
Microneedle Enhanced Delivery of Cosmeceutically
Relevant Peptides in Human Skin
Yousuf H. Mohammed1,2,3, Miko Yamada1, Lynlee L. Lin1, Jeffrey E. Grice3, Michael S. Roberts3,

Anthony P. Raphael1, Heather A. E. Benson2, Tarl W. Prow1*

1 Dermatology Research Centre, The University of Queensland, School of Medicine, Translational Research Institute, Brisbane, Queensland, Australia, 2 School of Pharmacy,

CHIRI-Biosciences, Curtin University, Perth, Western Australia, Australia, 3 Therapeutics Research Centre, The University of Queensland, School of Medicine, Princess

Alexandra Hospital, Brisbane, Queensland, Australia

Abstract

Peptides and proteins play an important role in skin health and well-being. They are also found to contribute to skin aging
and melanogenesis. Microneedles have been shown to substantially enhance skin penetration and may offer an effective
means of peptide delivery enhancement. The aim of this investigation was to assess the influence of microneedles on the
skin penetration of peptides using fluorescence imaging to determine skin distribution. In particular the effect of peptide
chain length (3, 4, 5 amino acid chain length) on passive and MN facilitated skin penetration was investigated. Confocal laser
scanning microscopy was used to image fluorescence intensity and the area of penetration of fluorescently tagged
peptides. Penetration studies were conducted on excised full thickness human skin in Franz type diffusion cells for 1 and 24
hours. A 2 to 22 fold signal improvement in microneedle enhanced delivery of melanostatin, rigin and pal-KTTKS was
observed. To our knowledge this is the first description of microneedle enhanced skin permeation studies on these
peptides.
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Introduction

Peptides have important applications in modulating of skin cell

proliferation, cell migration, inflammation, angiogenesis, melano-

genesis, and protein synthesis and regulation [1]. With variations

in amino acid sequence, number of amino acids and derivatives,

the future of peptide based cosmeceuticals is bright [2]. There are

three main categories of cosmeceutical peptides: signal peptides,

carrier peptides, and neurotransmitter-affecting peptides. The

active ingredient must be delivered to the target in stable form and

be able to have the desired biological effect in vivo.

The most prevalent and widely used single peptide is lysine-

threonine-threonine-lysine-serine (KTTKS) found on type I

procollagen. Melanostatin is a novel pseudo-tripeptide with a

molecular formula of C19H25N5O5 and is structurally related to

feldamycin. Melanostatin inhibited melanin formation in Strepto-

myces bikiniensis NRRLB-1049 and B16 melanoma cells. Rigin is

a four amino acid peptide that is can reduce inflammation.

Specifically, rigin has been shown to down regulate IL-6 [3,4].

The transdermal peptide delivery has attracted interest due to

the many biological advantages associated with including avoid-

ance of the first-pass metabolism and sustained therapeutic action.

However the stratum corneum barrier has been the greatest

challenge for transdermal peptide delivery researchers. Thus,

many approaches have been attempted to overcome the skin

barrier and enhance the transdermal delivery of peptides for local

and systemic effects. The major approaches for enhancing

transdermal delivery are physical enhancers, vesicles particulate

systems and chemical enhancers. The use of microneedles has

been used to overcome the stratum corneum barrier. Microneedles

are minimally invasive devices that can drug into or through the

skin barrier. Microneedles are generally shorter than 1 mm in

length and can breach the stratum corneum barrier. One

challenge researchers working in this field face is skin elasticity

[5]. Hence microneedle length, manner of insertion and applica-

tion speed govern the shape and size of the pore formed [6].

The amount of time the pores stay open has been an area of

constant debate. Bal et al. claim a fast closure of the pores by using

a confocal laser scanning microscopy (CLSM) to visualise the

amount of a fluorescent dye present in the pores. Visualisation

using CLSM is one way to obtain information on morphological

parameters of the pores and to monitor the behaviour of a pore

and the dye over time. Bal et al. reported a quick closure of the

pores as there was a strong decrease of the dye present at the skin

surface after 10–15 min [6]. Banks et al. utilized transepidermal

water loss (TEWL) measurements after microneedle treatment and

microscopic visualization to determine pore lifetime. They also

measured skin permeability of NTXOL (naltrexone analogue 6-b-
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naltrexol) over time to determine the pore lifetime. In addition, a

staining technique was developed to microscopically visualize

microneedle created pores in treated guinea pig skin. Banks et al.
concluded that microneedle-assisted transdermal delivery appears

viable for at least 48 h after microneedle-application [7]. In a

subsequent study they showed that the addition of a COX

inhibitor, like diclofenac, can keep the microneedle pores open for

up to a week [8]. Transport of drug molecules after microneedle

application is hypothesized to take place by simple diffusion [9].

The aim of the present study was to evaluate the distribution of

fluorescently-tagged peptides, melanostatin, rigin and palmitoyl-

pentapeptide (Pal-KTTKS) after microneedle based delivery using

CLSM and to determine distribution of the peptides within the

skin strata. In particular the effect of peptide chain length (3, 4, 5

amino acid chain length) on passive and microneedle facilitated

skin penetration was investigated.

Materials and Methods

2.1 Skin preparation for permeation studies
Human skin was obtained from abdominoplasty patients. All

patients signed an informed consent. This study is specifically

approved by the Princess Alexandra Hospital Research Commit-

tee approval No. 097/090, administered by the University of

Queensland Human Ethics Committee (Australia). The subcuta-

neous fat was removed by dissection and the full thickness skin

then stored at 220uC until required. Skin from different donors

was used to demonstrate reproducibility of the study. Before

commencing the study the skin was thawed to room temperature

and carefully dabbed with clean tissue paper to remove excess

moisture. The skin was then cut using a circular die to fit Franz

cells.

2.2 Microneedles and Microneedle applicator
The microneedles used in this study were cut from a 50 mm

thick 304 stainless steel sheet using a LaserPro S290 laser

etcher. The microneedle arrays were cut onto a single plate

with 700 mm length6250 mm width. Each plate consisted of 3

microneedles separated by a 5 mm distance. These plates were

then assembled in banks of 2 with a 3 mm spacing in between.

The microneedles were cut in batches with a strict quality

control cut-off of 5% standard deviation. A typical batch when

observed for quality assurance had an average height of

703.1616.1 mm and an average width of 257.869.4 mm.

The applicator developed for this study was designed to impact

the skin surface at 1.5 m/s. After firmly placing the applicator

against the skin, the trigger was released to apply the six

microneedles.

2.3 Microneedle enhanced peptide delivery in human
skin

Microfabrication techniques ensured that the microneedles

were long enough to cross the permeability barrier (700 mm) but

not so long that they are painful [10]. The peptides used in this

Figure 1. Hematoxylin and eosin image of microneedle hole into excised human skin. The image of microneedle (MN) plate used (with
three 700 mm length x 250 mm with MN) is shown (a). Representative image of a 30 mm thick Hematoxylin and eosin (H&E) stained crysection of a
microneeedle (MN) penetration site in human skin is shown (b). In this image the microneedle fissure (arrowhead) is 432 mm, reaching the superficial
dermis.
doi:10.1371/journal.pone.0101956.g001

Table 1. Values of integrated density and positive area in epidermis and dermis at 1 hour and 24 hour time points.

Integrated density Positive area (mm2)

Epidermis Dermis Epidermis Dermis

1 hour 24 hours 1 hour 24 hours 1 hour 24 hours 1 hour 24 hours

Melanostatin 548.76431.4 1208.06321.4 137.0662.2 289.36171.8 184262025 1239565117 23697 10946938

Melanostatin + MN 14636620.4* 2487.061770.0 578.46316.1** 297064026* 1564865802** 1794867578 956067783** 2503265390**

Rigin 1325.06613.8 2172.06492.4 716.86504.1 374.06228.6 976363064 1639262395 15616906 426964172

Rigin + MN 2334.06781.0* 1264.06907.1* 768.06192.7 324.86237.0 1776564348* 1659466218 768362887** 273062317

Pal-KTTKS 255.86167.8 3070.064101.0 155.3661.0 196.9684.1 190261525 657862441 23614 2056208

Pal-KTTKS + MN 656.16272.1 13880622614 950.761403.0 323.16573.4 9776323 421961742 46654 3676419

* indicates p,0.05 and ** indicates p,0.01.
doi:10.1371/journal.pone.0101956.t001

Microneedle Enhanced Peptide Delivery
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study were selected as cosmetic and therapeutic peptides with

increasing chain length and increasing molecular weight.

Fluorescein conjugated peptides melanostatin (PLG; MW

803.92 Da; XLOGP calculated log P21.3), rigin (GQPR;

MW 959.04 Da; XLOGP calculated log P27.7) and Pal-

KTTKS (MW 1191.06 Da, log P 3.5) were first dissolved in

appropriate solvents. All peptides were purchased from Gen-

script (Hong Kong). Eight groups were tested in triplicate.

Negative controls were vehicle only and vehicles post

microneedle application to account for any autofluorescence.

Sodium fluorescein, at equal molar levels to that present in the

peptide, was used as a positive control in both passive

treatment group where microneedles were not applied, and

in active treatment group where microneedles were applied

(data not shown). The last two treatments included the

peptides with and without microneedles applied at a 500 mg/

mL concentration. The duration of the study was 1 hour for all

treatments. For the peptides a separate 24 hour time point

from the same skin donor was also conducted. The replicate

experiments on each peptide were conducted using skin from

three donors.

2.4 Skin sample confocal microscopy analysis
After completion of the treatment time the skin samples were

cut to a smaller size. Before the samples were imaged with

CLSM, a dermoscopic image was first taken to identify the

exact location of the microneedle fissures. The sample was then

mounted with a cover slip. The VivaScope 2500 Multilaser

(Caliber I.D., Rochester NY USA) was used for this study as

imaging an area large enough to cover the microneedle holes

could be done in one tiled image. The excitation wavelength

was 445 nm with the laser power (6.8 mW) held constant for all

experiments. The images were generated as cubes of tiled

images of 868 individual images over 20 layers in depth. The

cube was generated over 100 mm with images at a step of 5 mm.

Similarly cubes were also generated from the same area (depth

and location) in reflectance mode. The reflectance image in

conjunction with the z-axis profile of the intensity depth was

used to determine the top layer of the skin sample. The top

20 mm were designated as the stratum corneum (SC), the

following 30 mm were designated as the viable epidermis (VE)

and the images from below this (50 mm + deeper) were

designated as the dermis (DER) [11]. Mosiacs at 30 and

50 mm were subjected to image analysis and reported as viable

epidermis and dermis, respectively.

2.5 Image analysis
Image signal intensity analysis was carried out using Image J

software NIH (USA). The raw mosaic images were resized to

10% of the original. The threshold value (54) was derived from

pilot experiments with where sodium fluorescein was applied

to untreated and microneedle treated skin. The images were

opened in ImageJ and a threshold of applied. A circular

selection (diameter 750 mm and area 4.426105 mm2) was

centered on the microneedle site. Similarly, the same diameter

circular selection was applied to the non-microneedle treated

Figure 2. LSCM images of melanostatin delivery into excised human skin. Representative melanostatin (MEL) treated confocal laser
scanning microscopy (CLSM) images of viable epidermis and dermis at 1 and 24 hour(s) are shown without and with microneedle (MN) delivery
enhancement. Mosaic images of the viable epidermis and dermis (top row and bottom row, respectively) are shown at at 1 and 24 hour(s) after
melanstatin delivery with microneedle enhancement. Each mosiac is 565 mm2.
doi:10.1371/journal.pone.0101956.g002
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skin groups. The positive area and integrated density values

were generated using the measurements function in ImageJ for

all images.

2.6 Statistical analysis
The skin permeation data consisted of normalised penetration

area and integrated density measurements of active, passive,

negative control and positive control taken at 1 and 24 hours

within the skin layers, viable epidermis and dermis. Statistical

analysis was conducted using GraphPad Prism 5.03 software

(GraphPad Software Inc. USA). Mann Whitney test was used to

generate p values when comparing two data sets. Significant

differences were defined as p,0.05. Values for integrated density

and positive area are shown as mean 6 standard deviation.

Results

3.1. Penetration of microneedle in excised human skin
The design of the microneedles use in this study is shown in

Figure 1. The microneedles penetrated 304663 mm deep into

human skin. Figure 1 shows a haematoxylin and eosin stained

section of human skin treated with the microneedles. There is a

clear puncture site that extends into the superficial dermis. This

barrier breach is the best case scenario for enhancing topical

peptide delivery.

3.2. Penetration and distribution of microneedle assisted
peptides in excised human skin

3.2.1 Melanostatin. Melanostatin penetration into the viable

epidermis and dermis with lateral diffusion can be seen in

Figure 2. The fine lines seen in these images are furrows

containing the fluorescently labelled peptide. Each mosaic is

composed of 10610 images at 5006500 mm each. By comparing

between 1 hour and 24 hours microneedle assisted delivery, the

data shows some increased diffusion of melanostatin to 24 hours.

There was minimal penetration of melanostatin in both viable

epidermis and dermis without microneedle pre-treatment

(Figure 2). Figure 3 shows image analysis outcomes that at 1

hour, microneedles enhanced Melanostatin positive area by 8.5-

fold in the viable epidermis (15,64865,802 mm2) when compared

to without microneedles (1,84262,025 mm2). This difference was

found to be statistically significant (p,0.01). At the same time-

point the integrated density in the epidermis was significantly

increased by 2.6-fold with microneedles (1,4636620) and without

microneedles (5496431) (Table 1).

Enhancements of 2.1 and 1.4 fold were seen in the positive area

and integrated density at 24 hours with and without microneedles,

Figure 3. Integrated density and positive area data from melanostatin treated skin. Melanostatin (MEL) delivery characteristics are shown
from epidermal (a and c) and dermal (d and d) mosiacs. Both the integrated density (a and b) and positive area (c and d) are shown for each
microneedle site (MN). Data are shown for both 1 and 24 hours peptide exposure (1 h and 24 h, respecitvely). * indicates p,0.05. ** indicates p,0.01.
doi:10.1371/journal.pone.0101956.g003
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respectively. The trend and deviation intensified with increasing

depth. Microneedle enhancement showed a significant increase in

the total area of penetration in the dermis (without microneedles:

23697 mm2; with microneedles: 9,56067,783 mm2) after 1 hour.

Although highly variable, the differences were significant (p,

0.0001). At 24 hours the comparison was similar, a 22-fold

increase in area was seen in the dermis from 1,0946938 mm2

without microneedles to 25,03265,390 mm2 with microneedles.

This was accompanied with a non-significant 1.7-fold increase in

dermal integrated density after 24 hours from 196684 without

microneedles to 3336180, with microneedle delivery enhance-

ment. Taken together, these data show that microneedles can

indeed enhance topical melanostatin delivery.

3.2.2 Rigin. Figure 4 shows the 1 and 24 hour(s) images

from rigin treated skin with or without microneedle application.

There was a slight increase in permeation of rigin in viable

epidermis with microneedles at 1 hour compared to that without

microneedles. After 24 hours post treatment, there were not

substantial differences in rigin permeation at the viable epidermal

level with respect to microneedle treatment. The dermal

permeation was similar between microneedles and without

microneedles at 1 and hours post administration (Figure 4).

The quantification results (Figure 5) show Rigin with micronee-

dles resulted a 1.8-fold increase in the positive area (Rigin 1 hour

with microneedles: 17,76564,348 mm2; and without micronee-

dles: 9,76363,064 mm2) and 1.7-fold increase in the integrated

density in the viable epidermis at 1 hour (p,0.05). At 24 hours the

Rigin positive areas in the viable epidermis were nearly identical

with or without microneedles at 16,59466,218 and

16,39262,395 mm2, respectively (Table 1). The dermal results

were similar in comparison with a ,6-fold drop in Rigin positive

area compared to that in the viable epidermis. These data show

that microneedle penetration enhancement was effective at 1 hour

post treatment, but this effect was not observed at the 24 hour time

point.

3.2.3 Pal-KTTKS. Following the microneedle enhanced

delivery with Pal-KTTKS, the images (Figure 6) showed no

obvious change in integrated density or penetration area in the

viable epidermis at either 1 or 24 hours with or without

microneedles. The outline of the microneedle penetration sites

was visible for the most part, but the signal appeared limited to the

immediate area.

Image analysis revealed no significant changes in the integrated

density or positive area after 1 hour. However, after 24 hours

treatment we observed a 4.5 fold increase in integrated density

while the Pal-KTTKS positive area remained the same (Figure 7).

The increase in integrated density was only observed in a subset of

microneedle sites (6/18) and was therefore associated with a large

standard deviation. At first we suspected the microneedle

application was to blame, but this phenomena was only observed

with Pal-KTTKS and not melanostatin or rigin. Additionally, the

positive area measurements did not show the same trend.

Therefore, we hypothesize that this observation may be due to

the negligible penetration profile combined with the dynamic

nature of skin pore morphology. These increased mean integrated

density values were associated with large standard deviations that

minimise the relevance of this perceived penetration enhancement

(e.g. dermal integrated density increased from 196.9684.1 to

323.16573.4 with microneedle pre-treatment at 24 hours)

(Table 1). Overall, microneedle pre-treatment did not appear to

significantly and reproducibly enhance the delivery of Pal-

KTTKS.

Figure 4. LSCM images of rigin delivery into excised human skin. Representative rigin (RIG) treated confocal laser scanning microscopy
(CLSM) images of viable epidermis and dermis at 1 and 24 hour(s) are shown without and with microneedle (MN) delivery enhancement. Mosaic
images of the viable epidermis and dermis (top row and bottom row, respectively) are shown at at 1 and 24 hour(s) after rigin delivery with
microneedle enhancement. Each mosiac is 565 mm2.
doi:10.1371/journal.pone.0101956.g004
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Discussion

There is a balance between microneedles sufficiently long

enough to penetrate through the skin barrier for enhanced drug

delivery but small enough to cause minimal skin injury and pain.

Our study showed the penetration of MN alone into epidermis.

Developing clinically feasible microneedle transdermal delivery of

peptides is complex. One reason for this is that after the

microneedle physically enters the skin, it is almost certain that

peptides can get below stratum corneum. However, the diffusion

of individual peptides need to be observed so that the potential for

clinical/cosmeceutical benefits can be predicted. Positive out-

comes from these experiments could result in new devices as skin

pre-treatment tools or skin microinjections.

The field of microneedle enhanced protein delivery is largely

focused on insulin and vaccine delivery. For a review see Kim et
al. [12]. Insulin is a protein composed of 51 amino acids that has a

molecular weight of 5808 Da. Therefore, comparing microneedle

enhanced insulin delivery to even the largest peptide in this study,

Pal-KTTKS-fluorescein conjugate at 1191.06 Da, is not relevant.

However, there are many reports of enhanced transdermal peptide

delivery using approaches other than microneedles (for review see

Benson and Namjoshi [13]) and a handful of reports with

microneedle enhanced peptide delivery.

A recent report by Sachdeva et al. investigated the use of

iontophoresis with and without microneedles to enhance the

topical delivery of leuprolide [14]. This 9 amino acid containing

peptide has a molecular weight of 1209.40 Da, which is similar in

mass to our melanostatin (803.92 Da), rigin (959.04 Da) and Pal-

KTTKS (1191.06 Da) -fluorescein conjugates. Both peptides

require penetration enhancement to cross the skin barrier.

Sachdeva et al. found that leuprolide penetrated to blood levels

of 0.3660.22 ng/ml after 6 hours without enhancement. The

authors subsequently found that microneedle application im-

proved delivery by only 2.7 fold. Similarly, we found that at 1 hour

post treatment we observed a 4.2 (melanostatin), 1.1 (rigin) and 6.1

(Pal-KTTKS) fold increase in dermal signal within the micronee-

dle pre-treated groups.

These similarities in fold increase were quite comparable

considering differences in the peptide sequences, models, micro-

neeldes and detection approaches. This low level improvement

supports the hypothesis that enhancing the transdermal delivery of

some peptides requires more than just microneedle holes in the

skin.

Figure 5. Integrated density and positive area data from rigin treated skin. Rigin (RIG) delivery characteristics are shown from epidermal (a
and c) and dermal (d and d) mosiacs. Both the integrated density (a and b) and positive area (c and d) are shown for each microneedle site (MN). Data
are shown for both 1 and 24 hours peptide exposure (1 h and 24 h, respecitvely). * indicates p,0.05. ** indicates p,0.01.
doi:10.1371/journal.pone.0101956.g005
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Sachdeva et al. also described iontophoresis as a more effective

means to enhance leuprolide delivery across rat skin (9.6 fold

enhancement over passive treatment) than microneedles. This

suggests that the dissolving microneedles used in the Sachdeva et
al. study may have been blocking the diffusion of the peptide

through the relatively thin rat skin and iontophoresis helped

overcome the skin barrier and/or that passive diffusion, even with

perforated skin, was still negligible. The combination of the two

technologies only improved delivery over iontophoresis alone by

1.02 fold. This modest improvement suggests that iontophoresis

was key in moving leuprolide across the rat skin barrier.

Iontophoresis may also improve Pal-KTTKS in human skin, but

this has yet to be reported. In contrast, we found that microneedles

were highly effective in improving transdermal melanostatin

delivery, highlighting the necessity to tailor the penetration

enhancing technology to the particular peptide of interest.

Desmopressin is a another 9 amino acid long peptide that has

been investigated for transdermal delivery with microneedle

enhancement and has a molecular weight of 1069.22 Da. Cormier

et al. used a microneedle array made from titanium that was dry

coated with desmopressin formulated in 0.2 wt % polysorbate 20.

The study was carried out in hairless guinea pigs. The

microneedles were 200 mm long and had a maximal width of

170 mm. Our microneedles were 500 mm longer and 80 mm wider,

but we used only 6 microneedles whereas Cormier et al. used 642

microneedles. This means that a projected microneedle area

impacting the skin for our study was 0.075 mm2 per group versus

3.8 mm2 in Cormier et al.
Cormier et al. did not report desmopressin penetration without

microneedles, so we cannot easily compare penetration enhance-

ment. However, they did measure variability in the microneedle

experiments. Cormier et al. calculated that the microneedle array

was capable of delivering 17.563.8 mg desmopressin in a single

application. The standard deviation equals 21.7% of the mean

delivered dose. We found that the integrated density of our 6

microneedle array delivery approach varied from 8.3% (melanos-

tatin), 10.8% (rigin) to 30.9% (Pal-KTTKS) of the mean value

after 1 hour in the epidermis. Deviation also increased with depth

and time in our study.

There is an evident trend with increasing molecular weight and

variability within our data set. There appears to be less variability

in the Cormier et al. data compared to our Pal-KTTKS and more

than we found with rigin and melanostatin. This could be due to

peptide diffusion and could also be influenced by the differences in

the delivery approaches. Cormier et al. used coated microneedles,

whereas we employed a ‘‘poke and rub’’ approach. They had over

100 times more microneedles in their device than we had. This

could have resulted in a reduced impact of imperfect microneedle

penetration. Alternately, the vertical and horizontal diffusion

characteristics of the individual peptides within the different skin

strata could have also contributed to variability.

Conclusions

In conclusion, we have demonstrated that microneedles can be

effective way of enhancing some large and complex pharmaceu-

tically active molecules deep into the skin. The data correlate with

previous reports despite considerable technical differences between

studies. We observed that the lowest molecular weight peptide was

associated with the most improved topical delivery enhancement

using microneedle pre-treatment. We also observed that the

delivery of a larger molecular weight peptide was not improved by

Figure 6. LSCM images of Pal-KTTKS delivery into excised human skin. Representative Pal-KTTKS treated confocal laser scanning
microscopy (CLSM) images of viable epidermis and dermis at 1 and 24 hour(s) are shown without and with microneedle (MN) delivery enhancement.
Mosaic images of the viable epidermis and dermis (top row and bottom row, respectively) are shown at at 1 and 24 hour(s) after Pal-KTTKS delivery
with microneedle enhancement. Each mosiac is 565 mm2.
doi:10.1371/journal.pone.0101956.g006
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microneedle pre-treatment. Therefore, using microneedle pene-

tration enhancement could be effective when delivering some

therapeutic peptides, but microneedle pre-treatment is not a one

size fits all solution for topical delivery.
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