Skip to main content
. 2014 Jul 17;10(7):e1003522. doi: 10.1371/journal.pcbi.1003522

Figure 6. Theoretical predictions: Fano factor constancy of synaptic conductances.

Figure 6

(a) The standard deviation of the membrane potential is approximately constant as a function of firing rate for networks with (full line) and without (dashed) probabilistic synapses. (b) The mean excitatory (red) and inhibitory (green) conductances increase linearly with firing rate. (c) The Fano factor of the synaptic conductances (FF, variance to mean ratio) for a network with probabilistic synapses is constant as a function of the firing rate (full lines), indicating that the variance of the conductance is proportional to the mean conductance. The FF of the synaptic conductances for a network without probabilistic synapses is lower than in the previous case and strongly decreases with firing rate (dashed lines). For all panels, open circles correspond to mean values and black dots correspond to sampled neurons. Error bars represent s.e.m.