a)), (2) forward transformation (Fig. 1(b)), and (3) probability 
reconstruction (Fig. 1(c)). Among these three modules, module (1) is qualitative, whereas 
modules (2) and (3) are quantitative. The new method first pinpoints an organ that contains a 
light source. The well-known inverse problem is then transformed into a forward problem 
(e.g., Fig. 1(b5) results from Fig. 1(b1) using a forward calculation) using the region growing 
method (e.g., Fig. 1(b1)). The growth is controlled using the error between the measured 
surface photon density (MSPD) (e.g., Fig. 1(b9)) and the calculated surface photon density 
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(CSPD) (e.g., Fig. 1(b5)). After running through all of the elements of the pinpointed organ, a 
source sequence is obtained (e.g., Fig. 1(b1)-1(b4)). Finally, the probability of each element 
node being the light source inside the organ is reconstructed and dyed with a pseudo-color 
after interpolation (Fig. 1(c)). 

 

Fig. 1. Outline of the probability method. (a) a rough positioning procedure. (a1) a mouse 
region bounded in [0, 40] [0, 30] [0, 40]× × . (a2) the region of interest (ROI) cropped from the 

mouse region and bounded in [0, 40] [0, 30] [0, 7]× × . (a3) the procedure for searching for the 
permissible region (PR). (a4) the resulting PR located in one of the organs inside the ROI. (b) a 
transformation of the inverse problem into the forward problem using the region growing 
method. Images (b1)-(b4) show examples of four grown sources after region growth. Images 
(b5)-(b8) show the normalized calculated surface photon density (CSPD) calculated by each 
corresponding grown source. (b9) shows the original measured surface photon density (MSPD) 
after normalization. (c) probability reconstruction of each element node being the light source 
inside the organ. The probability is dyed with a pseudo-color after interpolation. 

3.1 Rough positioning 

Rough positioning is a procedure for finding the correct organ containing a light source. The 
aim of rough positioning is to reduce the computation cost and increase the reconstruction 
robustness. 

In this study, node number n  of the PR was chosen without exceeding node number m  
on the boundary. Otherwise, Eq. (1) will end up with infinitely many solutions, and a minimal 
norm least square solution (Moore-Penrose generalized solution) is chosen as the 
approximation of the solution [47–50]. Although, the TR method is usually implemented to 
solve the underdetermined system in diffuse optics, this theoretically poses significant risk. 
The regularization is a numerical method used to approximate the Moore-Penrose generalized 
solution when Eq. (1) is an ill-posed problem [47, 48]. If the generalized solution is not the 
real solution among the infinitely many solutions, the numerical method is meaningless. On 
the contrary, the overdetermined system may result in a more robust result. 

Suppose that a mouse body is region Ω  (Fig. 1(a1)), an ROI, denoted as ( )ROIΩ , is then 
cropped from Ω , as shown in Fig. 1(a2). The cropped part should contain the nonzero region 
of the MSPD. In our method, the PR is searched for in ( )ROIΩ . 

Let 
1

( )
1 2

ROI
KP P P∪ ∪ ∪Ω =  , where 1( 1,2, , )iP i K=   is an organ confined in ( )ROIΩ . 

Assume that iP  is the PR, ipS  is the permissible source vector, and iA  is the corresponding 

coefficient matrix. To avoid infinitely many solutions, the cropped ( )ROIΩ  should satisfy 
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max ( ) ( )i id P d≤ ∂Ω , where ( )id P  and ( )d ∂Ω  represent the number of nodes of iP and ∂Ω  

respectively. From Eq. (1), source ipS  is reconstructed by 

 ,ip m
iA S = Φ  (2) 

where mΦ  is the MSPD on the boundary of Ω . 
After running through all of the iP , the PR can be defined when the conformance error 

reaches its minimum, the mathematic expression of which is as follows: 

 1 1cos min1 , (for =1,2, ),ip m
i iA S i Kε < Φ >=− ⋅        (3) 

where the component of 1
ipS  satisfies 1

i ip p
j js s=  if max

ip
js sβ> , otherwise 1 0ip

js = , ip
js is the 

jth component of ipS , ipS  is the solution of Eq. (2) solved using the TR method, and 

max max { }ip
j js s= , 0 1β≤ < . After running through { }iP , the PR is determined using a 

minimum conformance error of Eq. (3). From this point, light source reconstruction is only 
carried out inside iP , which reduces the computational cost and increases the robustness 
significantly. 

3.2 Forward transformation 

In this step, the inverse problem is transformed into a forward problem using a region 
growing method. By assuming a certain element inside the PR to be the seed element, the 
growth is initiated to find the corresponding light source (e.g., Fig. 1(b1)). This procedure is 
repeated for all elements inside the PR, and finally the light source sequence is obtained (e.g., 
Fig. 1(b1)-1(b4)). The growth is controlled by the conformance error between the MSPD 
(Fig. 1(b9)) and the CSPD (e.g., Fig. 1(b5)-1(b8)). 

For an easier presentation, we denote the PR as P  and the tied coefficient matrix iA  as 

A . Let P  be discretized into 2K  non-overlapping elements τ , where 
21 2 Kτ τ τ τ∪ ∪ ∪  , 

1 2 3 4
( , , , )j j j j jN N N Nτ =  is an element (tetrahedron), ( 1, 2, , )iN i n=   is the attached element 

vertices; and 1 2( , , , )p T
nS s s s=   is the discrete vector of the permissible source. Because the 

absorption of drugs by different elements in the same organ is homogeneous if there is no 
excitation source [18], we suppose that the elements in the same organ have the same uptake 
of the tracer. A new quantitative model for reconstructing the source location and photon 
density is proposed as 

 cos min,1 ,p mAS< Φ >=−  (4) 

subject to 

1) 
1, is a source point

0, is not a source point.
i

i
i

N
s

N


= 


             

       
 

2) Let { }1S
i iN N s= =  be a set of all discrete source nodes. If 

1j
N  is a source node, i.e., 

1

S
jN N∈ , then 

2 3 4
 , , S

j j jN N N N∃ ∈  and one jτ , such that 

1 2 3 4
( , , , )j j j j jN N N Nτ τ= ⊂ . 

The above optimization is a 0-1 linear programming problem. Because the aim of Eq. (4) 
is to search for a linear combination of columns in A  and obtain a maximum conformance 
between CSPD pAS  and MSPD mΦ , Eq. (4) together with constraint 1) is equivalent to 

finding a linear least square solution of equation mAS ′ = Φ , subject to pS cS′ = , where c  is 
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the value of the assumed uniform photon density resulting from the same radiotracer uptake 
inside the unit volume of P . 

Let *A U V= Σ  be the singular value decomposition of A , and thus, ( ) ( )r A r= Σ . In 
practice, Σ  is a full column rank; however, there are some small nonzero singular values. Let 

maxσ  and minσ  be the maximal and minimal nonzero singular values, and the generalized 

condition number 2 2 max min( ) || || || ||cond A A A σ σ+= =  [51–53] is therefore very large under 

the 2L  norm, and mAS ′ = Φ  is ill-posed. Therefore, the equivalent optimal model (4) might 
also be an ill-posed problem. 

The regularization method, which frames the variable in a Hilbert space, is usually 
proposed to solve an ill-posed problem. However, unlike the continual model (2), the solution 
of the optimal model (4) is constrained as a logic vector, which does not satisfy the definition 
of the vector space. This implies the non-applicability of the regularization method. For this 
reason, a region growing method borrowed from image processing was applied, allowing the 
inverse problem to be transformed into a forward problem. 

The procedure of the region growing method is summarized in Fig. 2. The algorithm starts 
from every seed element to grow iteratively into one source. The growth includes expending 
and shrinking procedures. Every time the neighboring elements are added into the source 
region, the CSPD is calculated and compared with the MSPD. A similar procedure occurs 
during deflation. The iteration stops when the error between the CSPD and MSPD reaches the 
minimum no matter whether the source region is inflated or deflated. After considering every 
element as a seed element and running through all of the elements in the PR, a grown source 
sequence{ }jS  and a conformance error sequence { }jε  were obtained. 

 

Fig. 2. Flowchart of the region growing algorithm. 
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3.3 Probability reconstruction 

Although the proposed optimal model (4) has the optimum solution, it might be non-robust. 
The solution might reject some true source nodes under a propagation error from a mesh split 
error, measurement error, or other type of error. Because certain types of errors are 
unavoidable, a probability model was developed to describe the reconstructed source 
distribution with a reflection of the error certainty. 

After using the region growing method in the PR, an error sequence { }jε  was obtained. If 

error jε  is considerably large, the corresponding grown source jS  is rejected. On the other 

hand, if both 
1j

ε and 
2j

ε are sufficiently small and are approximately equal, we cannot reject 

the hypothesis that both 
1j

S  and 
2j

S  are sources, i.e., if we chose an optimal source tied with 

a minimum error, we have a significant risk of a false rejection. A false rejection is 
demonstrated in Section 4 and 5. Additionally, the remaining errors, denoted as set ε ′ , must 
demonstrate a normal distribution (ND); otherwise, ε ′  presents a systematic error rather than 
a random error. If ε ′ does not show an ND, another subset ε ′′ with an ND is extracted. 

To achieve this, ε ′′ is refined as { 2| { } [0, ],j j j xε ε ε ε′′ ′′ ′′= ∈ ∩  }2

0
ˆ( , , ) 1

x
f x dxμ σ α= − , 

where α  is the significance level, and f  is an ND with parameters μ  and σ̂  evaluated 

from the sample mean and variance of ε ′ . Given an α , { }| min{ , }k k T qε ε ε ε ε′ = ≤  { }jε⊂  

is determined by searching the parameters Tε  and qε  so that ε ′′  obeys ND. A grown source 

set is chosen as { }| { }, k k

gss
j kS SS S ε ε ′′= ∈ ∈ , where kε  is the conformance error determined 

by kS  correspondingly. Then, at a discretized node iN , the probability that the node is a 
source node can be defined as 

 ( ) max ( ) ,i i ip N N N N=  (5) 

where ( )iN N  is the number of occurrences of iN  in gssS , i.e., ( ) ( ) 1i iN N N N= + , if ∃  a 
gss

kS S∈  such that kS
iN N∈ . 

Let c  be the value of the assumed uniform photon density of the actual source, i cξ =  

represents an event in which iN  is a source node, and 0iξ =  represents an event in which iN  

is not a source node. Then, the probability of node iN  being a source node is represented 

as ( )ip cξ = . The probability of all the element nodes being the light source, called the PS, 

can be defined as 

 1 2 1 2( ) ( ( ), ( ), , ( )) ( , , , ) .T T
n np c p c p c p c p p pξ ξ ξ ξ= = = = = =   (6) 

The definition of ip  in Eq. (5) implies an assumption that if node jN  has the maximum 

number of occurrences, then there is a certain event in which jN  is a source node, i.e., 

{ } 1jp cξ = = . The expectation of iξ  at node iN  can be expressed as 

( ) ( ) ( )0 0i i i iE cp c p cpξ ξ ξ= = + = = . In this way, the PS offers a probability distribution of 

the nodes in the PR being the light source. Statistically, the average photon density 
distribution (APDD) can be represented as ( )E ξ , and 1 2( ) ( ( ), ( ), , ( ))T

nE E E Eξ ξ ξ ξ=   

1 2( , , , )T
nc p p p=  . 
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4. Numerical experiments 

In the experiments, we compared the results between hp-FEM [21,34] and the proposed 
probability method. Both a distance error and a conformance error were employed for the 
error assessment. The distance error was defined as the distance between the true source 
center and the reconstructed source center [21]. The conformance error is defined as 

1 cos ,c mε = − < Φ Φ > , where cΦ  and mΦ  represent the CSPD resulting from the 
reconstructed source and the MSPD respectively. In our method, the reconstructed source 
center is defined as the probability core, which has the greatest probability, while the 
conformance error is defined as 1 cos ( ), mAEε ξ= − < Φ > , which results from the APDD. 

In numerical simulations, a heterogeneous cylindrical phantom of 30 mm in height and 10 
mm in radius was applied to model as a mouse chest. The phantom consisted of five types of 
materials to represent the adipose, lungs, liver, heart, and bone (Fig. 3(a)). In this paper, we 
only described a single-source simulation, as shown in Fig. 3(a). The source was a solid 
sphere with a 1 mm radius with a uniform photon density of 0.238 nW/mm3 centered at (3,5,0) 
inside the right lung (Fig. 3(a)). The optical parameters listed in Table 1 were set the same as 
those in [34], which were supported by Prof. Ge Wang's lab (Bioluminescence Tomography 
Laboratory, Department of Radiology, University of Iowa). The measured surface data were 
obtained using a modified molecular optical simulation environment (MOSE), as shown in 
Fig. 3(b). In this paper, only the data on the cylinder side were used for the reconstruction. 

Table 1. Optical parameters of the heterogeneous phantom. 

Material Adipose Lungs Heart Bone Liver
1

[ ]
a

mm
−μ  0.010 0.350 0.200 0.002 0.035

1
[ ]

s
mm

−μ  4.000 23.000 16.000 20.000 6.000

g  0.900 0.940 0.850 0.900 0.900

The phantom was discretized into 3,937 nodes including 1,298 side surface nodes. The 
volume of the cylinder was divided into 17,882 tetrahedrons tagged with the corresponding 
organ codes. 

 

Fig. 3. Heterogeneous phantom. (a) with a single-source in the right lung. (b) measured surface 
photon density (MSPD) distribution after normalization. 

4.1 Robustness of rough positioning 

We next investigated the robustness of the location. There are a number of factors affecting 
the robustness. However, for rough positioning, there are two main contributing factors, i.e., 
the threshold β  and the ROI, where β  is used to extract the reconstructed elements. To test 

the robustness of our method and hp-FEM with regards to β , as shown in Fig. 4, eight 

experiments with 0.2,0.3, ,0.9β =   were performed respectively, where the ROI of the 

probability method was cropped between −3 and 3 along the z-axis; the PR of hp-FEM was a 
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cylindrical region confined in a box region [ 10,10] [ 10,10] [ 3,3]x y zI I I× × = − × − × − . The 

results of the probability method (Fig. 4(a)) showed that a minimum conformance error was 
achieved in the right lung when 0.5β ≥ , i.e., the source was pinpointed correctly when 

0.5β ≥ . However, for hp-FEM false positioning was unavoidable when 0.7β ≤ , and the 

source was pinpointed correctly only when 0.8β ≥  (Fig. 4(b)). Compared with hp-FEM, the 

probability method was more robust against β . 

 

Fig. 4. The robustness with regards to β . (a) conformance error 
c

ε  of the probability method 

as a function of β , where the cropped interval of the ROI was [ 3, 3]− . (b) distance error 
d

ε  

of hp-FEM as a function of β , where the PR was bounded in a box region 

[ 10,10] [ 10,10] [ 3, 3]
x y z

I I I× × = − × − × − . 

At a fixed 0.9β =  for different ROIs, every organ region bounded in the ROIs was 
supposed to be a PR. To avoid infinitely many solutions and guarantee a containment of the 
measured data region on the surface, six ROIs were tested in the numerical experiments, and 
the resulting conformance errors are shown in Table 2. For each column, the right lung 
featured the minimum error, which showed that rough positioning was robust to positioning 
the right organ with respect to the ROI. For hp-FEM, the PR is another factor contributing to 
the robustness. To test the robustness with regards to the PR, let xI  and yI  be the interval [-

10,10], the distance errors together with the positioned organs are shown in Table 3 under 
different ... Although there were five occasions when the reconstructed source was located in 
the right lung, the false positioning was unavoidable when the PR was chosen as [ 2,5]− . For 
hp-FEM, a priori PR may be indispensable to obtain an accurate reconstruction [34]. 
Compared with hp-FEM, the probability method was more robust against the cropped 
interval. 

Table 2. Conformance errors of the probability method to the cropped interval of the 
ROI when β = 0.9. CI stands for the cropped interval. 

CI (mm) [-4,5] [-3,5] [-2,5] [-3,3] [-3,4] [-5,4]
Adipose 0.164 0.164 0.164 0.164 0.164 0.164
Right lung 0.097 0.097 0.097 0.097 0.097 0.097
Left lung 0.811 0.811 0.811 0.811 0.811 0.811
Bone 0.866 0.866 0.866 0.866 0.866 0.866

Table 3. Distance errors of hp-FEM to the PR when β = 0.9. The PR of hp-FEM is a 

cylindrical region confined in a box region 
x y z

I I I× × , where 
x

I  and 
y

I  are the interval 

[-10,10]. 

Iz (mm) [-4,5] [-3,5] [-2,5] [-3,3] [-3,4] [-5,4]
Adipose 3.501
Right lung 2.482 2.482 2.482 2.482 2.482

4.2 Uncertainty of the growing method 

As mentioned earlier, the region growing method was implemented to solve the proposed 
optimization problem. After cropping the ROI in interval [ 3,3]−  along the z-axis and 
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choosing 0.9β = , the PR, which was discretized to 138 nodes and 359 tetrahedrons, was 
positioned in the right lung of the ROI. After running through the tetrahedrons in the PR to 
grow the sources, 359 sources were obtained. We illustrated four such sources in Figs. 5(a)-
5(d). Figure 5(e) shows the normalized MSPD. Correspondingly, the normalized CSPDs 
calculated by the four grown sources of Figs. 5(a)-5(d) are visualized in Figs. 5(f)-5(i). Figure 
5(i) has the lowest similarity compared with Fig. 5(e) among Figs. 5(f)-5(i). A closer 
evaluation revealed that the conformance errors between Figs. 5(f)-5(i) and Fig. 5(e) were 

37.4 10−× , 37.5 10−× , 21.1 10−× , and 23.7 10−×  respectively. It can be deduced that the 
objective assessment is in accord with the subjective assessment. This experiment suggested 
that if a conformance error was relatively considerably large, the corresponding source should 
be rejected. 

 

Fig. 5. Four results of region growth. The sub-images (a)-(d) on the first line are the grown 
sources in the right lung. (e) is the original MSPD after normalization. Correspondingly, the 
sub-images (f)-(i) are the normalized CSPD resulting from (a)-(d). 

The conformance error can be used to evaluate the quantitative assessment. However, the 
slight differences in errors may not be statistically significant. When the type of error, such as 
a measurement error, is changed slightly, the priority order of the quantitative error may also 
change. Our work shows the uncertainty of the source under a measurement error. A 
measurement error is mainly generated by using a charge coupled device (CCD) camera and 
post-processing operations, such as mapping the gray-level values in the images into energy 
values or using MOSE to obtain the measured surface data. To demonstrate the impact of the 
post-processing step with respect to the energy quantization error, a random noise valued in 

2[0,5 10 ]normalizedm −× ×  was added into the pseudo-color region of Fig. 5(e), where normalizedm  
was the maximum value of MSPD after normalization. Figures 6(a) and 6(b) show the 
optimum sources when the noise was not or was added respectively. The sources were grown 
from two different seed tetrahedrons. The conformance error resulted in the sources of Fig. 
6(a) and Fig. 6(b) being 37.4 10−×  and 36.5 10−×  respectively. After noise was added, the 

conformance error was reduced from 37.4 10−×  to 36.5 10−× , whereas the composed elements 
increased in number from 15 to 32. The noise simulates a post-processing error. Owing to the 
uncertainty of the error, we were unable to determine which source in Fig. 6 was the looking 
for true source. If we consider only the blue elements in Fig. 6(a) as the true source, we will 
reject the other seventeen blue elements in Fig. 6(b), i.e., a false rejection has taken place. The 
noise experiment demonstrates that the sources tied with the small errors of the error 
sequence { }jε  might all be accepted as true sources. 
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Fig. 6. Reconstructed optimum sources when a noise is not or is added to the MSPD. (a) 
reconstructed optimum source composed of fifteen tetrahedrons without noise. (b) 
reconstructed optimum source, which is composed of 32 tetrahedrons when 5% random noise 
was added. 

4.3 Accuracy and reasonableness of the probability reconstruction 

To decrease the risk of a false rejection, we developed a probability model in this work. The 
conformance error sequence memorized during the region growth is plotted in Fig. 7(a). In 
the numerical studies, let α  and qε be 0.05 and the first 50% critical number of { }jε  

respectively. Tε  was determined in a search manner. When Tε  be 21 cos( 18) 1.52 10π −− = × , 

ε ′ , which is accumulated between 1l  and 2l  in Fig. 7(a), was specified to be within the range 

of 3 2[7.40 10 ,1.52 10 ]− −× × . The sample mean and variance of the 45 accumulated elements of 

ε ′  were 0.0122μ =  and ˆ 0.0022σ =  respectively. Consequently, 2[0, ]xε ′′ ⊂ =  
2[0,1.64 10 ]−×  was obtained including 53 elements of { }jε . The sequence passed a normality 

test, i.e., 2(0.0128,0.0024 )Nε ′′  . The histogram of sequence ε ′′  is shown in Fig. 7(b). 

 

Fig. 7. Extraction of the conformance errors during probability reconstruction. (a) visualization 

of the conformance error sequence { }
j

ε , where the horizontal axis represents the subscript of 

{ }
j

ε , the vertical axis shows the values of { }
j

ε , and the data between 
3

1
7.40 10l

−= ×  and 

2

2
1.52 10l

−= ×  constitute ′ε . (b) error histogram of data ′′ε  and 
2

(0.0128, 0.0024 )N′′ ε . 

Based on Eq. (6), the PS was conducted from 53 accepted errors. The reconstructed PS 
and hp-FEM results are shown in Figs. 8 and 9 respectively for comparison. In order to 
present more accurate results, when hp-FEM was used, the parameters zI  and β  were 
chosen as [ 3,3]−  and 0.95 respectively. The reconstructed PS (Figs. 8(a) or 8(b)) consisted of 
64 different nodes discretized from the right lung. The conformance error of our method was 

38.3 10−× , which was demonstrated by the similarity between Figs. 8(c) and 5(e). However, 

the conformance error of hp-FEM was 29.1 10−× , which was demonstrated by the difference 
between Fig. 9(a) and Fig. 5(e). Figures 8(d)-8(f) show slices along the axes at the PS core 
(3.2,6.7,0.6)  mm. Because the geometrical center of the actual source was located at (3,5,0)  
mm, the distance error of the proposed method was thus 1.8 mm, whereas the center of hp-
FEM of the reconstructed source was (3.3,6.8,0.7)  mm, and the distance error was 1.96 mm 
(Fig. 9(b)). The distance error of hp-FEM was inferior to our method. Both the conformance 
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error and the distance error showed that the accuracy of our proposed probability method was 
superior to hp-FEM. 

For hp-FEM, the maximum value of the reconstructed photon density was more than ten-
times greater than its minimum value (Fig. 9(c)). However, for our method, the source was 
constrained by a uniform distribution in model (4). The PS simply represented a probability 
distribution, and the photon density was represented by APDD based on average statistics. 
This suggests that model (4) and the PS delivered more reasonable results. 

 

Fig. 8. Reconstructed results of the probability method, where 0.9=β , and the ROI is 

cropped in [ 3, 3]−  along the z-axis. (a), (b) are the reconstructed PS. (c) normalized surface 
photon density calculated using APDD. (d)-(f) are the slices, which are perpendicular to the x, 
y, and z-axes at the probability core (3.2, 6.7, 0.6)  mm respectively. 

 

Fig. 9. Reconstructed results of hp-FEM, where 0.95=β , and the PR is the region bounded 

in [ 10,10] [ 10,10] [ 3, 3]− × − × − . (a) normalized surface photon density calculated using the 
reconstructed sources. (b) reconstructed source with a distance error of 1.96 mm. (c) enlarged 
source, where the normalized photon density is dyed with a pseudo-color after interpolation. 

4.4 Reconstruction efficiency 

To evaluate the reconstruction efficiency of the proposed probability method, we also 
compared it with hp-FEM. The experiments were implemented using Matlab code on a PC 
powered by Intel Duo CPU E6550 (2.33GHz) processors with 2 GB of RAM. It took hp-FEM 
11.2 min to finish the regularization, and a total of 13.6 min to finish the whole process. In 
comparison, it took the probability method 5.6 min and 2.2 min for rough positioning and 
region growth respectively. The total time taken for the probability method was 
approximately 8.3 min. The efficiency of the probability method was mainly determined by 
the regularization during the rough positioning and the time spent on region growth. 

5. In vivo experiments 

Since the uptake of I-131 mainly occurs in the bladder and thyroid [21] in the in vivo 
experiments, we would reconstruct the bladder and thyroid in succession to show the 
reconstruction of the deep and subcutaneous targets respectively. The in vivo experimental 
data were provided by Hu et. al [21], in which the experimental data used for the 
reconstruction of the bladder and thyroid were acquired 2 hours and 24 hours later after the 
intravenous tail injection respectively. The injected doses of I-131 were 400 and 450 μCi 
respectively. The optical parameters of the biological tissues listed in Table 4 were set the 
same as those in [21]. 
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Table 4. Optical parameters of the biological tissues, where (1 ) ( )
s s

g x′ = −μ μ  is the 

reducing scattering coefficient. 

Material 
Adipose/ 
Bladder 

Heart Lungs 
Liver/
Spleen 

Stomach Kidneys Bone Intestines 

1
[ ]

a
mm

−μ  0.1017 1.5477 4.6832 9.2860 0.3082 1.7334 1.5233 0.2891 

1
[ ]

s
mm

−′μ  1.2929 1.1674 2.3271 0.7786 1.6320 2.7599 3.0393 1.3548 

5.1 Reconstruction of the bladder 

In order to reconstruct the bladder conveniently, we cropped the torso data of the whole 
mouse so that the interception excluded the thyroid data. Confined to the reduced torso data, 
we assumed that the uptake of I-131 only occurred in the bladder. After the interception of the 
torso, the mouse was discretized into 3,718 nodes including 1,035 surface nodes (Fig. 1(a1)). 
The volume of the mouse was split into 18,952 tetrahedrons. 

5.1.1 Robustness of the rough positioning 

Figure 1(a) illustrates the rough positioning after MOSE was used to obtain the synthetic data. 
The robustness experiments with regards to β  are shown in Fig. 10. The ROI of our method 
was cropped between 0 and 7 along the z-axis. The PR of hp-FEM was bounded in a box 
region [0, 40] [0,30] [0,7]x y zI I I× × = × × . In accordance with the numerical studies, the in 

vivo results showed that a minimum conformance error was achieved in the bladder when 
0.5β ≥ , i.e., the source was pinpointed correctly when 0.5β ≥  (Fig. 10(a)). However, for 

hp-FEM, the sources were all pinpointed falsely within the adipose (Fig. 10(b)). Compared 
with hp-FEM, the probability method is more robust against β . 

 

Fig. 10. The robustness with regards to β . (a) conformance error cε  of the probability 

method as a function of β , where the cropped interval of the ROI is [0, 7] . (b) distance error 

dε  of hp-FEM as a function of β , where the PR is a box region 

x y z
I I I× × = [0, 40] [0, 30] [0, 7]× × . 

Let 0.9β = . Table 5 shows the conformance errors of the positioning for different ROIs. 
For every column, the bladder features the minimum error, which shows that the rough 
positioning was also robust with respect to the ROI in the in vivo experiments. At the fixed 

[0, 40]xI =  and [0,30]yI =  for different zI , the distance errors of hp-FEM together with the 

positioned organs are shown in Table 6. Although on one occasion the reconstructed source 
was located in the bladder with a minimum error of 1.43 mm, hence the true position of the 
source center showed a large amount of randomness. More often, the source center was 
positioned within the adipose, and the positioning was untrue. Compared with hp-FEM, our 
probability method was more robust against the ROI in the bladder reconstruction. 
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Table 5. Conformance errors of the probability method for the cropped interval of the 
ROI when β = 0.9. CI stands for a cropped interval. 

CI (mm) [0,5] [0,6] [0,7] [0,8] [1,8] [2,8] [3,8]
Bladder 0.07 0.07 0.07 0.07 0.07 0.07 0.07
Apose 0.32 0.32 0.32 0.32 0.32 0.32 0.32
Intestines 0.38 0.34 0.35 0.35 0.35 0.35 0.35
Bone 0.96 0.96 0.96 0.96 0.96 0.96 0.96

Table 6. Distance error of hp-FEM for the PR when β = 0.9. The PR of hp-FEM is 

bounded in a box region 
x y z

I I I× × , where 
x

I  and 
y

I  are the interval [0,40] and [0,30] 

respectively. 

Iz (mm) [0,5] [0,6] [0,7] [0,8] [1,8] [2,8] [3,8]
Bladder  1.43
Adipose 3.19 3.84 3.03 3.03 3.03 2.95

5.1.2 Uncertainty of the growing method 

In the studies of the reconstruction of the bladder, after choosing β  as 0.9 and confining the 

ROI in the cropped interval [0,7] , the source was located in the bladder qualitatively (Fig. 
1(a4)) by assuming every organ (Fig. 1(a3)) in the ROI (Fig. 1(a2)) was the PR. The PR was 
the whole bladder (Fig. 1(a4)), which was discretized to 73 nodes and 203 tetrahedrons. After 
using the region growing method shown in Fig. 2, 203 sources were obtained. We illustrated 
four of these sources in Figs. 1(b1)-1(b4). Correspondingly, the normalized CSPDs are 
visualized in Figs. 1(b5)-1(b8). Figure 1(b9) shows the normalized MSPD. The figure also 
indicates that the similarity between Fig. 1(b8) and Fig. 1(b9) is clearly low, and Figs. 1(b5)-
1(b7) are similar with Fig. 1(b9). The conformance errors between Figs. 1(b5)-1(b8) and Fig. 
1(b9) are 0.0486, 0.0510, 0.0511, and 0.4468 respectively. Bearing in mind the objective and 
subjective assessments, the source of Fig. 1(b4) was rejected. This demonstrates that if the 
conformance errors of the sequence { }jε  resulting from the region growth are sufficiently 

large, they should be rejected. 
To demonstrate the impact of the post-processing step with respect to the energy 

quantization error, similar with the numerical studies, random noise valued at 
2[0,5 10 ]normalizedm −× ×  was added into the pseudo-color region of Fig. 1(b9), where normalizedm  

was similarly valued. Figure 11(a) shows two reconstructed optimum sources, which also are 
shown in Figs. 11(b) and 11(c) when the noise was and was not added respectively. Figures 
11(a) and 11(c) show a false rejection where three additional elements were rejected when no 
noise was added. The noise experiment also demonstrated the uncertainty of the growing 
method. 

 

Fig. 11. Reconstructed optimum sources when noise was or was not added to the MSPD. (a) 
two reconstructed sources. (b) reconstructed optimum source composed of five tetrahedrons, 
when 5% random noise was added. (c) reconstructed optimum source composed of two 
tetrahedrons without noise. 

5.1.3 Accuracy and reasonableness of the probability reconstruction 

We plotted the conformance error sequence in Fig. 12(a). In the in vivo experiments of the 
bladder reconstruction, α  and qε were valued the same as those in the numerical 

experiments. When 1 cos( 8) 0.076Tε π= − = , ε ′  was specified within the range of 
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2 2[4.86 10 ,7.56 10 ]− −× ×  between 1l  and 2l  (Fig. 12(a)), and the element number of ε ′  was 

84. Correspondingly, 0.0611μ =  and ˆ 0.0052σ = . Consequently, we obtained the ND 

sequence ε ′′ , where 2
2[0, ] [0,7.08 10 ]xε −′′ ⊂ = ×  including 81 elements of { }jε . The 

histogram of sequence ε ′′  is shown in Fig. 12(b), where 2(0.0607,0.0048 )Nε ′′  . 

 

Fig. 12. Extraction of conformance errors during probability reconstruction. (a) visualization of 

the conformance error sequence { }
j

ε , where the horizontal axis represents the subscript of 

{ }
j

ε , and the vertical axis shows the values of { }
j

ε . The data between 
2

1
4.86 10l

−= ×  and 

2

2
7.56 10l

−= ×  constitute ′ε . (b) error histogram of data ′′ε , where 

2
(0.0607, 0.0048 )N′′ ε . 

The reconstructed PS and the result of hp-FEM are shown in Figs. 13 and 14 respectively 
for comparison. The PR and β  value of hp-FEM were chosen as [0,40] [0,30] [3,8]× ×  and 
0.9 respectively. The PS was conducted from 81 accepted sources and consisted of 53 
different nodes (Figs. 13(a) and 13(b)). The conformance error of the PS was 25.74 10−× . The 
error showed that the distributions of the CSPD (Fig. 13(c)) and MSPD (Fig. 1(b9)) were 
considerably close. However, the result of hp-FEM (Fig. 14(a)) and the measured distribution 
shown in Fig. 1(b9) were significantly different (with a conformance error of 0.433). Figures 
13(d)-13(f) show slices along the axes of the PS core (19.06,25.79,4.38)  mm. Because the 

geometrical center of the bladder was obtained from micro-CT images at (18.24,25.76,3.68)  
mm, the distance error of the PS was thus 1.08 mm. However, the distance error of hp-FEM 
was 1.43 mm (Fig. 14(b)) [21]. Both the conformance error and the distance error indicated 
that the accuracy of our method was superior to hp-FEM in the in vivo experiments. 

For hp-FEM, the maximum energy value of the reconstructed source density was also 
more than ten-times greater than its minimum value (Fig. 14(c)). This also suggested that the 
PS delivered more reasonable results. 

 

Fig. 13. Reconstructed results of the probability method, where 0.9=β , and the ROI is 

cropped in [0, 7]  along the z-axis. (a) and (b) are the reconstructed PS. (c) normalized surface 
photon density calculated by APDD. (d)-(f) are the slices perpendicular to the x, y, z-axes at 
the probability core of (19.06, 25.79, 4.38)  mm respectively. 
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Fig. 14. Reconstructed results of hp-FEM, where 0.9=β , and the PR is the region bounded 

in the region [0, 40] [0, 30] [3,8]× × . (a) normalized surface photon density calculated from 
the reconstructed sources. (b) reconstructed source. (c) enlarged source, where the photon 
density is dyed with a pseudo-color after interpolation. 

5.1.4 Efficiency 

We also compared the probability method with hp-FEM to evaluate the efficiency of the in 
vivo experiments. It took hp-FEM 4.0 min to finish the regularization. The time cost of the 
whole process was 6.7 min. In comparison, it took the probability method 4.0 min and 0.4 
min for rough positioning and region growth respectively. The total time cost for the 
probability method was approximately 5.9 min. 

5.2 Reconstruction of the thyroid 

In the studies of the reconstruction of the thyroid, the mouse was discretized into 4,740 nodes 
including 1,820 surface nodes. The volume of the mouse was split into 22,072 tetrahedrons. 

5.2.1 Robustness of the rough positioning 

Since the thyroid was not identified via micro-CT anatomically, the distance error could not 
be obtained spatially. We did not compare the robustness between the hp-FEM and the 
probability method in this subsection. 

To test the robustness of our method with regards to β , eight experiments with 
0.2,0.3, ,0.9β =   were performed (Fig. 15). The in vivo results showed that the source was 

pinpointed correctly when 0.7β ≤ . 

 

Fig. 15. Conformance errors for cε  vs. β  values showing the robustness of β , where the 

ROI is confined in the cropping interval [22, 28] . 

Let 0.7β = , Table 7 shows the conformance errors of the positioning for different ROIs. 
For every column, the thyroid features the minimum error, which shows that the rough 
positioning was robust with respect to the cropped interval. 

Table 7. Conformance errors of the probability method for the cropped interval of the 
ROI when β = 0.7. CI stands for a cropped interval. 

CI (mm) [18,28] [22,28] [20,28] [22,30] [20,30] [18,30] [18,28] 
Adipose 0.26 0.26 0.26 0.26 0.26 0.26 0.26 
Bone 0.28 0.28 0.28 0.28 0.28 0.28 0.28 
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5.2.2 Uncertainty of the growing method 

In the studies of the reconstruction of the thyroid, after choosing β  as 0.7 and confining the 

ROI in the cropped interval [22,28] , the source was located in the adipose qualitatively. The 
PR(adipose) was discretized into 3108 elements. After using the region growing method, a 
conformance error sequence { }jε  corresponding to 3108 sources was obtained. 

Of course, there was an optimum source with a minimum error in { }jS . However, maybe 

it is not a certain event that the source is only composed of the elements from the optimum 
source. To demonstrate the uncertainty of the source reconstruction, random noise valued at 

2[0,5 10 ]normalizedm −× ×  was added into the measured surface density, where normalizedm  was the 
maximum value of MSPD after normalization. Three reconstructed results are shown in Fig. 
16. Figure 16(a) shows the optimum sources when no noise was added. Figures 16(b) and 
16(c) are two different optimum sources after adding two different 5% random noise 
respectively. The conformance errors of the three reconstructions were 0.04760, 0.04713 and 
0.05283 respectively. The conformance error decreased slightly in Fig. 16(b). On the 
contrary, the error increased in Fig. 16(c). It can be seen that the conformance error was 
increased or decreased randomly after adding random noise. Therefore, the optimum source 
was sensitive under the perturbation of the noise. For any optimum source, it might reject 
some other real source elements. The reconstruction of the thyroid also demonstrated the 
uncertainty of the growing source { }jS . 

 

Fig. 16. Reconstructed optimum sources when noise was or was not added to MSPD. (a) 
reconstructed optimum source composed of 49 tetrahedrons without noise. (b) and (c) are the 
two optimum sources composed of 60 and 76 tetrahedrons respectively, when two different 5% 
random noise were added. 

5.2.3 Accuracy and reasonableness of the probability reconstruction 

There were 2433 large errors reaching the condition 0.8jε ≥  in the error sequence { }jε . 

They were sufficiently large, and should be rejected. Confining to 0.8jε <  the remaining 675 

errors are shown in Fig. 17(a). In the in vivo experiments of the thyroid, let α  be 0.05, qε  be 

the first 50% critical number of { }jε . When 1 cos( 7) 0.099Tε π= − = , ε ′  was specified 

within the range of 2 2[4.76 10 ,9.80 10 ]− −× ×  between 1l  and 2l (Fig. 17(a)), and the element 

number of ε ′  was 514. Correspondingly, 0.0732μ =  and ˆ 0.0107σ = . Consequently, the 

ND sequence ε ′′  was obtained, where 2
2[0, ] [0,9.42 10 ]xε −′′ ⊂ = ×  including 504 elements of 

{ }jε . The histogram of sequence of ε ′′  is shown in Fig. 17(b), where 
2(0.0728,0.0102 )Nε ′′  . 
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Fig. 17. Extraction of conformance errors during probability reconstruction. (a) visualization of 

the conformance error sequence { }
j

ε , where the horizontal axis represents the subscript of 

{ }
j

ε , and the vertical axis shows the values of { }
j

ε . The data between 
2

1
4.76 10l

−= ×  and 

2

2
9.80 10l

−= ×  constitute ′ε . (b) error histogram of data ′′ε , where 

2
(0.0728, 0.0102 )N′′ ε . 

The reconstructed PS and the result of hp-FEM are shown in Figs. 18 and 19 respectively. 
The PR and the parameter β  of hp-FEM were chosen as [14, 25] [0, 22] [22,28]× ×  and 0.7 
respectively. Although both locations of the reconstructed sources were positioned in the 
adipose (shown in Figs. 18(a), 18(b), 19(a) and 19(b)), the conformance error indicated that 
the accuracy of our method was superior to hp-FEM in the in vivo experiments of the thyroid. 
The conformance error of the PS was 26.40 10−× . The error demonstrated that the 
distributions between the MSPD (Fig. 18(c)) and CSPD (Fig. 18(d)) were close. Figure 18(e) 
shows the reconstructed PS. Figures 18(f)-18(h) show the slices along the axes of the PS core. 
It can be seen that the reconstructed source was a subcutaneous target. However, for hp-FEM, 
the maximum and minimum density values after normalization indicated by the color-bar in 
Fig. 19(c) were 0.45 and 0.05 respectively. Compared with the corresponding values in Fig. 
18(d), they were more different from those in Fig. 18(c). The differences were demonstrated 
by the conformance error. The conformance error between the normalized surface density of 
hp-FEM (Fig. 19(c)) and the measured distribution shown in Fig. 18(c) was 0.200. 

For hp-FEM, the maximum energy value of the reconstructed source density was also 
more than ten-times greater than its minimum value (Fig. 19(d)). This also suggested that the 
PS delivered more reasonable results. 

 

Fig. 18. Reconstructed results of the probability method, where 0.7=β , and the ROI is 
cropped in [22,28] along the z-axis. (a) and (b) are the front and side perspective views of the 
source, which is dyed in blue. (c) original MSPD after normalization. (d) normalized surface 
photon density calculated by APDD. (e) is the reconstructed PS. (f)-(h) are the slices 
perpendicular to the x, y, z-axes at the probability core of (20.0,17.6, 24.4)  respectively. 
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Fig. 19. Reconstructed results of hp-FEM, where 0.7=β , and the PR is the region bounded 

in [14, 25] [15, 21] [22, 28]× × . (a) and (b) are the front and side perspective views of the 
source, which is dyed in blue. (c) normalized surface photon density calculated from the 
reconstructed sources. (d) is the reconstructed source. 

5.2.4 Efficiency 

We also compared the probability method with hp-FEM to evaluate the efficiency of the 
reconstruction of the subcutaneous target. The time cost of the whole process for hp-FEM 
was 11.7 min. In comparison, it took the probability method 1.1 min and 43.7 min for rough 
positioning and region growth respectively. The total time cost for the probability method was 
approximately 45 min. 

6. Discussion and conclusions 

It is worth pointing out that rough positioning is very important in the proposed probability 
method. In the experiments of the bladder, when we took the entire ROI as the PR and 
performed the region growing method there, the resulting reconstructed source was changed 
from the bladder to adipose. In practical terms, a large PR may cause a surface deviation, as 
in [21–23] and [34]. Actually, if the node number of the discrete PR is greater than the node 
number on the surface, there are infinitely many solutions for Eq. (1), and the error is out of 
control. In this work, the PR was assumed to be an organ confined in the ROI, which 
effectively improved the ill-posed aspect of Eq. (1). 

The homogeneous hypothesis is reasonable. The probability model was based upon the 
characteristic of the homogeneity in an organ. Although for the sake of convenience the 
homogeneity was only an approximation assumption, the uptake of the implant source and the 
bladder was homogeneous in this paper. As an additional example, the uptake of a tumor is 
usually homogeneous because a tumor comprises of the same tumor cells. The proposed 
technique may be extended to self-luminescence tomography, such as BLT, after the 
homogeneous hypothesis. However, in general, the excited diffuse model, such as 
fluorescence molecular tomography (FMT), does not satisfy the homogeneous hypothesis. 
Therefore, the method may not be directly extended to excited luminescence tomography. 

The space constraints involved in Eq. (4) are necessary. The important aspect of the 
region growing method is to transform an inverse problem into a forward problem by 
searching for the local optimum solution under two constraints. The growing scheme is by 
nature tied with a space constraint (condition 2) to ensure that there are no isolated source 
points. However, the TR method, which was used in [21–23] and [34], had nothing to do with 
space constraint, and it may be unreasonable. The FEM can convert a discrete result into a 
continuous result through interpolation, and any point in an element is interpolated by the 
elemental nodes. If there is an isolated source node, there is no way to identify how to deal 
with the points surrounding it. 

The optimization model (4) is reasonable. The reconstructed source of hp-FEM, as shown 
in Figs. 9(c), 14(c) and 19(d), was unreasonable because the reconstructed maximum energy 
value was more than ten-times greater than the minimum value. An organ may comprise 
certain stem organs. However, the stem organs should not be significantly different in terms 
of the reconstructed energy value. This unreasonableness was not present in the optimization 
model (4) because the source density was constrained with a uniform distribution. 
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It should be pointed out that the region growing method suffers from several limitations in 
terms of solving the optimization. Some new techniques are expected to be designed to solve 
the optimization directly. Because a growth begins with one element and the results cannot be 
extended to another isolated region topologically, the method is unable to deal with multiple 
sources directly. When the method deals with multiple targets, this shortcoming can be 
partially overcome using two steps. First, divide an entire body region into multiple sub-
regions so that each sub-region contains only one source. Second, implement the method 
repeatedly for each sub-region. As another shortcoming, the method does not reconstruct the 
source density or APDD, because the c  value of the assumed uniform photon density is 
usually unknown. Fortunately, quantitative detection generally focuses on detecting the 
position of the tumor, and the source location is more important than the source intensity for 
source reconstruction. 

For the reconstruction efficiency, the computation of the proposed method mainly 
depends on source positioning and region growing. If the fineness of the mesh is doubled, the 
computation of the region growing would be doubled too. However, the computational cost of 
our method could be reduced after ignoring invalid growth since the sources delivering large 
conformance errors were rejected, e.g., the computational time of the region growing was 
reduced from 43.7 min to 6.5 min in the reconstruction of the thyroid after using the 
‘continue’ statement in the program. In detail, the technique prevented elements, which 
delivered conformance errors of greater than 0.5, to be seed elements. Therefore, the 
subsequent growth process was reduced. This implies that our method may be more efficient 
than hp-FEM after necessary program optimization. 

In this paper, we proposed an optimization using two constraints to model the CLT 
inverse problem. We also developed a probabilistic assessment method for CLT 
reconstruction that was able to determine with probability whether an organ node was a 
source node. The reconstruction results were more reasonable because our method took into 
account homogeneous uptakes for homogeneous organs. Comparative experimental results 
demonstrated that our method was able to achieve a robust, accurate, and reasonable result. 
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