
Muscle-Specific SIRT1 Gain-of-Function Increases Slow-
Twitch Fibers and Ameliorates Pathophysiology in a
Mouse Model of Duchenne Muscular Dystrophy
Angeliki Chalkiadaki, Masaki Igarashi, Armiyaw Sebastian Nasamu, Jovana Knezevic, Leonard Guarente*

Glenn Laboratory for the Science of Aging and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America

Abstract

SIRT1 is a metabolic sensor and regulator in various mammalian tissues and functions to counteract metabolic and age-
related diseases. Here we generated and analyzed mice that express SIRT1 at high levels specifically in skeletal muscle. We
show that SIRT1 transgenic muscle exhibits a fiber shift from fast-to-slow twitch, increased levels of PGC-1a, markers of
oxidative metabolism and mitochondrial biogenesis, and decreased expression of the atrophy gene program. To examine
whether increased activity of SIRT1 protects from muscular dystrophy, a muscle degenerative disease, we crossed SIRT1
muscle transgenic mice to mdx mice, a genetic model of Duchenne muscular dystrophy. SIRT1 overexpression in muscle
reverses the phenotype of mdx mice, as determined by histology, creatine kinase release into the blood, and endurance in
treadmill exercise. In addition, SIRT1 overexpression also results in increased levels of utrophin, a functional analogue of
dystrophin, as well as increased expression of PGC-1a targets and neuromuscular junction genes. Based on these findings,
we suggest that pharmacological interventions that activate SIRT1 in skeletal muscle might offer a new approach for
treating muscle diseases.
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Introduction

Skeletal muscle has a central function in body stature and

motility, as well as in energy storage, energy consumption, and

whole-body metabolism. The various skeletal muscle groups

consist of heterogeneous and specialized myofibers and are

responsive and highly adaptable to contractile activity, nutrient

availability, and hormones [1]. The different fiber types are

characterized by specific biochemical, physiological, and meta-

bolic parameters, which determine the function, size, metabolism,

and fatigue resistance of each muscle group [2]. The myofibers are

classified in two major types–the slow- and fast-twitch– with

distinct contractile and metabolic properties. The slow-twitch

myofibers contain mainly the type I myosin heavy chain isoform,

are rich in mitochondria, and exhibit oxidative metabolism. The

fast-twitch myofibers contain type IIa, IId/x, and IIb myosin

heavy chain isoforms, are mainly glycolytic, perform quick

contractions, and are required for movements involving strength

and speed, but they are easily fatigued [3] [4] [5]. Most muscles

consist of a mixture of fiber types, and the ratio is altered by

exercise, or various systemic conditions, such as diabetes, cancer,

and aging [2]. Calorie restriction, fasting, and exercise induce

changes in skeletal muscle by transforming the myofibers from

glycolytic to more oxidative forms rendering them more resistant

to fatigue and atrophy [2] [6,7]. Conversely, aging is associated

with skeletal muscle atrophy, characterized by a progressive loss of

oxidative fibers [6].

SIRT1, the mammalian orthologue of the yeast NAD+-

dependent protein deacetylase Sir2 (silent information regulator

2), is expressed in various mammalian tissues, including skeletal

muscle, and serves as a sensor and regulator of the energetic status

of the cell, counteracting metabolic and age-related diseases [8,9].

Under conditions of low glucose availability and increased energy

demands, such as fasting, calorie restriction, and exercise, SIRT1

is induced in skeletal muscle and mediates mitochondrial

biogenesis and fatty acid oxidation by deacetylating and

regulating the activity of the transcriptional coactivator perox-

isome-proliferator-activated receptor-gamma coactivator-1 a
(PGC-1a) or forkhead box O (FOXO) transcription factors

[10,11,12]. PGC-1a is a master regulator of mitochondrial gene

expression [13], and transgenic overexpression has been shown

to activate switching from fast-twitch to slow-twitch oxidative

fibers in skeletal muscle, provide resistance to electrical

stimulated fatigue [14] and protect from atrophy and metabolic

disease during aging [15,16] [17]. In aged muscle, NAD+ levels

and SIRT1 activity decline, with a subsequent decrease in the

expression of mitochondrial-encoded genes and mitochondrial

homeostasis [18].

PGC-1a overexpression in skeletal muscle also ameliorates the

phenotype of the X-linked recessive, muscle wasting disease
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Duchenne muscular dystrophy (DMD) [19]. DMD arises from a

frameshift mutation in the gene dystrophin and leads to rapid

degeneration of heart and skeletal muscle, causing disability and

death by adolescence or young adulthood [20]. The dystrophic

muscle is characterized by massive degeneration and necrosis of

the damaged myofibers. It was observed that in DMD patients the

fast-twitch fibers are more prone to damage, whereas the slow-

twitch are relatively spared [21]. Active muscle regeneration–

manifested by centrally localized nuclei– initially compensates for

the degeneration but progressively the damaged muscle is replaced

by connective and adipose tissues [22]. In normal muscle,

dystrophin and the dystrophin-associated protein complex form

a link between the intracellular actin based cytoskeleton and the

extracellular matrix. Dystrophin is enriched at the junctions of

muscle fibers and tendons and at the junctions of motor neurons

with the muscle fibers (neuromuscular junction) [23,24]. Lack of

dystrophin protein leads to membrane destabilization and

increased fragility, especially during intense contractile activity.

PGC-1a stabilizes the weak cell membrane of the dystrophic

myofiber by activating the neuromuscular junction (NMJ) gene

program [19]. A strategy proposed to alleviate DMD involves the

upregulation of utrophin [25], an autosomal ortholog of dystro-

phin, which partially compensates for dystrophin absence

[26,27,28]. Because utrophin is expressed at higher levels in

slow-twitch, oxidative fibers, it has been proposed that some of the

effect of PGC-1a gain-of-function may be because it triggers

conversion of fast-twitch to slow-twitch fibers [29].

In the current study, we explored the role of the metabolic

regulator SIRT1 in skeletal muscle physiology under normal

conditions and in the DMD model. We show that increased levels

of SIRT1 in skeletal muscle drive a switch to slow-twitch fibers,

reduce the muscle atrophy gene expression program, and

ameliorate the DMD phenotype. In contrast, deletion of muscle

SIRT1 exerts relatively minor phenotypes, suggestive of the

presence of redundant mechanisms.

Results

Transgenic expression of SIRT1 in skeletal muscle induces
a switch to slow-twitch oxidative fibers

To study the role of SIRT1 in skeletal muscle physiology and in

disease conditions, we generated skeletal muscle-specific SIRT1

overexpressing mice. The transgenic (Tg) mice were generated by

injecting oocytes with a construct containing the cDNA of mouse

SIRT1 under the control of muscle creatine kinase promoter

(MCK) [30]. We obtained three lines that all express higher than

wild-type (WT) levels of SIRT1 in skeletal muscle: Tg-4140

(Figure 1A and Figure S1A), Tg-4145, and Tg-4311 (Figure
S1B and Figure S1C). In most of the studies below we used the

Tg-4140 line, unless otherwise indicated. The Tg mice were born

to Mendelian ratios and their gross phenotype appeared normal.

Whole-body weight of Tg-4140 mice was comparable to WT

sibling controls, but muscle weight and muscle/body weight ratio

were approximately 40% reduced compared to WT controls

(Figure 1B). Histological analysis of WT and Tg-4140 gastroc-

nemius muscle by hematoxylin and eosin staining showed that Tg-

4140 muscle had normal appearance (Figure 1C). We measured

the cross-sectional area of WT and Tg-4140 fibers of gastrocne-

mius muscle and observed that Tg-4140 fibers were significantly

smaller than WT (Figure 1C), which could explain why their

muscles weigh less.

To examine whether SIRT1 overexpression in skeletal muscle

activates the muscle wasting gene program, resulting in increased

proteasomal degradation and therefore smaller muscles, we

measured the expression levels of atrophy genes by quantitative

RT-PCRs, under basal and atrophy-inducing conditions. We

observed that under basal conditions the expression levels of the

two E3 ubiquitin ligases, hallmarks of skeletal muscle atrophy,

MAFBx and MuRF1, were actually reduced in Tg-4140 muscles

compared to WT (Figure 2A). To induce muscle atrophy we

subjected WT and Tg-4140 mice to either 24 hr fasting

(Figure 2A) or 3 days of disuse induced by denervation after

sectioning the sciatic nerve (Figure 2B). We verified that MAFBx
and MuRF1 genes were strongly induced in WT muscles under

both conditions of atrophy (Figure 2A and 2B), as previously

described [31,32]. However, the induction of the atrophy markers

in Tg-4140 was significantly less compared to WT (Figure 2A
and 2B). It was previously shown that the FOXO transcription

factors are induced in fasting atrophy and are necessary for the

atrophy gene program in skeletal muscle [33,34]. So we tested

whether SIRT1 overexpression affects the induction of FOXO

transcription factors after fasting, and we observed that FOXO1
was not induced in Tg-4140 muscle compared to WT after 24 hr

fasting, whereas the induction of FOXO3 mRNA was only weakly

affected (Figure 2C). In conclusion, SIRT1 overexpression does

not induce muscle wasting; on the contrary, it counteracts the

atrophy gene program.

A role of SIRT1 in skeletal muscle physiology was suggested by

the induction of its activity during exercise and calorie restriction

[10,11,35]. Both conditions drive fiber type switch, mitochondrial

biogenesis, and more oxidative metabolism [3]. So overexpression

of SIRT1 could alter the composition of fibers, inducing the

formation of more oxidative, slow-twitch fibers, which are smaller

in size. To test this hypothesis, we measured the expression levels

of various fiber type markers by quantitative RT-PCRs in

gastrocnemius muscle of WT and Tg-4140 mice. We observed a

switch towards more oxidative slow-twitch type in Tg-4140 muscle

as manifested by an increase in markers of slow-twitch and more

oxidative fibers (troponin slow) and a concomitant decrease in fast-

twitch and more glycolytic myofibers (troponin fast) (Figure 3A).

In addition, we measured the relative gene expression levels of

myosin heavy chain isoforms, and we observed an increase in

MHC-I and in the isoforms of MHC-2 (2x and 2A) associated with

slow-twitch oxidative fibers [36] and a concomitant reduction in

MHC-2B isoform associated with fast-twitch fibers [36]

(Figure 3B). Histological analyses of gastrocnemius/soleus muscle

Author Summary

Skeletal muscle has a central role in body posture, mobility
and whole-body metabolism. SIRT1 is an enzyme ex-
pressed in skeletal muscle, as well as in most mammalian
tissues, and has been shown to sense metabolic cues from
the environment and mediate changes in these tissues,
counteracting age and metabolic diseases. Here we
generated and studied mice that express high levels of
SIRT1 in skeletal muscle. We found that increased levels of
SIRT1 in skeletal muscle led to gene expression changes
similar to those that normally occur with endurance
exercise. We also observed that SIRT1 overexpression
counteracts muscle atrophy, a hallmark of aging muscle,
and the muscle degenerative disease Duchenne muscular
dystrophy (DMD). DMD is a debilitating disease caused by
a mutation in the structural protein dystrophin. SIRT1
overexpression ameliorated the pathophysiology of DMD
disease in a mouse model. Our results offer the hope that
drugs that constitutively activate the enzymatic activity of
SIRT1 might be used to cure muscle degenerative diseases.

SIRT1 Counteracts Skeletal Muscle Diseases
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Figure 1. SIRT1 overexpression in skeletal muscle. (A) Western blot in tissue protein homogenates prepared from WT and transgenic
gastrocnemius muscle (line 4140). All following experiments were performed using line Tg-4140, unless otherwise indicated. (B) Gastrocnemius
muscle weight (of both hindlimbs) and muscle/body weight ratio of WT and Tg-4140 mice at 10 weeks of age (n = 7–10). (C) Representative H&E
staining of gastrocnemius muscle from WT and transgenic mice and quantification of fiber size (arbitrary units) (700–1000 fibers/genotype, n = 3).
Data are expressed as mean +/2 s.e.m. ***p,0.001 by two-tailed unpaired Student’s t test.
doi:10.1371/journal.pgen.1004490.g001

Figure 2. SIRT1 overexpression inhibits the expression of muscle atrophy genes. (A) Relative mRNA levels of MAFBx and MuRF-1 atrophy
genes in gastrocnemius muscle of WT and Tg-4140 mice fed or fasted for 24 hrs (n = 3–5). (B) Relative mRNA levels of MAFBx and MuRF-1 atrophy
genes in gastrocnemius muscle of WT and Tg-4140 mice, which underwent mock surgery (control) or were denervated for 3 days (n = 3–5). (C)
Relative mRNA levels of FOXO1 and FOXO3 transcription factors in gastrocnemius muscle of WT and Tg-4140 mice fed or fasted for 24 hrs (n = 3–5).
Data are expressed as mean +/2 s.e.m. *p,0.05, **p,0.01, ***p,0.001 by two-tailed unpaired Student’s t test.
doi:10.1371/journal.pgen.1004490.g002
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enzymatically stained for the mitochondrial enzyme succinate

dehydrogenase (SDH) (Figure 3C and Figure S2A) and

cytochrome oxidase (COX) (Figure 3D and Figure S2B), as

well as measurements of mitochondrial DNA content

(Figure 3E), verified that transgenic muscle contains more

oxidative fibers and increased mitochondrial activity. In addi-

tion, myosin ATPase activity staining showed a 50% increase in

type I fibers in transgenic gastrocnemius muscle (Figure S2C).

Consistent with the fiber type switch and increased mitochon-

drial content and activity, genes encoding transcription factors

associated with increased mitochondrial gene expression, such as

PGC-1a, TFAM, and PPARa, mitochondrial proteins such as

cytochrome c and some of the electron transport chain proteins

were upregulated in Tg-4140 muscle (Figure 3F, 3G, and 3H),

as well as in muscle of Tg-4311 and Tg-4145 mice (Figure
S1D, S1E, S1F and S1G). PGC-1a is central in the regulation

of mitochondrial biogenesis in skeletal muscle, and SIRT1 is

known to activate its transcriptional activity by deacetylation

[12,37]. We examined whether PGC-1a protein is differentially

acetylated in Tg-4140 muscle by immunoprecipitation followed

by western blot (Figure 3I). First, we observed that PGC-1a
protein is induced in Tg-4140 muscle (Figure 3I), consistent

with the increased RNA levels we observed, and a previously

reported positive autoregulation of PGC-1a promoter by PGC-

1a protein [38]. Immunoprecipitation of PGC-1a from WT and

transgenic muscle followed by western blot with anti-acetyl

lysine antibodies showed that the levels of acetylation of PGC-

1a in transgenic muscle are reduced, in agreement with the

known role of SIRT1 in PGC-1a acetylation status and

activity (Figure 3I). From these data we concluded that

SIRT1 overexpression results in fiber type switch towards

more oxidative metabolism and increased mitochondrial

activity.

Skeletal muscle consumes large amounts of energy in the body

by glucose uptake. Because SIRT1 has a central role in energy

sensing and metabolic regulation, we tested whether SIRT1

overexpression in the muscle affects whole-body glucose homeo-

stasis and response to fasting. We found that fed and fasting

glucose and insulin levels in the blood of Tg-4140 mice were

comparable to WT controls (Figure 4A). In addition, we

measured the levels of genes that are known to respond to fasting

and we found that Tg-4140 muscle adapts to fasting as efficiently

as WT (Figure 4B, 4C, 4D, 4E, 4F, and 4G). Previous

evidence showed that there is an interdependence of the energy

sensor AMP-activated protein kinase (AMPK) and SIRT1 in

skeletal muscle, with AMPK upregulating the NAD+ levels and

SIRT1 activity upon fasting or exercise [10,11,39]. We examined

whether overexpression of SIRT1 alters AMPK activity under

basal fed conditions by western blot analysis using phospho-

specific antibodies, and we observed that the phosphorylation

status of the catalytic subunit AMPKa at Thr172, which is

required for AMPK activation, remains unaltered in Tg-4140.

The mammalian target of rapamycin (mTOR) is also a central

energy sensor and functions to balance nutrient availability and

cell growth [40]. In Tg-4140 muscle, the phosphorylation of the

downstream target of mTOR pathway p70 S6 kinase (p70-S6K) at

Thr389 is increased, suggesting that mTOR activity is induced

(Figure 4H). Future studies will further investigate the mechanism

by which SIRT1 overexpression leads to activation of mTOR

pathway. In conclusion, overexpression of SIRT1 in skeletal

muscle drives the formation of more oxidative fibers but cannot

alter basal whole-body glucose homeostasis and the response to

fasting.

Loss of SIRT1 from skeletal muscle does not affect
oxidative metabolism or myofiber composition

To examine whether SIRT1 activity is necessary for oxidative

metabolism and fiber type composition in skeletal muscle, we

generated muscle-specific SIRT1 knockout (MckKO) mice, by

crossing mice expressing the cre recombinase under the control of

MCK promoter [41] to mice carrying the floxed SIRT1 allele

[42]. The loxP sites flank the exon 4 of SIRT1 gene, which

corresponds to the catalytic domain of the enzyme, so cre-

mediated excision results in a smaller SIRT1 protein that lacks its

enzymatic activity (Figure 5A). The appearance and weight of

MckKO muscle were comparable to WT controls (Figure 5B).

Blood glucose levels were slightly elevated in MckKO mice, but

insulin levels were normal (Figure 5C). Expression levels of

troponin isoforms (Figure 5D), myosin heavy chain isoforms

(Figure 5E), and mitochondrial transcription factors (Figure 5F)

did not differ between WT and MckKO muscles by quantitative

RT-PCRs. Thus SIRT1 loss from skeletal muscle did not affect the

expression levels of mitochondrial transcription factors or myofiber

type composition, which is in agreement with recently published

papers [43,44]. We challenged MckKO and WT sibling controls

by forced treadmill exercise to exhaustion. We employed a mild

running protocol and we observed no difference between WT and

MckKO mice. However, when we used a more intense exercise

protocol we observed that MckKO mice were exhausted faster

and ran shorter distance compared to WT mice (Figure 5G). A

possible explanation for intolerance in exercise is defective

mitochondrial function. To further investigate this possibility, we

measured the expression levels of mitochondrial- and nuclear-

expressed electron transport chain (ETC) genes, and we found that

the mitochondrial- but not the nuclear- expressed ETC genes are

slightly but significantly reduced in MckKO muscle (Figure 5H
and 5I). Our observations are consistent with recent findings

showing that SIRT1 regulates mitochondrial-encoded ETC genes

[18] and suggest that MckKO mice are more sensitive to fatigue

after acute exercise, possibly because of reduced expression of

mitochondrial-expressed ETC genes.

Prompted by our observations that SIRT1 overexpression

results in lower expression levels of atrophy genes, under basal and

atrophy inducing conditions, we examined the levels of these genes

in gastrocnemius muscle from MckKO mice. Quantitative RT-

PCR analyses showed that absence of SIRT1 did not affect the

levels of MAFBx and MuRF1 under basal or atrophy-inducing

conditions (Figure S3A and S3B). In summary, deletion of

SIRT1 in muscle exerts only a subtle phenotype under the

conditions tested.

SIRT1 transgenic mice express high levels of utrophin
and neuromuscular junction genes in skeletal muscle

Several lines of evidence led us to hypothesize that SIRT1

overexpression in muscle could counteract the muscular degener-

ative disease DMD. For example, it is known that slow-twitch,

oxidative fibers are less prone to degeneration compared to fast-

twitch glycolytic fibers [21]. As SIRT1 transgenic muscles contain

more slow-twitch fibers (Figure 3), transgenic mice might be

protected from muscle degeneration. In addition, slow-twitch

fibers express higher levels of utrophin, the functional analogue of

dystrophin that could compensate to some extent for dystrophin’s

loss in DMD. In addition, SIRT1 overexpression leads to

increased levels of PGC-1a, known to protect against DMD

[19]. We thus crossed SIRT1 Tg-4140 and Tg-4145 mice to mdx

mouse model [45] (Figure 6A), which is a severe model of

Duchenne muscular dystrophy. We measured body and muscle

SIRT1 Counteracts Skeletal Muscle Diseases
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weights of all four groups (WT, Tg, mdx, and mdx;Tg). Our

results showed that SIRT1 overexpression in mdx muscle reverses

the characteristic muscle hypertrophy of dystrophic muscle caused

by vigorous regeneration following muscle damage and necrosis

(Figure 6B). We tested whether overexpression of SIRT1 in the

mdx mouse also leads to increased levels of PGC-1a, as in the WT

genetic background, and we observed that both RNA (Figure 6C)

and protein levels (Figure 6A) are increased. To verify that

SIRT1 overexpression affects the expression levels of utrophin, we

performed quantitative RT-PCR analysis and we observed that

utrophin levels are increased more than 2-fold in gastrocnemius

muscle of Tg-4140, 1.5 fold in mdx;Tg-4140 (Figure 6D), and 1.5

fold in Tg-4145 (Figure S4A) mice.

PGC-1a, a bona-fide target of SIRT1, stimulates the neuro-

muscular gene program (NMJ), as a coactivator of GABP

transcription factor, and counteracts the abnormalities of NMJ

morphology in a muscular dystrophy model [19]. Thus, we

examined whether SIRT1 overexpression in skeletal muscle also

leads to increased levels of NMJ genes, and we observed that

transcripts of the acetylcholine receptor subunits, and components

of the acetylcholine signaling, were all expressed at dramatically

higher levels in Tg-4140 and mdx;Tg-4140 muscles compared to

WT and mdx muscles, respectively (Figure 6E, 6F, 6G, 6H, 6I,
and 6J). Intriguingly, mdx mice themselves showed a modest

upregulation of the three AchR genes and Erbb1 gene– but not the

other NMJ genes– compared to WT, in agreement to previous

Figure 3. SIRT1 overexpression drives fast-to-slow fiber type switch. (A) Relative mRNA levels of troponin slow and troponin fast genes in
gastrocnemius muscle of WT and Tg-4140 mice (8–10 weeks old, n = 3–5). (B) Relative mRNA levels of myosin heavy chain 2B, 2x, 2A, and I in
gastrocnemius muscle of WT and Tg-4140 mice (n = 3–5). (C) Representative SDH activity staining of cross-sections of gastrocnemius/soleus (upper
panels) and gastrocnemius (lower panel) muscle of WT and Tg-4140 mice. Quantitation is shown in Figure S2A. (D) Representative COX activity
staining of cross-sections of gastrocnemius muscle of WT and Tg-4140 mice. Quantitation is shown in Figure S2B. (E) Relative mitochondrial DNA of
indicated genes normalized to actin (10–12 weeks old, n = 4). (F) Relative mRNA levels of TFAM, PPARa, PPARd, and PGC-1a in gastrocnemius muscle of
WT and Tg-4140 mice (n = 3–5). (G) Relative mRNA levels of mitochondrial-expressed electron transport chain (ETC) genes in gastrocnemius muscle of
WT and Tg-4140 mice (10–12 weeks old, n = 3–5). (H) Relative mRNA levels of nuclear-expressed electron transport chain (ETC) genes in
gastrocnemius muscle of WT and Tg-4140 mice (10–12 weeks old, n = 3–5). (I) Lysine acetylation levels of PGC-1a (IB: ac-Lys) in protein extracts
prepared from gastrocnemius muscle of WT and Tg-4140 and immunoprecipitated by PGC-1a specific antibodies (IP: PGC-1a). Data are expressed as
mean +/2 s.e.m. *p,0.05, **p,0.01, ***p,0.001 by two-tailed unpaired Student’s t test.
doi:10.1371/journal.pgen.1004490.g003
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observations [46], possibly representing a compensatory response

of acetylcholine receptors in mdx mice.

SIRT1 overexpression in skeletal muscle alleviates the
phenotype of muscular dystrophy

Our observations that SIRT1 transgenic muscle consists of

higher percentage of slow-twitch oxidative myofibers and express

high levels of utrophin and NMJ genes prompted us to test

whether SIRT1 overexpression protects from muscular dystrophy.

We first measured the levels of serum creatine kinase (CK), a

hallmark of damaged muscles, in young adult WT, Tg, mdx, and

mdx/Tg mice. As expected, we observed a large increase in CK

activity in mdx mice compared to WT mice. Critically, we found

that overexpression of SIRT1 in Tg-4140 and Tg-4145 mice

resulted in a ,50% reduction of CK enzymatic activity in the mdx

genetic background (Figure 7A and Figure S4B). Another

hallmark of dystrophic muscles is the large percentage of myofibers

with centrally localized nuclei, indicative of regenerating tissue

after damage, and large areas of infiltrating macrophages and

fibroblasts. We compared the percentage of non-muscle cells

infiltrating the gastrocnemius muscle in mdx;Tg-4140 muscle with

mdx muscle, by hematoxylin and eosin staining. The mdx muscle

contains approximately 8% of fibrotic tissue, whereas SIRT1

overexpression in mdx;Tg-4140 mice resulted in a reduction of

fibrosis to about 1% (Figure 7B). To further assess the extent of

damaged myofibers, we injected intraperitoneally Evans Blue dye,

which only penetrates and stains damaged cells. Evans Blue dye

stained ,25% of myofibers of mdx mice, whereas overexpression

of SIRT1 in mdx;Tg-4140 mice reduced the stained myofibers to

,8% (Figure 7C).

Figure 4. SIRT1 overexpression in skeletal muscle does not affect the fasting response. (A) Blood glucose and plasma insulin levels in fed
or after overnight fasting of WT and Tg-4140 mice (8–10 weeks old, n = 6–10). (B–G) Relative mRNA levels of GLUT4, PDK4, mitofusin, mCPT1, ERRa, and
MCAD genes in gastrocnemius muscle of fed and fasted WT and Tg-4140 (10–12 weeks old, n = 4). (H) Western blot analyses in gastrocnemius muscle
protein extracts prepared from gastrocnemius muscle of WT and Tg-4140 (10–12 weeks old). Data are expressed as mean +/2 s.e.m. *p,0.05, **p,

0.01, ***p,0.001 by two-tailed unpaired Student’s t test.
doi:10.1371/journal.pgen.1004490.g004

SIRT1 Counteracts Skeletal Muscle Diseases
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Individuals with DMD have weak muscles, which are quickly

exhausted. Similarly, the mdx mice when forced to run are

fatigued much faster compared to WT controls, as the mdx fibers

are more vulnerable [47]. To assess the effects of SIRT1

overexpression on physical performance of mdx mice, we

challenged mdx and mdx;Tg-4140 mice with treadmill exercise

to exhaustion. While the mdx mice ran on average 100 m, the

mdx;Tg-4140 mice ran significantly more, ,250 m, a distance

comparable to WT mice (Figure 7D). Overall, these results

suggest that SIRT1 overexpression in skeletal muscle dramatically

improves the pathophysiology of the muscular dystrophic pheno-

type.

Next, we asked whether SIRT1 levels decline in mdx muscle.

We assessed SIRT1 RNA and protein levels, and we observed that

SIRT1 is expressed in WT and mdx muscle at comparable levels

(Figure 7E). Since NAD+ is a rate limiting co-substrate for

SIRT1, it is possible that NAD+ levels are altered in mdx muscle

affecting SIRT1 activity. We assessed the expression levels of the

enzymes in the NAD+ biosynthetic pathway and we observed that

NAMPT (mitochondrial), NMNAT1 (nuclear), and NMNAT3
(mitochondrial), are reduced in mdx muscle, suggesting that NAD+

levels are also reduced (Figure 7F, 7G, 7I). We did not observe

any significant difference in NMNAT2 (Golgi) (Figure 7H). We

directly measured NAD+ levels in WT and mdx muscle and we

observed that the dystrophic muscle has lower levels of NAD+, in

agreement to the reduced expression levels of NAD+ biosynthetic

enzymes (Figure 7J). Interestingly, we observed that SIRT1

overexpression induces the expression of NAMPT, NMNAT1,

and NMNAT3 in WT and mdx genetic background. Conversely,

overexpression of SIRT1 results in moderate reduction of cellular

NAD+ levels in WT genetic background, probably caused by

increased consumption. The increase in NAD+ synthetic enzymes

may be a compensatory mechanism for increased NAD+

consumption in transgenic mice. Overall our results show that

Figure 5. Loss of SIRT1 from skeletal muscle does not affect fiber type composition but reduces the capacity for endurance
exercise. (A) Western blot in tissue protein homogenates prepared from WT and muscle-specific SIRT1 knockout (MckKO) gastrocnemius muscle.
The arrow shows the faster migrating SIRT1 protein lacking the catalytic domain (DExon4). Relative RNA levels of SIRT1 transcript using SIRT1 exon 4
specific primers. (B) Gastrocnemius muscle weight (of one hindlimb) of WT and MckKO mice at 10 weeks of age (n = 7–10). (C) Blood glucose and
plasma insulin levels in WT and MckKO mice after overnight fasting (8–10 weeks old, n = 6–10). (D) Relative mRNA levels of troponin slow and
troponin fast genes in gastrocnemius muscle of WT and MckKO mice (8–10 weeks old, n = 3–5). (E) Relative mRNA levels of myosin heavy chain 2B, 2x,
2A, and I in gastrocnemius muscle of WT and MckKO mice (n = 3–5). (F) Relative mRNA levels of TFAM, PPARa, and PGC-1a in gastrocnemius muscle of
WT and MckKO mice (n = 3–5). (G) Distance run in treadmill exercise by WT and MckKO mice (12–14 weeks old, n = 10–12). (H) Relative expression
levels of mitochondrial-expressed electron transport chain (ETC) genes (10–12 weeks old, n = 4). (I) Relative expression levels of nuclear-expressed ETC
genes (10–12 weeks old, n = 4). Data are expressed as mean +/2 s.e.m. *p,0.05, **p,0.01, ***p,0.001 by two-tailed unpaired Student’s t test.
doi:10.1371/journal.pgen.1004490.g005
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the expression levels of NAD+ biosynthetic enzymes and NAD+

concentration are reduced in dystrophic muscle, suggesting that

the activity of NAD+-dependent enzymes, such as SIRT1, is

downregulated. In SIRT1 transgenic mice, the reduced NAD+

likely corresponds to increased SIRT1 activity and protein levels.

Finally, we examined whether absence of SIRT1 worsened the

dystrophic phenotype of mdx mice by crossing them to mice

lacking SIRT1 from muscle (MckKO). We found that CK activity

in mdx;MckKO mice was similar to mdx sibling controls (Figure
S4C), as was the endurance of these mice when subjected to

treadmill exercise to exhaustion (Figure S4D). In agreement with

these results, SIRT1 loss does not affect the expression levels of

neuromuscular junction genes in WT or mdx mice (Figure S4E
and S4F). These results are consistent with the observations that

knocking out SIRT1 in WT genetic background exerts only a

subtle phenotype on mice fed normal chow diet [39,43,44,48].

Discussion

SIRT1 is an important metabolic regulator in mammals; it is

induced under energy-limiting conditions in various tissues,

including skeletal muscle, and deacetylates and regulates the

activity of target proteins [8,49]. Here we generated SIRT1

muscle overexpressing and knockout mice to study the role of

SIRT1 in skeletal muscle in vivo. Our data show that SIRT1

overexpression results in a fast-to-slow fiber type switch that

translates into an increase in oxidative fibers. These observations

correlate with higher expression of PGC-1a in SIRT1 Tg muscle

and are in agreement with previous observations made with PGC-

1a transgenic mice. A number of studies have shown that SIRT1

deacetylates and positively regulates PGC-1a in cell culture

systems and under fasting or exercise conditions in vivo
[10,12,37]. Overexpression of PGC-1a in skeletal muscle regulates

mitochondrial biogenesis, activates oxidative metabolism, drives

fast-to-slow fiber switch [14] and protects from muscular atrophy

and muscular dystrophy [15,19]. Moreover, muscle specific PGC-

1a KO mice showed a shift from oxidative type I and IIa toward

type IIx and IIb muscle fibers, reduced endurance capacity in

treadmill exercise and increased muscle damage [50,51].

However, recent papers showed that muscle PGC-1a is

dispensable for voluntary exercise-induced mitochondrial biogen-

esis [52,53], pointing that there are other unidentified factors and

pathways that regulate mitochondrial biogenesis during exercise.

Similarly, our data regarding SIRT1 loss-of-function from skeletal

muscle show that SIRT1 is dispensable for the expression of

mitochondrial genes, fiber type composition in sedentary animals,

Figure 6. SIRT1 overexpression in skeletal muscle of WT and mdx mice induces the expression of neuromuscular junction genes
and utrophin. (A) Western blot in tissue protein homogenates prepared from gastrocnemius muscles of mdx and mdx mice crossed to Tg-4140
(mdx;TG) (B) Body weight, gastrocnemius muscle weight (of both hindlimbs) and muscle/body weight ratio of WT, Tg-4140, mdx, and mdx;Tg-4140
mice at 10–14 weeks of age (n = 5–10). (C–J) Relative mRNA levels of PGC-1a, utrophin, acetylcholine receptor (AchR) subunits a, d, e, and Musk, Erbb1,
and Raspn in gastrocnemius muscle of WT, Tg-4140, mdx, and mdx;Tg-4140 mice (n = 3–5). Data are expressed as mean +/2 s.e.m. *p,0.05, ** p,
0.01, ***p,0.001 by two-tailed unpaired Student’s t test.
doi:10.1371/journal.pgen.1004490.g006
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changes in fiber composition after voluntary exercise, and atrophy,

suggesting that redundant mechanisms regulate these pathways in

skeletal muscle. However, we did find that loss of muscle SIRT1

resulted in a modest increase in blood glucose levels and less

endurance of mice to treadmill exercise.

Importantly, knocking out SIRT1 in muscle was shown to affect

the response to calorie restriction [48], a condition known to

increase sirtuin protein levels and activity in muscle [35,54]. Thus

the properties of SIRT1 transgenic mice may mimic calorie-

restricted mice, and are consistent with the fact that they display

an increase in mitochondrial biogenesis and of slow-twitch

oxidative fibers. Most dramatically, our transgenic mice are

protected against tissue degeneration in a model of DMD, as

detailed below.

DMD is a debilitating disease affecting 1 in 3,500 boys

worldwide resulting in muscle degeneration and death. To date,

effective pharmacological treatment for DMD is not available. In

this study we showed that increased levels of SIRT1 in skeletal

muscle of the mouse model of DMD, mdx, ameliorates the disease

phenotype and improves muscle physiology and function. It was

previously shown that the transcriptional coactivator PGC-1a
improves the disease phenotype by regulating the NMJ genes,

inducing utrophin expression, and increasing the percentage of

oxidative fibers [19,29], which are more resistant to degeneration.

SIRT1 muscle-specific overexpressing mice phenocopy the PGC-

1a transgenic mouse: they express high levels of markers of slow-

twitch myofibers, high levels of utrophin, and high levels of NMJ

genes. Importantly, SIRT1 reverses the phenotype of the mdx

mouse as evidenced by intact muscles, less creatine kinase activity

in the blood, and better performance in treadmill exercise.

Interestingly, we observed that the expression levels of NAD+

biosynthetic enzymes and NAD+ concentration are reduced in

dystrophic muscle, suggesting that the activity of NAD+-dependent

enzymes, such as SIRT1, is downregulated. The reduction in

Figure 7. SIRT1 overexpression in skeletal muscle alleviates the muscular dystrophic phenotype of mdx mouse. (A) Serum creatine
kinase activity in WT, Tg-4140, mdx, mdx;Tg-4140 mice (8–10 weeks old, n = 10). (B) Representative H&E staining of gastrocnemius muscle from mdx
and mdx;Tg-4140 mice and quantification of damaged area (10 sections/genotype, n = 3). (C) Representative Evans Blue staining of gastrocnemius
muscle from mdx and mdx;Tg-4140 mice and quantification of staining area (10 sections/genotype, n = 3). (D) Distance run in treadmill exercise by
WT and Tg-4140 mice, and mdx and mdx;Tg-4140 mice (12–14 weeks old, n = 10–12). (E) Relative mRNA levels of SIRT1 in gastrocnemius muscle of WT
and mdx mice (10–12 weeks old, n = 4). Western blot analysis of protein extracts prepared from gastrocnemius muscle of WT and mdx mice. (F–I)
Relative mRNA levels of NAMPT, NMNAT1, NMNAT2, and NMNAT3 in gastrocnemius muscle from WT, Tg-4140, mdx and mdx;Tg-4140 mice (n = 3–5).
(J) NAD+ levels in gastrocnemius muscle from WT, Tg-4140, mdx and mdx;Tg-4140 mice (n = 3–5). Data are expressed as mean +/2 s.e.m. *p,0.05,
**p,0.01, ***p,0.001 by two-tailed unpaired Student’s t test.
doi:10.1371/journal.pgen.1004490.g007
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NAD+ levels in SIRT1 Tg mice likely reflects increased SIRT1

activity (which degrades NAD+) in these mice, and is consistent

with the suppression of phenotypes in mdx SIRT1 overexpressing

mice.

Since SIRT1 can be activated by small molecules [55], our

results offer promise for pharmacological interventions that can

activate SIRT1 and alleviate the dystrophic phenotype in patients.

In support of this notion, a recently published paper showed that

resveratrol, a first generation SIRT1 activator [56], improved

some of the dystrophic phenotypes such as myofiber loss and

fibrosis but did not have any effects on the high levels of CK

activity and therefore muscle injuries [57]. It will be important to

test newer, more potent SIRT1 activators in mdx mice.

Interestingly, another study in a zebrafish model of muscular

dystrophy showed that treatment with NAD+ or precursors

improved the dystrophic phenotype [58]. Our data, along with

these observations, suggest that treatment with potent and specific

activators of SIRT1 can offer new therapeutic approaches for

treating muscular dystrophies, and perhaps sarcopenia.

Materials and Methods

Animals
All animal procedures were performed according to Massachu-

setts Institute of Technology Committee on Animal Care. Mice

were fed standard rodent chow diet and housed in a facility with

12 hr light and dark cycles. To generate muscle-specific transgenic

mice (TG), the mouse SIRT1 cDNA was cloned between the

4.8 kb promoter of muscle creatine kinase (MCK) [30] and the

human growth hormone (hGH) polyadenyltion sequence. Mouse

oocytes of the C57BL/6J genetic background were injected with

this construct by the MIT transgenic facility. The SIRT1 muscle-

specific knockout mice (MckKO) were generated by crossing mice

being homozygous for the floxed SIRT1 allele [42] with mice

expressing the cre recombinase under the control of MCK
promoter [41]. Both strains were in C57BL/6J genetic back-

ground. The mdx mice (C57BL/10ScSn-Dmdmdx/J) [45] were

purchased from the Jackson Laboratories, and were crossed to

SIRT1 Tg or MckKO mice to generate mdx;TG and

mdx;MckKO mice. To control for variations in the genetic

backgrounds all experiments were performed comparing siblings

of same gender (either mdx vs. mdx;Tg or mdx;F/F vs.
mdx;cre;F/F).

Treadmill exercise
The treadmill exercise was performed using a motor-driven

treadmill (Columbus Instruments). The running protocol used for

Tg and MckKO mice, following 3 days of acclimatization at

15 m/min, was 5 min at 13 m/min (warm up) and then the speed

was increased 1 m/min every minute up to 18 m/min and kept

constant for 30 min. After 30 min, the speed was increased 1 m/

min. The mice were considered exhausted and removed when

they sat on the shocker for more than 20 sec. The running

protocol we used for mdx mice was milder to allow the mice to

run. Following 3 days of acclimatization at 8 m/min for 10 min,

the mice ran at 4 m/min for 5 min (warm up) and the speed was

increased 1 m/min every min up to 9 m/min. The mice were

considered exhausted when they sat for more than 20 sec.

Blood measurements
Plasma insulin levels were measured after overnight fasting

using ELISA kit (Millipore). Blood glucose levels were measured

using OneTouch strips and glucometer. To measure serum

creatine kinase (CK) levels, the blood was collected in heparinized

tubes, serum was isolated, and CK activity was assayed using the

DiscretPak Creatinine Kinase Reagent Kit (Catachem) according

to manufacturer’s protocol.

Histological analyses and Evans Blue staining
Gastrocnemius muscle was fixed with formaldehyde, paraffin-

embedded, cross-sectioned and stained with hematoxylin and

eosin following standard procedures. The slides were analyzed

using standard light microscopy. The fibers’ sizes (25–30/image)

were counted in 10 randomly chosen images/mouse (250–300

fibers/mouse) using ImageJ software (NIH). For SDH, COX, and

ATPase stainings, gastrocnemius/soleus muscles were snap frozen

in isopentane/liquid N2, cryo-sectioned, and stained for enzymatic

activities using standard procedures. The stained fibers were

counted and their percentage of total number of fibers was

calculated (150–200 total fibers/image, 5 images/mouse, 3 mice/

genotype). Evans Blue dye (1% solution) was injected intraperi-

toneally (1% volume/gr of body weight), and the mice were

euthanized 16 hr later. Gastrocnemius muscle was dissected and

embedded in OCT compound, frozen, and cross-sectioned. The

slides were also stained with DAPI to visualize nuclei. Evans Blue

and DAPI staining were analyzed by fluorescence microscopy.

The area of Evans Blue stained fibers was counted in 10 randomly

chosen images/mouse by ImageJ and the percentage of total area

was calculated.

RNA, mitochondrial DNA, protein analyses, NAD+

measurements
RNA was isolated from gastrocnemius muscle using Trizol

(Invitrogen) and further purified using RNeasy mini columns

(Qiagen). Quantitative PCR analysis was performed on a Light-

Cycler 480II (Roche) using iQ SYBR Green Supermix (Biorad).

For mitochondrial DNA quantitation, mitochondrial and genomic

DNA was isolated from gastrocnemius muscle after Proteinase K

and RNAse A digestion followed by phenol-chloroform extraction.

Quantitative PCR analyses were performed using mitochondrial

and genomic specific primers.

Skeletal muscle protein homogenates were prepared following

standard procedures. The antibodies used were against SIRT1 N-

term (Millipore, #07-131), actin (Chemicon, MAB1501), AMPKa
(Cell Signaling, #2603), phospho-AMPKa (Cell Signaling,

#2531), p70 S6 Kinase (Cell Signaling, #2708), phospho-p70

S6 Kinase (Cell Signaling, #9205), Gapdh (Sigma, G9545), PGC1

(Santa Cruz, sc-13067), acetylated lysine (ImmuneChem,

ICP0380). The immunoprecipitation was performed using the

Pierce Direct-IP Kit (Thermo Scientific) according to manufac-

turer’s instructions.

NAD+ was measured in freshly isolated gastrocnemius muscle

using EnzyChrom kit from BioAssay Systems following the

manufacturer’s protocol.

Supporting Information

Figure S1 SIRT1 transgenic lines. (A) Relative protein levels of

SIRT1 in gastrocnemius muscle of WT and Tg-4140 line

quantified by Image J (n = 4). SIRT1 protein is expressed at

approximately ,100 fold in Tg-4140 muscle compared to WT. (B)

Western blot in tissue protein homogenates prepared from WT

and SIRT1 transgenic lines 4311 and 4145. (He: heart, Qu:

Quadriceps, Ga: gastrocnemius, So: soleus, L: liver.) (C)

Gastrocnemius muscle weight (from one hindlimb) and muscle/

body weight ratio of Tg-4311 and Tg-4145 mice at 8–10 weeks of

age (n = 4–6). (D–G) Relative mRNA levels of cytochrome C,

TFAM, PGC-1a, and UCP3 in gastrocnemius muscle of WT,
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SIRT1 Tg-4311, and Tg-4145. Data are expressed as mean +/2

s.e.m. *p,0.05, **p,0.01, ***p,0.001 by two-tailed unpaired

Student’s t test.

(PDF)

Figure S2 SIRT1 overexpression drives fast-to-slow fiber type

switch. (A) Quantitation of fibers stained for SDH activity in WT

and Tg-4140 muscle shown in Figure 3C (n = 3 animals, 500–

1000 fibers counted/animal). (B) Quantitation of fibers stained for

COX activity in WT and Tg-4140 muscle shown in Figure 3D
(n = 3 animals, 500–1000 total fibers counted/animal). (C)

Representative myosin ATPase activity staining at indicated pH

of cross-sections of gastrocnemius muscle of WT and Tg-4140

mice (106 magnification). Type I fibers are stained light in

pH 10.2, and dark in pH 4.31. Type II fibers are stained dark in

pH 10.2 and light in pH 4.31 (n = 3 animals, 500–1000 fibers

counted/animal).

(PDF)

Figure S3 Loss of SIRT1 from skeletal muscle does not affect

the expression of atrophy genes under basal or atrophy-inducing

conditions. (A) Relative mRNA levels of MAFBx and MuRF-1
atrophy genes in gastrocnemius muscle of WT and MckKO mice

fed or fasted for 24 hrs (n = 3–5). (B) Relative mRNA levels of

MAFBx and MuRF-1 atrophy genes in gastrocnemius muscle of

WT and MckKO mice, which underwent mock surgery (control)

or were denervated for 3 days (n = 3–5). Data are expressed as

mean +/2 s.e.m.

(PDF)

Figure S4 SIRT1 Tg-4145 exhibits protective signs against

DMD, and SIRT1 loss from skeletal muscle does not affect the

muscular dystrophic phenotype of mdx mouse. (A) Relative

mRNA levels of utrophin in gastrocnemius muscle of Tg-4145

line (8–10 weeks old, n = 3) (B) Serum creatine kinase activity in

mdx, mdx Tg-4145 mice (14 weeks old, n = 6–10). (C) Serum

creatine kinase activity in mdx and mdx;MckKO mice (8–10

weeks old, n = 10). (D) Distance run in treadmill exercise by mdx

and mdx;MckKO mice (12–14 weeks old, n = 10–12). (E) Relative

mRNA levels of acetylcholine receptor (AchR) subunits a, d, e,
Musk, Erbb, and Raspn in gastrocnemius muscle from WT and

MckKO mice (n = 3–5), and (F) mdx and mdx;MckKO mice

(n = 3–5). Data are expressed as mean +/2 s.e.m. *p,0.05, n.s:

non-significant.

(PDF)
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