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Abstract: In order to promote the development of the portable, low-cost 
and in vivo cancer diagnosis instrument, a miniature laser Raman 
spectrometer was employed to acquire the conventional Raman spectra for 
breast cancer detection in this paper. But it is difficult to achieve high 
discrimination accuracy. Then a novel method of adaptive weight k-
local hyperplane (AWKH) is proposed to increase the classification 
accuracy. AWKH is an extension and improvement of K-local 
hyperplane distance nearest-neighbor (HKNN). It considers the features 
weights of the training data in the nearest neighbor selection and local 
hyperplane construction stage, which resolve the basic shortcoming of 
HKNN works well only for small values of the nearest-neighbor. 
Experimental results on Raman spectra of breast tissues in vitro show 
the proposed method can realize high classification accuracy. 
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1. Introduction 

Breast cancer is one of the major causes of female death. Data show 20% global increase in 
breast cancer from 2008 to 2012 [1]. In 2014, about 62570 cases of breast carcinoma in situ 
will be newly diagnosed in the United States. Breast cancer accounts for 15% of all female 
cancer deaths, which is second only to lung cancer in the United States [2]. In China, the 
incidence has also increased significantly in recent years, and ranked first in the female 
malignant tumors in some large cities, such as Beijing, Shanghai and Tianjin [3]. 

Since the early diagnosis is the key factor to increase the rate of survival time for the 
cancer patients, it is important to develop fast, less invasive, objective methods for the 
diagnosis of breast cancers. Raman spectroscopy, as a molecular spectroscopy, could detect 
the changes of molecular structure and composition. During the tumor formation, significant 
changes occurred in the structure and concentration of the main bimolecular, which constitute 
the cell and tissue, such as carbohydrates, lipids, proteins and nucleic acids. Because these 
changes occur earlier than the clinical symptoms appearance and tumor medical imaging 
detection, molecular spectroscopy has the potential to early diagnosis of the tumor [3–7]. Due 
to the characters such as sharp peaks, freeing from the interference of water, fewer samples 
required and without sample chemical treatment etc, Raman spectroscopy is promising to 
realize real-time and noninvasive detection at the molecular level. 

Raman spectroscopic diagnosis technology of breast cancers has been developed recently. 
There are many investigations focus on Fourier Transform Raman spectroscopy (FTRS), 
Confocal Raman microspectroscopy (CRS), Resonance Raman spectroscopy (RRS) and 
Surface-enhanced Raman spectroscopy (SERS) for breast cancer diagnosis [8–15]. Using 
them, the Raman spectra could be acquired with lower fluorescence, higher spatial resolution, 
but these technologies generally use a large-sized Raman spectrometer or a large desktop 
microscope, which is also expensive and difficult to achieve clinical portable diagnosis. For 
Conventional Raman spectroscopy (RS), the Raman spectrometers tend to be small-sized, 
portable and low cost. Combined with the optical fiber probe, RS has promise for in vivo and 
in situ cancer detection. While due to the strong fluorescence background interference and 
low spectral signal-to-noise ratio, it is difficult to achieve high discrimination accuracy by 
using the miniature Raman spectrometer. Therefore, it is significant to investigate the 
discrimination analysis method for high classification accuracy. A few studies in [12–14] use 
the miniature Raman spectrometer to collect the RS spectra to diagnose breast cancers. 

In this paper, a novel algorithm of adaptive weight K-local hyperplane (AWKH) is 
investigated for classification of the acquired Raman spectra from cancerous and normal 
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human breast tissues. It is an extension and improvement of K-local hyperplane distance 
nearest-neighbor (HKNN) [16]. HKNN performs well only for small values of the number of 
nearest-neighbor ( K ) because it assumes that every single feature of the training data is 
equally relevant for the nearest neighbors selection [17]. The feature weights measure the 
importance of each single feature in classification. For AWKH, the feature weight is 
estimated by using the ratio of the between-group to with-group sums of squares for the data 
assigned to the given classes. Then the higher weight corresponds to a feature with better 
class separation capability. In the paper, AWKH realized higher accuracy for the 
discrimination of the acquired Raman spectra compared to the classifiers support vector 
machine (SVM) and HKNN. 

2. Materials and methods 

2.1 Tissue specimens 

A total of sixteen breast tissue samples were obtained from female patients in Peking 
University Third Hospital, including four normal tissues and twelve cancerous tissues. The 
mean age was 56 years with the oldest 88 years and the youngest 33 years. After the spectra 
were acquired, the samples were stored in liquid nitrogen and sent for the frozen section 
pathological diagnosis as the reference in the spectral analysis. The experimental procedures 
were approved by the Medical Ethics Committee of Peking University Third Hospital and the 
patients. 

2.2 Raman spectral measurements 

In order to promote the development of a clinical portable, low-cost and in vivo cancer 
diagnosis instrument, an Ocean Optics QE65Pro miniature fiber optic Raman spectrometer at 
a 785nm excitation wavelength was employed to acquire the conventional Raman spectra. 

Specimens without any chemical treatment were frozen using liquid nitrogen and 
maintained until thawed at room temperature. They were placed in the glass slide for Raman 
spectral measurement. The integration time is 30s. All the spectra were acquired in the 
wavelength range of interest, from 700 to 2000 cm−1. In the Spectral acquisition process, 
every sample was measured at different pathology locations, and for every same pathology 
location three spectra were measured and averaged in order to reduce the noise level. Each 
Raman spectrum was labeled according to the pathological diagnosis. In order to reflect the 
experiment results objectively, the sample spectra were collected on the same environmental 
conditions and the experiments were conducted two days. 75 Raman spectra (16 normal and 
59 cancerous) obtained in the first day and 58 Raman spectra (18 normal and 40 cancerous) 
obtained in the second day. 

2.3 Software 

All the examined preprocessing and classification algorithms were implemented and tested in 
Matlab 2009a. In addition, the SVM toolbox was used. 

2.4 Preprocessing algorithm 

The spectra collected using Ocean Optics QE65Pro Raman spectrometer yielded noise and 
fluorescence background. The noise was removed by wavelet transform and the fluorescence 
background was removed by fitting the smoothed spectra to a third-order polynomial 
function. 

The wavelet transform [18, 19] was introduced as follows: 

The discrete wavelet transform is defined as: 
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Step 3: reconstruct the spectrum signal, according to the J layer low frequency coefficient 
and the high frequency coefficient after threshold processing from 1th to the jth layer. 

2.5 AWKH algorithm 

Adaptive weight k-local hyperplane (AWKH) algorithm is an improvement and extension of 
K-local hyperplane distance nearest-neighbor (HKNN) algorithm. HKNN [16] performs well 
only for small values of K , it sufferers from bias for data with high dimensions, AWKH 
resolves the problem by considering the features weights when calculate the distance between 
the test set samples and hyperplane. The feature weight is estimated by using the ratio of the 
between-group to with-group sums of squares. Feature weights are computed such that higher 
weight corresponds to a feature with better class separation capability. And the bias when 
HKNN is used in high dimensions is settled by considering the shape of the neighborhood 
around the test sample. Raman spectra of breast tissues contain some specific peaks which are 
beneficial to classification but not common exist. Since AWKH only considers the 
relationship between samples, so when dealing with Raman spectroscopy, AWKH can obtain 
high accuracy. 

The specific process of the AWKH algorithm can be summarized as follows: 
Suppose the training set consists of L samples with J classes. Each training sample 

consists of d input features
1
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where jx denotes the jth component of the grand class centroid and cjx denotes the jth 

component of class centroid of class c; ( )I  denotes the indicator function, it 

equals1when iy c= , otherwise, it equals 0; ijx denotes the jth component of the ith training 

sample. 
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Step 2: calculate the weighted Euclidean distance metric D between ix and q , the formula 

is as follows: 
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Step 3: according to the Euclidean distance D , select K nearest neighbors of class c 
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Step 4: calculate the minimum distance between q and ( )
c

LH q : 
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where λ  is the regularization parameter, which avoids α being too large. Solve the 

equation
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∂
, then achieve

c
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Step 5: the class label of q is assigned as: clabel(q)=argmin ( )cJ q . 

3. Results and discussion 

133 spectra were obtained by Raman spectroscopic method with the scan region 700 cm−1 to 
1800 cm−1. Each Raman spectrum was labeled according to the pathological diagnosis. 

3.1 Spectral preprocessing 

Symmlet-5 wavelet filter and four-decomposition scale were adopted to reduce noise, and 
then a third-order polynomial was adopted to remove fluorescence background and baseline 
corrected. The mean Raman spectra of normal and cancerous tissues before preprocessing and 
after preprocessing are shown respectively (see Fig. 1, Fig. 2). 
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Fig. 1. Typical Raman spectra of breast tissues before preprocessing. 
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Fig. 2. Typical Raman spectra of breast tissues after preprocessing. 

The raw spectra of normal tissues showed evident peaks (see Fig. 1), while, there are only 
small peaks in the raw spectra of cancerous tissues because of the effect of the noise and the 
fluorescent background. 
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The quality of Raman spectra has improved greatly after data preprocessing (see Fig. 2). 
The Raman spectra are smoother, the Raman peaks of normal and cancerous tissues are 
distinguished, and especially the differences between Raman spectra of normal and cancerous 
tissues are more pronounced after preprocessing. 

The essence of the wavelet transform is that project the spectrum signal in the wavelet 
basis function, decompose the spectrum signal in time domain and frequency domain, get the 
wavelet approximation coefficients and detail coefficients. Where, the detail signal reflects 
the local nuances, and most of them are noise in the high frequency region. So wavelet 
transform could be used to remove the noise of the Raman spectra, and optimize the quality 
of spectra. 

The Raman peaks of normal tissues and cancerous tissues (see Fig. 2) are displayed. The 
spectral profile of normal tissues is indicative of higher levels of lipids. In comparison, the 
spectral profile of pathological tissues indicates the presence of more proteins and fewer 
lipids. The spectral features (1078, 1305, 1447, 1653 and 1747cm−1) of normal tissues 
indicate a dominance of lipids. The spectral profiles of cancerous tissues (1083, 1278, 
1453cm−1) indicate the presence of proteins. The peak intensities of 1305, 1653, 1747 cm−1 in 
cancerous tissues decrease obviously compared to those in normal tissues. The peak position 
representing protein molecules appears at 1278 cm−1 in cancerous tissues, while almost 
disappears in normal tissues. These changes reflect that during tumor formation, the protein, 
lipid and nucleic acid molecular changed in the configuration, component and quantity, and 
the proportion of proteins significantly increased against to the greatly reduced lipids 
proportion. This observation corroborates earlier studies [20, 21]. As is well known, 
cancerous tissues contain more proteins relative to normal tissues and adipose–rich 
noncancerous, which is the basis of spectroscopic diagnosis. 

Specific assignments of individual peaks could be found in Table 1. 

Table 1. Peak positions and assignments of Breast Tissueα 

Peak position(cm−1) Major assignment 

1078 C-C or C-O stretch (lipid) 

1278 Amide III(C-N stretch) (protein) 

1305/1308 Amide III, α-helix, C-C str&C-H (protein) 

1447 Scissoring mode of methylene (CH2) (lipid) 

1453 CH2 deformation (protein) 

1653 lipid 

1747/1750 C = O stretch (lipid) 

α See [8, 18, 22]. 
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3.2 Statistical analysis 

The whole data set was split into a training set and test set, and each classifier was learned on 
the training set and applied on the test set. 

The 75 Raman spectra (16 normal and 59 cancerous) obtained in the first day after 
preprocessing were selected as the training set, and the 58 Raman spectra (18 normal and 40 
cancerous) obtained in the second day after preprocessing were selected as the test set. 

The training set and the test set are normalized to zero mean and unit variance first, then, 
classify the test set by AWKH、HKNN and SVM classifier respectively. The two parameters 
K and λ for AWKH were set as [1:20] and 10 respectively. The parameter K for HKNN in 
reference [16] was set as [1:20]. Then, select the result with highest testing accuracy as the 
optimized classification result. 

The experimental results are summarized in Table 2 and Table 3. Here, the optimized 
parameters for AWKH are 4K = , 10λ = , and 3K = for HKNN. Table 2 displays the 
classification results of test set with AWKH. Table 3 shows the results obtained with three 
different methods. 

Table 2. Classification results of test set with AWKH 

 
The predicted cancerous 

number (T + ) 
The predicted normal number 

(T-) 

The real cancerous number (D +) 39 1 

The real normal number (D-) 1 17 

Table 3. Comparison of the results for the AWKH, HKNN, SVM 

Method Sensitivity (%) Specificity (%) Positive* (%) Negative** (%) Accuracy (%) 
AWKH 97.5 94.4 97.5 94.4 96.6 
SVM 92.5 88.9 94.9 84.2 91.4 

HKNN 92.5 77.8 90.2 82.4 87.9 
* The positive predictive value, ** the negative predictive value 

In Table 3, it can be seen that AWKH achieves the highest testing accuracy among three 
different classifiers. Especially, AWKH is much more accurate than SVM classifier. 

The classification accuracy with different K value using AWKH and HKNN is shown 
respectively (see Figs. 3 and 4). In wake of the increase of K value, the accuracy with HKNN 
decreased (see Fig. 4). The accuracy of AWKH stays stable for K value between 4 and 20 (see 
Fig. 3). 
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Fig. 3. The classification accuracy at different K value for AWKH. 
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Fig. 4. The classification accuracy at different K value for HKNN. 

The optimal value of the parameter λ depends on K . For small K , the model can achieve 
good results without λ . With larger K , the model tends to be various and more complex, so 
that the regularization can help to improve the performance. In contrast, HKNN does not have 
the advantage. 

The feature weights measure the importance of every single feature of spectral data. 
HKNN performs well only for small values of K because it assumes that every single feature 
is equally relevant for classification which may yield unsatisfactory performance when data 
with high dimensions. AWKH computes the ratio of the between class to the within class 
squared distances to estimate the features weights. The nearest neighbors are selected by the 
weighted Euclidean distance between the test sample and training set. The resulting nearest 

#209903 - $15.00 USD Received 9 Apr 2014; revised 21 May 2014; accepted 23 May 2014; published 27 Jun 2014
(C) 2014 OSA 1 July 2014 | Vol. 5,  No. 7 | DOI:10.1364/BOE.5.002435 | BIOMEDICAL OPTICS EXPRESS  2443



neighbors are then associated with the most discriminant feature space. The local hyperplance 
constructed based on these neighbors is more convincing which leading to the classification 
result directly. With small K , HKNN may be well formulated, but with large K , HKNN will 
suffer the unsatisfactory performance. Moreover, for the higher dimensionality of the 
extracted features, the more points from each class are needed to accurately estimate the 
localized model, hence K should be larger. AWKH considers the features weights make it 
fairly robust on the choice of K , which is generally a desirable characteristic of a K-local 
learning algorithm. 

Then the data processing was conducted two more times. The 58 Raman spectra obtained 
in the second day were selected as the training set, and the other spectra obtained in the first 
day were selected as the test set. Table 4 shows the results obtained by three different 
methods with optimal parameters. 

Table 4. Comparison of the results for the AWKH, HKNN, SVM 

Method Sensitivity (%) Specificity (%) Positive* (%) Negative** (%) Accuracy (%) 
AWKH 94.9 93.8 98.2 83.3 94.7 
SVM 93.2 93.8 98.2 78.9 93.3 

HKNN 88.1 87.5 96.3 66.7 90.7 
* The positive predictive value, ** the negative predictive value 

Finally, the total 133 Raman spectra were split into two data sets randomly for ten times, 
Every time 80 Raman spectra after preprocessing were selected as the training set, and the 
other 53 Raman spectra after preprocessing were selected as the test set. Then the algorithms 
were examined. Table 5 shows the average accuracy of the ten experiments using three 
different methods with optimal parameters. 

Table 5. Comparison of the results for the AWKH, HKNN, SVM 

Method Accuracy (%) 

AWKH 95.8 

SVM 92.4 

HKNN 87.6 

From the experimental results above, AWKH shows great advantage for the classification 
of Raman spectra of breast tissues. 

Although the two algorithms have similar mechanisms for AWKH and HKNN, AWKH 
performed better in the experiment. The data sets with irrelevant or redundant features like 
Raman spectra data can be classified more accurate with AWKH because it considers the 
features weights. For SVM, kernel function needs to be used for every single sample and the 
choices of the parameters for the kernel is important, which are complex and unstable. But it 
is worth noting that, SVM can perform well when the parameters are optimal and it has 
advantage for the large-scale test set. 

4. Conclusions 

As evident from the studies conducted so far, it is quite feasible to classify normal and 
pathological breast tissues optically. The ultimate goal of optical spectroscopy methods is to 
develop clinical portal, low-cost and in vivo cancer diagnosis instrument. For such 
applications, a miniature laser Raman spectrometer with a 785nm excitation was employed to 
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acquire the conventional Raman spectra of breast tissues. Then the preprocessing procedures 
were investigated. At the end of the paper, a novel classification algorithm AWKH is 
proposed. This novel algorithm improves the HKNN method by stressing the feature weight. 

The experimental results show that the proposed classification algorithm is an effective 
method. AWKH achieved high classification accuracy even when the strong fluorescence 
background interference and low spectral signal-to-noise ratio were obtained by the miniature 
laser Raman spectrometer. It is helpful to promote the development of clinical portable 
diagnosis technology and a desire to apply the technology in vivo breast cancer diagnosis 
using Raman spectroscopy in the later research. 
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