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Abstract: Imaging and evaluation of the optic nerve head (ONH) plays an 
essential part in the detection and clinical management of glaucoma. The 
morphological characteristics of ONHs vary greatly from person to person 
and this variability means it is difficult to quantify them in a standardized 
way. We developed and evaluated a feature extraction approach using shift-
invariant wavelet packet and kernel principal component analysis to 
quantify the shape features in ONH images acquired by scanning laser 
ophthalmoscopy (Heidelberg Retina Tomograph [HRT]). The methods 
were developed and tested on 1996 eyes from three different clinical 
centers. A shape abnormality score (SAS) was developed from extracted 
features using a Gaussian process to identify glaucomatous abnormality. 
SAS can be used as a diagnostic index to quantify the overall likelihood of 
ONH abnormality. Maps showing areas of likely abnormality within the 
ONH were also derived. Diagnostic performance of the technique, as 
estimated by ROC analysis, was significantly better than the classification 
tools currently used in the HRT software – the technique offers the 
additional advantage of working with all images and is fully automated. 
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1. Introduction 

Glaucoma is a chronic, slowly progressive optic neuropathy that can lead to irreversible sight 
loss. Some amalgamation of biomechanical and schematic factors acting on optic nerve head 
(ONH) tissue cause retinal ganglion cell (RGC) dysfunction in glaucoma [1, 2]. Classification 
of abnormality in the ONH is therefore central to the clinical diagnosis and monitoring of 
glaucoma. To date, characterization of ONH has, for example, been limited to simple 
measures of size of the ONH or the volume of neuroretinal rim area comprising the RGC 
axons [3]. Yet, ONH geometry is more complicated than this. It is thought that application of 
geometric morphometric methods, or some analysis of shape features, would facilitate better 
assessment of the ONH and likely improve classification and detection of abnormality [4]. 

The confocal scanning laser ophthalmoscope provides reproducible three-dimensional 
images of the ONH and surrounding area. It is an established retinal imaging technology, 
described in detail elsewhere [5], and is now widely used in eye clinics. The technology is 
typified by the commercially available Heidelberg Retina Tomograph (HRT; Heidelberg 
Engineering, Inc. Heidelberg, Germany) which produces both reflectance and topographic 
(ONH surface shape) images of the ONH and the surrounding areas (Fig. 1) [6]. For clinical 
quantification, the information contained in the image is often reduced to a single ONH 
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parameter such as the size of the neuroretinal rim area or depth of ‘cupping’ in relation to the 
size of the ONH. These ‘size features’ are amenable to clinical understanding and simple 
quantification [7–10]. However, this approach is wasteful since, for example, the topographic 
image includes approximately 65000 pixels, each one representing a surrogate measure of the 
topographic height of the ONH or retinal area at the corresponding location. Moreover, 
current methods do not attempt to characterize any distinguishing spatial or morphometric 
features that might be suggestive of abnormality or otherwise. The main idea described in this 
paper is to take advantage of these features in the images in order to better detect 
glaucomatous damage in the ONH. 

 

Fig. 1. An example of HRT topographic (a) and reflectance (b) images. The ONH is 
conventionally divided into six sectors indicated on the reflectance image. 

The most widely used diagnostic tool on the HRT is the Moorfields Regression Analysis 
(MRA) [6]. By comparing the measured neuroretinal rim area to normative limits, globally 
and in six separate sectors (Fig. 1), the MRA classifies an ONH as “within normal limits”, 
“borderline”, or “outside normal limits”. This method corrects for the well-established 
relationship between ONH size and rim area: larger ONHs tend to have larger rim areas [11–
13]. Simple size features of the ONH are also used by other methods in the software adopting 
linear discriminant functions and other machine-learning classifiers [14–16]. In order to 
quantify the size of ONH and rim area, the MRA requires manual delineation (contouring) of 
the ONH by connecting points on ONH margin that are subjectively selected by the 
operator/clinician. This process inevitably introduces measurement variability, which in turn 
adversely affects the diagnostic performance of MRA [17]. 

A three-dimensional model of the topographical image has been incorporated into another 
diagnostic tool available in the HRT software [18] yielding a metric called the glaucoma 
probability score (GPS). The GPS uses two measures of peripapillary retinal nerve fiber layer 
shape (horizontal and vertical curvature) and three measures of optic nerve head shape (cup 
size, cup depth and rim steepness) for input into a relevance vector machine classifier that 
estimates the probability of having ONH damage consistent with glaucoma. GPS has the 
advantage over the MRA of not requiring manual contouring of ONH margin. GPS 
demonstrates similar diagnostic performance to MRA, but a number of ONHs cannot be 
classified by GPS when the topographical surface cannot be approximated by the modeled 
surface [19]. In short, the model cannot be used in some ONHs meaning that a percentage of 
eyes cannot be classified. Moreover, in healthy eyes, large ONHs are more often classified 
with abnormality than are medium-sized or small ONHs, whilst in eyes with glaucoma, both 
MRA and GPS are less sensitive in small ONHs than in large ones [15, 19–22]. In the 
Nottingham regression analysis [23], the effect of disc size was neutralized, allowing the 
algorithm to perform equally over the normal range of disc areas. A statistical correction to 
the MRA, using quantile regression [24] has recently been described to improve the 
specificity of the diagnostic precision in large ONHs but neither of these improvements has 
yet to be adopted in HRT software. 
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Whilst much work has been done to characterize size-related parameters of the ONH, little 
attempt has been made to identify characteristics about the shape of an ONH including, for 
example, ONHs that are tilted or crowded by vessel structure. Moreover, although a 
subjectively selected feature offers transparent methods conforming to clinical understanding, 
they may not reflect the most intrinsic information about ONHs due to the limited knowledge 
about them. Therefore, this study proposed an automated feature extraction method to 
objectively quantify the shape characteristics of ONHs. The method was developed and tested 
on images from 1996 eyes. Estimates of diagnostic performance of the technique were 
compared with MRA and GPS. 

2. Data sets 

The study used data sets of HRT images acquired from three different clinical centers: Royal 
Eye Hospital in Manchester, UK [25], QEII Eye Care Centre of Queen Elizabeth II Health 
Sciences Centre in Halifax, Canada [15] and Queen's Medical Centre, Nottingham, UK [26, 
27]. The Manchester and Halifax data sets were used for developing feature extraction and 
diagnostic methods, whilst the Nottingham data set was used for independent validation of 
these methods. 

The Manchester and Halifax data set contains images of one eye from each of 164 
visually healthy people and 252 patients with a clinical diagnosis of glaucoma. These data are 
described in detail elsewhere [24, 25]. In addition 692 eyes from people attending clinics at 
the same centers (Manchester and Halifax) were included in this data set for developing our 
methods. These eyes either had an equivocal clinical diagnosis of glaucoma or were from 
people attending clinics as glaucoma suspects. The Nottingham data set includes eyes from 
806 elderly visually healthy people who had been assessed as part of the Bridlington Eye 
Assessment Project (BEAP (2002-5)), a large cross-sectional community-based study on eye 
disease in the elderly in the UK [26, 27]. This data set was artificially enriched with a sample 
of 82 eyes from 82 patients with a clinical diagnosis of glaucoma; the ratio of cases to 
controls in this validation data set was kept at approximately ten to one in order to at least 
mimic the situation of using the HRT in a case finding or primary care situation. In all cases 
the patients were given a diagnosis of primary open angle glaucoma by a glaucoma specialist 
made from an established reference test (visual fields) [28] and other clinical indicators – the 
diagnosis was not based on ONH abnormally alone. But it should be noted that different 
visual field instruments and criteria were used in the three centers. The HRT image quality in 
all data sets was quantified by mean pixel height standard deviation (MPHSD), a standard 
measure of image quality used by HRT devices [29]. All images were required to have 
MPHSD <50µm in order to be included in the study. 

The patient data were collected in accordance with the tenets of the Declaration of 
Helsinki from studies that had research ethics committee approval with all participants giving 
informed consent. Data were anonymized and transferred to a secure database held at City 
University London. 

3. ONH shape feature extraction 

Both topographic and reflectance images (Fig. 1) of each eye were first rescaled so that the 
pixel size of the images is 10 × 10 microns. A region of 256-by-256 pixels around the image 
center was used for analysis. Smaller images were padded by replicating pixels on edges. 

Features of ONHs were extracted in two steps. First, topography and reflectance images 
were individually processed by a shift-invariant wavelet packet to extract the spatial-
frequency features. Second, the wavelet features were then adaptively selected by the kernel 
principal component analysis (KPCA) to further reduce the dimensionality of extracted 
features. 

3.1 Adaptive shift-invariant wavelet packet feature extraction 

A wavelet transform expresses a general function as a series of wavelets. In particular, it 
expresses a signal as a linear combination of a particular set of functions by shifting and 
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dilating one single function named the mother wavelet. This methodology is widely used in 
applications such as image de-noise, image compression, feature extraction and classification 
[30–35]. The decomposition of the signal leads to a set of wavelet coefficients that are spatial-
frequency localized. The wavelet transform for discrete signal and digital image processing 
can be efficiently implemented with the Mallat algorithm [36]. In a discrete wavelet transform 
(DWT) for a 2D image, the image is convolved with complementary low- and high-pass 
filters corresponding to the mother wavelet; the convolution with the low-pass filter forms the 
approximation coefficients, and the convolution with the high-pass filters leads to detail 
coefficients on the horizontal, vertical and diagonal. The approximation and detail 
coefficients are then down-sampled to be half size, and will be referred to here as 
approximation and detail images. The approximation image can be successively decomposed 
to higher levels with lower frequency components at larger scales. Note that the detail images 
are not further decomposed in conventional DWT. 

The down-sampling in DWT significantly reduces the number of coefficients and forms 
optimally sparse and efficient representation of images. However, it also causes DWT to be 
shift variant: a small shift of the image greatly perturbs the wavelet coefficients [37]. It has 
been reported that shift variance complicates wavelet analysis and algorithms have to cope 
with a wide range of possible wavelet coefficient patterns caused by image shift [38, 39]. 
Therefore, our method adopted an adaptive shift-invariant wavelet packet decomposition [35] 
that generates shift-invariance and non-redundant wavelet coefficients. 

The wavelet packet is a generalization of DWT in which not only the approximation 
image, but also the detail images from the lower level of DWT are decomposed. This forms a 
quad-tree of decomposition shown in Fig. 2 with the original image at the root. To achieve the 
shift-invariance, a redundant set of wavelet packet coefficients for shifted images is 
computed. These coefficients are redundant because they include the same information as 
those in the non-shifted image. The redundancy is then eliminated by averaging the 
corresponding coefficients of shifted images to form a shift-invariant wavelet packet 
representation [35]. As an example, in Fig. 2, when decomposing the approximation image 
AA, it is shifted by the combination of zero or one pixel on the horizontal and vertical. The 
wavelet coefficients of shifted AA are averaged to form the approximation AAA, and details 
AAH, AAV, AAD. 

The wavelet packet, compared with the wavelet transform, still produces significantly 
more coefficients due to the decomposition of detail images. The information cost was used 
to adaptively select the coefficients that should be further decomposed [35, 40]. In particular, 
Shannon entropy (zero order entropy of the frequency of pixel intensity) was computed for an 
image to be decomposed and is compared with the sum of Shannon entropy of the four 
decomposition images. If the information cost of the current image is less than the sum of 
information cost of decomposition images, it will not be further decomposed; otherwise, it 
will be decomposed until the information cost increases or a maximum level (five in this 
study) is reached. In Fig. 2, the information cost of each image and the sum of information 
cost in the decomposition images are given; the abandoned decomposition (due to increased 
information cost) is indicated by crosses. Two uniform decomposition trees are then selected 
for topography and reflectance images respectively according to the criteria that a branch of 
the quad-tree is kept only if the information cost is decreased by the corresponding 
decomposition in more than 50% of the images in the training data set. 
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Fig. 2. Illustration of adaptive shift-invariant wavelet packet. The value of Shannon entropy is 
indicated on the branches of each wavelet decomposition with the format of ‘lower level 
entropy: summation of higher level entropy’. The crosses indicate that the decomposition is 
prevented due to the increased information cost. 

In each uniform quad-tree, the coefficients in the remaining decomposition were further 
selected. Note that no coefficient on the border with the width of mother wavelet was selected 
because these coefficients could not be reliably calculated by convolution. All approximation 
coefficients at the highest level (leaf approximation) in the quad-tree were selected. The 
selection of detail coefficients was carried out in two steps. First, an adaptive histogram-based 
thresholding [41] was used to select the coefficients with the largest magnitudes in each detail 
image. Second, the number of topography, or reflectance images, that select each detail 
coefficient in the first step was counted, and the feature coefficients chosen were those ranked 
to be in the top 3% of the most selected coefficients in the quad-tree. Note that the coefficient 
selection was carried out independently for topography and reflectance images. 

Various mother wavelets including daubechies (db1-db6), symlets (sym2-sym6) and 
biorthogonal (bio1.1, bio1.3, bio1.5, bio2.2, bio2.4, bio3.1, bio3.3) were considered [42, 43]; 
those that performed best in the diagnostic model (described below) in 10-fold cross 
validation on the training data set were used in the final model. The validation data set 
(Nottingham) was not used at all in this process. 

3.2 Kernel principal component analysis dimensionality reduction 

There are far fewer wavelet coefficients than the number of pixels in the 256 × 256 image, but 
there is still redundancy that can be eliminated by examining the spatial covariance among 
wavelet coefficients. Kernel principal component analysis (KPCA) [44] was used to project 
wavelet coefficients to a non-linear low-dimensional hyper-surface. Handling non-linearity 
has made KPCA a useful tool for image understanding [45, 46]. 

The selected wavelet coefficients of the topography and reflectance images were input 
into a KPCA model with a non-normalized isotropic Gaussian kernel. KPCA was carried out 
by using Eigen-decomposition of the kernel matrix [44]. The principal components with the 
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largest variance in the feature space were selected and a feature vector for an image was 
formed by projection onto the selected principal components. The features from topography 
and reflectance images were then combined by a principal component analysis to form the 
final features for the ONH. Only the images in the training data set were used to establish the 
principal components in KPCA. The parameters in the kernel and the number of principal 
components were selected such that they gave the best diagnostic performance in 10-fold 
cross validation on the training data set. 

4. Validation and experiments 

In order to demonstrate that the extracted features reflect the intrinsic information about the 
ONH, they were used to construct a diagnostic model that quantifies the uncertainty of 
glaucomatous abnormality. In turn this was used to infer the local configuration of 
abnormality in the ONHs. 

4.1 Shape abnormality score (SAS) 

A Gaussian process (GP) [47, 48] model was used to classify each ONH into healthy and 
glaucomatous categories. This diagnostic model, like GPS, outputs an overall probability 
score that we term the shape abnormality score (SAS). This score takes a value between 0 and 
1, where 0 means definitely healthy and 1 indicates definitely glaucomatous. 

Given a M-dimensional feature vector of a ONH x  and its corresponding diagnosis label 
y with 1y =  if x  is unhealthy and 1y = −  if x  is healthy, the likelihood of y was modeled 

by a cumulative Gaussian response function ( )xσ : 

 ( )( ) ( )( ) ( )( )( )
| | 0,1

yf
p y f yf yfσ

−∞
= = 

x
x x xN  (1) 

where ( )f x  is a latent function with a GP prior. The response function ( )xσ  in (1) 

compresses the value from ( )f x  with arbitrary range to be between 0 and 1. Let { } 1
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corresponding { } 1
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x . Similarly, ′x  is a feature vector of a test ONH with latent function 

( )f f′ ′= x . A GP over ( )f x  defines a joint Gaussian distribution so the prior ( )|p f X  and 

posterior ( )| , ,p f ′ ′X f x   are also normal distributions. The covariance matrix of the GP has 

elements being non-normalized Gaussian kernel with automatic relevance determination 
parameters. 

In order to make a prediction for ′x , the first step is to calculate the distribution of latent 
variable f ′  given the training data: 

 ( ) ( ) ( )| , , | , , | ,p f p f p d′ ′ ′ ′= X y x X f x f X y f      (2) 

and then evaluate the probability of label y′  for ′x  

 ( ) ( ) ( )| , , | | , ,p y p y f p f df′ ′ ′ ′ ′ ′ ′= X y x X y x     (3) 

The optimization for kernel parameters was made by maximizing the marginal likelihood of 
training data: 

 ( ) ( ) ( )| | |p p p d= y X f X y f f  (4) 
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Because ( )|p y f  in (1) and ( ) ( ) ( )| , | |p p p∝f X y f X y f  in (2) are not known 

distributions in an exponential family, the integrations in (2)-(4) are not analytically tractable. 
Therefore, expectation propagation [49, 50] was used to approximate ( )|p y f  with a normal 

distribution by a standard model reduction technique (moment matching); this enables 
analytical integration in (2)-(4). The GP algorithm started with estimating kernel parameters 
by maximizing the approximated log marginal likelihood (4) using 100 iterations of the 
scaled conjugate gradient algorithm [51, 52]. With optimized covariance function parameters, 
the SAS score for a test ONH with feature ′x  was given by (3) under an expectation 
propagation approximation. 

The diagnostic model was developed on the Manchester and Halifax data sets and then 
independently tested on the Nottingham data set. The statistical sensitivity and false positive 
rate were evaluated and the diagnostic performance was assessed by the receiver operating 
characteristic (ROC) analysis. Ten thousand bootstrap iterations of the validation data were 
carried out to estimate the 95% confidence interval (CI) of the area under ROC (AuROC) 
curve. Moreover, because methods with high false positive rate (low specificity) are not 
clinically useful in diagnostic tests for glaucoma, a partial AuROC curve with false positive 
rate ≤15% was also evaluated. The partial AuROC curve was normalized by dividing it by 
0.15. 

4.2 Localization of abnormality 

SAS provides an overall index about the ‘integrity’ of the ONH but glaucomatous damage 
often happens at discrete locations in the ONH area [10]. Therefore, estimating the spatial 
feature of ONH abnormality is also essential for clinical diagnosis of glaucomatous loss. For 
example, MRA and GPS analyses identify glaucomatous abnormality in six sectors (Fig. 1) of 
the ONH, which may not be adequate resolution to describe the ‘local’ configuration of 
abnormality. We therefore derive a pixel level localization of abnormality from the SAS 
score. 

Ideally, localization of abnormality in the ONH area can be achieved by comparing the 
ONH with its ‘healthy status’. A reference healthy ONH is however seldom available because 
patients will typically present with abnormality, making the direct comparison impossible. 
We propose a method of estimating a reference healthy ONH in a ‘backwards fashion’ by 
searching for an ONH that scores a SAS of 0 by continuously deforming the features of the 
measured ONH. The deformation is achieved by iteratively minimizing approximated (3) 
with respect to feature ′x . The minimization starts from the features of the actual measured 
ONH and uses a gradient descent to search for a new feature that reduces SAS in each 
iteration. The iteration stops when SAS is close to 0 (below 610−  in implementation). The 
output feature corresponds to the reference healthy ONH. 

The features of both measured and reference healthy ONHs were then converted back to 
the original image space. This is achieved by reversing the feature extraction procedures. In 
particular, reverse PCA first converts the feature vector of ONH back to feature vectors for 
topography and reflectance images. A pre-image technique of KPCA [53] is then used to 
convert the feature vector of topography image to wavelet packet coefficients, which are then 
transformed to the topography image by the inverse wavelet packet. The difference between 
the reconstructed topography images of the measured and reference healthy ONH can then be 
calculated and presented as local abnormality map on pixel level. 

The analytical methods described were implemented in MATLAB R2013a (MathWorks 
Inc., Natick, MA). An executable version of this code is freely available from the authors. All 
GPS and MRA analyses were conducted on the images using the HRT‐III software and 
results were transferred to a database in order to make statistical comparisons with the SAS 
results. 
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5. Results 

5.1 ONH feature extraction 

The sym4 mother wavelet, when applied on both topography and reflectance images, led to 
the best diagnostic performance in cross validation on the training data set. The following 
results for feature extraction are therefore all based on the results from the sym4 wavelet. 

 

Fig. 3. Illustrating the number of images that select each detail coefficient in the topography 
and reflectance images. Brighter pixels indicate more important coefficients selected by a 
larger number of images. The contrast is normalized in each image for visualization purpose. 

None of the approximation coefficients needed to be further decomposed in the wavelet 
packet because the decomposition increased the information cost in over 50% of the training 
images. Therefore, the shift-invariant wavelet packet produced the same number of 
coefficients as that of ordinary wavelet decomposition. The decomposition was carried out to 
a maximum of five levels for topography and reflectance images. The number of topography 
or reflectance images that select each detail coefficient is demonstrated in Fig. 3. The 3% 
(1615) most commonly selected coefficients from the topography and reflectance images 
were chosen to be processed by KPCA. 

The KPCA was carried out using different scale parameters in Gaussian kernels and 
various numbers of most significant topography and reflectance features were used to search 
for the optimal feature space that provides the best diagnostic performance on the training 
data set. Twenty-six topography features and three reflectance features from the KPCA were 
selected. These features account for 83% and 32% variance in topography and reflectance 
wavelet features respectively. The PCA that combines these topography and reflectance 
features produced twenty-two features that accounted for 95% variance of twenty-nine 
topography and reflectance features. 
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Fig. 4. The scatter plot of the first two most significant features of the ONH. 

As an illustration, the two most significant features of ONHs are presented in a plot in Fig. 
4 with corresponding ONH images superimposed. These features, although objectively 
extracted, indicate important morphological characteristics of the ONHs. For instance, the 
ONHs on the left side of this plot tend to be smaller and more crowded by vessel structure, 
than those on the right. Note that many images with appearance of peripapillary atrophy [54] 
are grouped in the top-right of the feature space. Of course these features were extracted 
automatically without the knowledge of diagnosis. 

Figure 5 shows the same scatter plot but only with the images of eyes having a clinical 
diagnosis. Note that the clinical diagnosis is only for visualization purpose and is not used in 
the feature extraction. It can be observed that in each feature, the glaucoma and healthy 
images distribute differently but still have overlapping. The two individual features, once 
combined in a two-dimensional space show better evidence of separation between ONHs 
from eyes with a clinical diagnosis of glaucoma (red symbols towards top-right) and healthy 
eyes (blue symbols towards bottom-left). The classification model acts intuitively in the same 
manner: it ‘aggregates’ the separation in individual features and carries out classification in 
multivariate feature space. 
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Fig. 5. The scatter plot of the first and second most significant features from those images with 
a diagnosis in the training data set. The axes from KPCA and PCA are in arbitrary units. The 
histogram of glaucoma (red) and healthy (blue) data in each feature are shown on the top and 
right of the scatter plot. Note that the diagnosis information was unknown during feature 
extraction and it is only displayed here for visualization and demonstrative purpose. 

5.2 Diagnostic performance 

The diagnostic performance of SAS was compared with that of MRA and GPS classification 
made directly from HRT software on an independent data set (Nottingham) not used in the 
model development. ROC curves were calculated for the three classifiers in Fig. 6. 

The MRA gives an overall global classification of the ONH as ‘within normal limits’, 
‘outside normal limits’ or on ‘borderline’ and does not output a continuous score about 
abnormality. Therefore, the ROC curve of MRA cannot be produced as a continuous line. 
Instead, two points on the ROC curve were calculated when the ONHs on borderline were 
classified as glaucoma or visually healthy respectively and were plotted in Fig. 6. MRA is 
more sensitive but less specific when the ONHs on borderline are classified as abnormal. 

It is important to note that the inbuilt GPS was not able to reliably process 97 out of 888 
test ONHs (~11%) due to algorithm failure and could not produce classification in at least one 
sector. The total AuROC, normalized partial AuROC and their 95% CI of SAS and GPS are 
given in Table 1. The AuROC of MRA are not calculated as the sensitivity and specificity 
could not be continuously estimated for MRA. The median (95% CI) difference of AuROC 
curve between SAS and GPS is 0.10 (0.05, 0.16). The bootstrap technique for estimating the 
differences assumes that the data is related (different classifiers are applied to the same data). 
It therefore indicates a statistically significant difference in the AuROC curves. The median 
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(95% CI) difference of the partial AuROC between SAS and GPS was 0.16 (0.09, 0.20). 
Moreover, at a specificity of 85% (the highest specificity for MRA) the sensitivities (95% CI) 
of MRA, GPS and SAS are shown in Table 1. The sensitivity of SAS is significantly better 
than those of MRA and GPS. 

 

Fig. 6. ROC curve for SAS, MRA and GPS analysis. The unity line corresponds to random 
classification. 

 

Fig. 7. ROC curve of SAS derived from the topography, reflectance and combined features. 

It is worth noting that MRA and GPS are based on the topography of the ONH only. 
Conversely, SAS uses features from both topography and reflectance images of ONHs. 
Although only three reflectance features were selected in SAS, they provide an improved 
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diagnostic performance. This is shown in the ROC curve in Fig. 7. The reflectance features, 
are relatively poor at identifying glaucomatous abnormality on their own but are able to 
‘boost’ the diagnostic performance with combined features especially in the region with low 
false positive rate. 

Table 1. Statistics (median [95% CI]) of ROC analysis. 

 Total AuROC 
Normalized partial 

AuROC 
Sensitivities at 

specificity of 85% 
SAS 0.89 (0.83, 0.93) 0.59 (0.50, 0.68) 77% (73%, 83%) 
GPS 0.80 (0.75, 0.87) 0.42 (0.32, 0.51) 61% (55%, 66%) 
MRA − − 65% (61%, 69%) 

 

Fig. 8. Examples of localized abnormality maps for ten eyes with a clinical diagnosis of 
glaucoma. The topography, reflectance and abnormality map are displayed for each ONH. 
SAS scores are given in the lower left corner of each topography image. Difference between 
the measured topography and reference healthy topography is represented by a heat map. The 
transparency of the abnormality heat map corresponds to the amount of change and a scale is 
shown on the margin of the abnormality map. 

5.3 Localization of abnormality 

With the proposed technique, local abnormality in the ONH was represented by the difference 
between the reference healthy topography and the measured topography; it is presented as a 
heat map superimposed on the reflectance image. ONHs from ten eyes from the validation 
data set, all with a clinical diagnosis of glaucoma, are shown in Fig. 8; these images are 
demonstrated with the local abnormality map showing the sites of likely change in the ONH. 
Examples (i) and (ii) show typical damage on the superior and inferior regions of relatively 
large and small ONHs respectively. Example (iii) shows an ONH with advanced and diffused 
defect and (iv) shows an example with local loss. It is noteworthy that in examples (v) to (x), 
MRA indicates neuroretinal rim area not to be outside normal limits for the overall or any of 
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the sectorial classification. Examples (v) and (vi) show moderate or at least small distortions 
highlighted by red clusters despite low overall SAS values. Examples (vii) to (x) show small, 
crowded or tilted ONHs that are also misdiagnosed by MRA analysis (false negatives). 

6. Discussion 

We have presented a new method for detecting abnormality in optic nerve head images 
acquired using scanning laser tomography (HRT). The technique uses a feature extraction 
analysis based on application of a shift-invariant wavelet packet and KPCA. In contrast to the 
methods used on HRT software the technique derives objective morphological characteristics 
of ONHs that can be used to derive a probability of abnormality (SAS). This analysis can be 
performed without the manual contouring of ONH margin as required by the MRA and 
should lead to more repeatable and reproducible classification, although we have not tested 
that here. Our technique is advantageous because it means an ONH can be interpreted 
automatically without any user or expert processing. It has been widely reported that the 
contouring process leads to high levels of intra-observer variability [17, 55]. This is also an 
advantage of the GPS that is available in the commercial software. However, the shape model 
that underpins the calculation of GPS often fails to fit the measured data - this results in an 
algorithm failure and the software cannot produce a classification decision. In our validation 
experiment a significant number of eye (11%) could not be processed by the GPS; this figure 
is consistent with the literature [19]. 

Our results provide some statistical evidence that SAS has better overall diagnostic 
precision than MRA and GPS when we considered differences in AuROC curves. Also SAS 
appeared to offer better estimates of sensitivity to detect a glaucomatous ONH at higher levels 
of specificity. This is encouraging from a clinical point of view because any detection tool for 
glaucoma must maintain reasonable sensitivity at high specificity because of the prevalence 
of the disease. Moreover, SAS requires no manual input and the classification algorithm 
never fails to produce a result - these are clear practical advantages for our method compared 
to those techniques currently used by the HRT software. Of course, glaucoma diagnosis and 
management does not rely on assessment of the ONH alone: information on risk factors, 
intraocular pressure and visual fields are also used. The HRT cannot be used in isolation to 
diagnose glaucoma. Our method has simply been shown to be statistically better than the 
techniques currently used by the commercially available software on the HRT. Moreover, 
whether the improvement by the proposed method translates to clinically significant gains in 
the diagnostic precision of classifying abnormal ONHs must be the subject of a further study 
that must follow appropriate standards [56]. For example, in the current study we defined 
glaucomatous ONHs to be from eyes with a clinical diagnosis of glaucoma that may have 
varied across the three centers. 

Our method took advantage of building a model from a large number of eyes from 
different clinical centers. It is well established that if modeling and testing is done on the 
same data then model estimates of effects will be overly optimistic. Our validation 
experiment used a data set that was completely independent of that used to develop the 
model. This data was used to compare relative diagnostic performance between our new 
method and the diagnostic tools available on the HRT software. An even larger test data set 
could be used to further validate the differences we have seen in our experiment. 

MRA and GPS classify neuroretinal rim area at six pre-defined sectors. Our technique can 
yield an abnormality map that provides pixel level quantification of distortion or abnormality 
of the ONH. The procedures involved in the feature extraction analysis are invertible, 
meaning that an ONH in the feature space can be converted back to the original image space 
by a reverse wavelet packet and pre-image technique. The clinical relevance of examining the 
ONH at this level of resolution with these images will need to be tested but we speculate that 
a clinician might usefully interpret these localized abnormalities in conjunction with other 
images or changes in the visual field. Moreover, this method can potentially be used as a tool 
for quantifying change in time series measurements of ONHs. Currently the so-called 
topographic change analysis (TCA) [57, 58] is used for this purpose in the HRT software. 
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TCA compares the most recently acquired images with a set of baseline images, with change 
flagged at super-pixels. Our method could be adapted similarly and as good baseline images 
are acquired then these could be used instead of the reference healthy ONH that our feature 
space method realizes. 

There are some technical limitations to our method because of limitations in the images 
themselves. For instance, the convolution involved in the wavelet packet cannot be reliably 
estimated on the border of the image. With the image size (256-by-256 pixel), the maximum 
level of wavelet packet is set as five levels because a wider mother wavelet in the higher level 
of wavelet packet makes an unreliable border in convolution too large with regard to the 
image size. 

In summary we have proposed an analytical method for extracting topographic features 
that can be used for classifying ONH abnormality. The method proposed is wholly adaptable 
to other types of imaging of the ONH and is not restricted to those images captured by HRT. 
For instance, the method of ‘reversing’ the damage to infer the ONH in its healthy status 
could be applied to the ONH topographic images acquired by the rapidly developing spectral-
domain optical coherence tomography (SD-OCT), forming a classification and abnormality 
localization method for the SD-OCT ONH images. Moreover, recent anatomic findings with 
SD-OCT have challenged the basis and accuracy of current methods for neuroretinal rim 
evaluation [59, 60]. Identification of the Bruch’s membrane opening as a marker for the outer 
border of neuroretinal rim suggests a clinical step-change in how the ONH topography can be 
delineated using SD-OCT [61]. The algorithms for this improved image acquisition of the 
ONH using the SD-OCT are just becoming clinically available. Our analytical methods have 
the potential to be used with these reconstructions of the ONH and this awaits further study. 
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