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Abstract

Exome sequencing provides unprecedented insights into cancer biology and pharmacological response. Here we assess
these two parameters for the NCI-60, which is among the richest genomic and pharmacological publicly available cancer
cell line databases. Homozygous genetic variants that putatively affect protein function were identified in 1,199 genes
(approximately 6% of all genes). Variants that are either enriched or depleted compared to non-cancerous genomes, and
thus may be influential in cancer progression and differential drug response were identified for 2,546 genes. Potential gene
knockouts are made available. Assessment of cell line response to 19,940 compounds, including 110 FDA-approved drugs,
reveals =80-fold range in resistance versus sensitivity response across cell lines. 103,422 gene variants were significantly
correlated with at least one compound (at p<<0.0002). These include genes of known pharmacological importance such as
IGF1R, BRAF, RAD52, MTOR, STAT2 and TSC2 as well as a large number of candidate genes such as NOM1, TLL2, and XDH.
We introduce two new web-based CellMiner applications that enable exploration of variant-to-compound relationships for
a broad range of researchers, especially those without bioinformatics support. The first tool, “Genetic variant versus drug
visualization”, provides a visualization of significant correlations between drug activity-gene variant combinations. Examples
are given for the known vemurafenib-BRAF, and novel ifosfamide-RAD52 pairings. The second, “Genetic variant summation”
allows an assessment of cumulative genetic variations for up to 150 combined genes together; and is designed to identify
the variant burden for molecular pathways or functional grouping of genes. An example of its use is provided for the EGFR-
ERBB2 pathway gene variant data and the identification of correlated EGFR, ERBB2, MTOR, BRAF, MEK and ERK inhibitors.
The new tools are implemented as an updated web-based CellMiner version, for which the present publication serves as a
compendium.
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Introduction there is recognition of the need for increased expertise to achieve
clinically actionable information [12].

Cancerous cell lines provide test cases to improve understanding
of cancer physiology and pharmacological response, with the
potential for rapid translational application. Recent cancer cell
studies are providing proof-of-principle by identifying genomic
biomarkers to targeted pharmacological agents [11,13,14,15,16].
The sixty cell lines of the US National Cancer Institute was the
first cell line panel set up to explore drug responses, including 9
tissues of origin including refractory tumors such as lung, ovarian,
colon, breast, brain and renal cancers, and melanomas together

Exome sequencing has been recently used for molecular
diagnosis and identification of underlying disease gene mutations
[1,2,3,4]. In the cancer context, its uses have included identifica-
tion of low and high-penetrance mutations in cancer-susceptibility
genes and mutations associated with clinically relevant pheno-
types, such as drug sensitivity [5,6,7,8]. In the context of
pharmacology and therapeutics, where both germline and somatic
variants are of importance [9,10], the results of exome sequencing
have been proposed for use in precision oncology [11], although
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A. CellMiner (http://discover.nci.nih.gov/cellminer/).

m NCI-60 Analysis Tools | Query Genomic Data Sets | Query Drug Data | Download Data Sets | Cell Line Metadata | Data Set Metadata

Step 1: Data sets may be queried by gene, chromosome, or platform specific identifier:

(® HUGO name
Step 2 - Select input type (list or file):
() List () Upload file

Input the identifier(s):

Step 3: Select one or more data sets:
[Vl DNA: Exome Sequencing

Step 6: Your E-mail Address | youremail@org |

B.
m NCI-60 Analysis Tools | Query Genomic Data Sets | Query Drug Data | Download Data Sets | Cell Line Metadata | Data Set Metadata

Step 1: Select analysis type:
[ cell line signature
() Gene transcript level z score (input HUGO name)
() microRNA mean value graph
(") Drug activity z score (input NSC#)
() Gene DNA copy number (input HUGO name)
() Genetic variant summation (input HUGO name)
[] Cross-correlation of transcripts, drugs and microRNAs (input HUGO name, NSC, and microRNA id)
[] Pattern comparison
(O Gene (HUGO) name () microRNA () Drug NSC# (O Pattern in 60 element array
[] Graphical output for DNA: Exome sequencing (input HUGO name)
[] Genetic variant versus drug visualization (inputs NSC:HUGO name)

Step 2 - Identifiers may be input as a list of file (maximun 150 names). Select input format:
(®) Input list Upload file
Input the identifier(s):

Step 3: Your E-mail Address | youremail@org |

Figure 1. The two tabs for retrieving WES data in CellMiner. A. The Query Genomic Data Sets tab. All exome data for a gene may be accessed
at http://discover.nci.nih.gov/cellminer/ under the “Query Genomic Data Sets” tab. HUGO name may be selected in Step 1, and List in Step2. The
gene identifiers (up to 150 per query) are entered as HUGO names, also in Step 2. The data set, DNA:Exome Sequencing is entered in Step 3. Enter
your email address in Step 6, and click “Get data” to receive the output (as an Excel file). B. The NCI-60 Analysis Tools tab. Five forms of synopsis data
are available for selection in Step 1; Cell line signatures [15], Cross-correlation [15], Pattern comparison [15], Graphical output for DNA:Exome
sequencing [15], and Genetic variant versus drug visualization (Figure 5). Identifiers are entered in Step 2. Enter your email address in Step 3, and click
“Get data”.

doi:10.1371/journal.pone.0101670.g001
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Figure 2. Homozygous, amino-acid changing, putative protein-function-affecting genetic variants present in the NCI-60, and

absent in the 1000 Genomes and ESP5400. A. The four categories o

f protein-function-affecting variants, and their level of occurrence. The x-axis

is the number of variants in each category, with exact numbers given to the right. B. Potential knockout cell lines for tumor suppressors. The x-axis
indicates the cell lines. The y-axis indicates the tumor suppressors. Green, red, black, and blue square indicate the presence of homozygous
splicesense, frameshift, premature stop, and SIFT or PolyPhen-2 knockouts, respectively (as in A). Additional potential knockouts for the whole

genome across the NCI-60 can be readily found in Table S1.
doi:10.1371/journal.pone.0101670.g002

with more treatable cancers such as leukemias [17,18,19]. This
was done by the Developmental Therapeutics Program (DTP)
[20]. Among the NCI-60, two cell line pairs (M14 and MDA-MB-
435, and SNB-19 and U251) have subsequently been found to
have genotypic similarity [21]. One line, NCI-ADR-RES, is an
adriamycin-resistant derivative of the parental OVCARS [15].
Over the years, the DTP drug database has grown to >100,000
compounds including an up-to-date list of FDA-approved
anticancer drugs as well as several hundred investigational drugs
as they emerge from the cancer drug development pipeline
[15,19]. It is by far the largest publicly accessible compound and
drug database worldwide [16]. At the same time, the NCI-60 is
also the publicly available cancer cell line panel database with the
most complete analyses of gene expression [15,22] and the only
cell line panel with publicly available whole exome sequencing
(WES) data [11,21]. Identification of cancer specific variants in the
NCI-60 WES provided several pharmacogenomics correlations
[11]. These data are freely available in different formats, including
BAM [11], CellMiner [23] and Ingenuity [24].

PLOS ONE | www.plosone.org

Additional large cell line-drug databases have been developed
recently, including the Cancer Cell Line Encyclopedia (CCLE)
from the BROAD Institute [25], and the collaborative Wellcome
Trust Sanger-Massachusetts General Hospital Genomics of Drug
Sensitivity in Cancer (GDS) project [26]. The larger number of
cell lines in these datasets provides increased ability to identify rare
cancer genomic alterations on a larger number of tissues of origin
as well as disease subtypes. Notably, 56 and 44 cell lines are in
common with the NCI-60 in the GDS and CCLE, respectively,
which enables data cross-validation and expansion studies. In the
arena of drugs and compounds, however, the NCI-60 provides
data on 19,940 as compared to 24 for CCLE and 138 for CPG.
The 19,940 compounds include 110 FDA-approved and 53
clinical trial drugs, as well as 337 with known mechanism of
action.

For the purpose of systems molecular biology and pharmaco-
logical analyses, accuracy and range of available data are of
importance. For the CCLE and GDS, transcript levels are
dependent on the results of one platform each, (the Affymetrix
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Frequencies of 84,861 “present” variants in the NCI-60 as compared to non-cancerous genomes.
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Figure 3. Comparisons of variant frequencies in the NCI-60 to that in non-cancerous tissues (the ESP5400). A. Scatter plot for all 84,861
variants that occur both in the NCI-60 and the ESP5400. The x-axis is the ratio of frequencies of variants in the NCI-60 vs. the frequencies of the same
variants in the ESP5400. The y-axis is the number of the variants, ordered by the frequency ratio. The boxed “Enriched” variants (in the NCI-60) include
2,792 variants, and the boxed “Depleted” variants numbers 319. Enrichment is defined as the top 2.5% of variants for which the ratio of frequencies is
=10. Depletion is defined as the bottom 2.5% of variants, for which the ratio of frequencies is =0.1. In both A and B, the vertical lines drawn at x=1
indicate equal frequencies in the NCI-60 and non-cancerous genomes (ESP5400). B. Scatter plot for the protein-function-affecting variants that occur
in both the NCI-60 and the non-cancerous genomes. The y-axis is the percent of protein function affecting amino-acid changing variants (as

compared to all variants) within a sliding window of size 2001.
doi:10.1371/journal.pone.0101670.9003

U133+2 and HT-HG-U133A v2, respectively). For the NCI-60
there are currently 5 platforms, yielding the opportunity for
internal quality and consistency control [15]. Additional forms of
information available for the NCI-60 include: 1) karyotypic analysis
with multiple parameters of genomic instability [27], ii) array
comparative genomic hybridization (aCGH) [28,29,30,31], iii)
single nucleotide polymorphisms [32], iv) DNA genomic variation
[21], v) DNA fingerprinting [33], vi) microRNA expression
[22,34], vii) reverse-phase protein lysate microarrays [35], viii)
global proteomic analysis [36], and ix) metabolite profiling [37].
Specialized profiling includes: i) identification of putative tumor
stem cell markers [38], i) HLA class I and II genotyping [39], iii)
and quantitative RT-PCR expression of nuclear receptors [40],
and ABC transporters [41]. Phenotypic assays include: i) response
to ionizing radiation [42], ii) identification of homologous
recombination and base excision repair phenotypes [43], iii)
CD95 Type I or II status and apoptotic sensitivity [44], iv) DNA
damage-induced S-1 phase arrest [45], and v) rhodamine efflux
[46]. This is not meant to be an exhaustive list of prior work, but
to establish that the NCI-60 has the broadest set of features for
systems biology and pharmacology of any data panel.

In the current study, we extend our initial NCI-60 WES analysis
[11] with the inclusion of the normal vs. cancer-specific variants,
and the introduction of two new genomic and pharmacological
tools that complement the existing CellMiner suite. Included are
both homozygous variants absent in the normal genomes, and
enriched or depleted variants present in the normal genomes.
Drug and compound analyses are extended, both for the cell lines
independently, and for their integration with the genetic variants.
The new CellMiner tools extend the prior basic data accessibility
functionalities [23], enabling researchers with limited bioinfor-
matics support to mine the NCI-60 WES data, and facilitate its
comparison with other genomic and pharmacological parameters
for the NCI-60. The “Genetic variant versus drug visualization”
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tool allows the user to quickly and easily compare any
compound:gene pairing of interest to them, compiling the relevant
data into a single output, and assessing their correlation. The
“Genetic variant summation” tool extends the prior basic data
retrieval functionality by providing a rapid synopsis of all the
protein affecting variants from 1-150 genes within any user-
defined set. This both provides a snapshot of mutational burden
on these genes, and organizes the result into our standard format
for easy comparison to all other molecular and pharmacological
parameters.

Materials and Methods

Cell lines, whole exome sequencing of variants in the
NCI-60, and data access

The cell lines used in this study were obtained from the
Developmental Therapeutics Program (DTP), and have been
described previously [20] [17] [18]. The sequencing technique has
been described previously [11]. In brief, 38 Mb of coding region
for each cell line was captured using the Agilent SureSelect All
Exon v1.0 Kit (Agilent) from sheared DNA libraries were
generated. The size-selected samples were sequenced as paired-
end 80-mer reads on an Illumina Genome Analyzer IIx
mstrument (Illumina) following the manufacturer’s protocol. Data
may be accessed as described in Figure 1.

Annovar determinations

The sequence alignment to the hg19 reference genome, variant
call annotation, amino acid number identification and variant
effect (used in Figure 2 and subsequently), determination of variant
frequency in the 1000 Genomes [47] and ESP5400 [48], scores for
Sorting Intolerant From Tolerant (SIFT) [49], and Polyphen-2
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Table 2. Genes that are either enriched or depleted in the NCI-60), and are cancer-driver genes®.
Variant identification and effect

NCI-60/

ESP5400
Gene name®  Functional category® AA impact? Unique identifier dbSNP ID® frequency’
TP53 Tumor suppressor, DDR, Apoptosis R116Q chr17:7577538_C_T rs11540652 538
PIK3CA Oncogene, Protein kinase chr3:178928178_C_T 472
TET2 Tumor suppressor S460F chr4:106156478_C_T 358
NCORT1 R121C chr17:16075191_G_A rs140151735 358
GATA2 Oncogene V211V chr3:128204808_G_C 358
SETBP1 V81V chr18:42281554_G_A 179
ASXL1 Tumor suppressor A611T chr20:31022346_G_A 179
APC Tumor suppressor, Apoptosis S140G chr5:112103053_A_G rs150973053 179
ARID1A Tumor suppressor R1053H chr1:27094450_G_A 179
ARID1B A1922A chr6:157528080_G_T 179
PRDM1 Tumor suppressor A385V chr6:106553591_C_T 179
ACVR1B D502D chr12:52387882_C_T 179
ASXL1 Tumor suppressor T557T chr20:31021672_C_T 179
SMARCB1 Tumor suppressor E201D chr22:24158958_G_T rs142218902 179
BAP1 Tumor suppressor chr3:52439102_C_A rs186001194 179
BRCA2 Tumor suppressor, DDR, Apoptosis R2784Q chr13:32944558_G_A rs80359076 179
MSH2 Tumor suppressor, DDR E198E chr2:47637460_A_G 179
CDH1 Tumor suppressor V391V chr16:68847251_C_T rs148080550 179
RUNX1 Tumor suppressor V137V chr21:36252870_G_A 179
MLH1 Tumor suppressor, DDR E219A chr3:37067468_A_C 179
TSC1 Tumor suppressor, Protein kinase, Apoptosis chr9:135782112_C_T 179
BRCA2 Tumor suppressor, DDR, Apoptosis R2896C chr13:32950860_C_T 179
NCOR1 $1867S chr17:15961885_G_A 179
ARID1B D1713D chr6:157527453_C_T 189662115 179
NF1 Tumor suppressor L1954L chr17:29661968_T_C 179
TP53 Tumor suppressor, DDR, Apoptosis G113S chr17:7577548 C_T rs28934575 179
DNMT1 S809S chr19:10260240_C_T 179
ABL1 Oncogene, Protein kinase, Apoptosis P986P chr9:133760635_A_G rs35445683 179
ATM Tumor suppressor, DDR, Apoptosis R32C chr11:108098524_C_T rs148061139 179
PTCH1 Tumor suppressor chr9:98241268_G_A 179
NOTCH2 Tumor suppressor, Apoptosis H1160R chr1:120479948_T_C rs142876168 179
SETBP1 Q1244R chr18:42533036_A_G 179
SETBP1 P256P chr18:42530073_C_T rs141858699 179
NF1 Tumor suppressor A2596V chr17:29684089_C_T 179
APC Tumor suppressor, Apoptosis chr5:112154629_C_T 179
CDC73 Tumor suppressor chr1:193091510_G_A 179
MSH2 Tumor suppressor, DDR D487E chr2:47690244_C_G rs35107951 179
ARID1A Tumor suppressor A1136A chr1:27098992_G_A rs146598030 179
ATM Tumor suppressor, DDR, Apoptosis R337C chr11:108117798_C_T rs138398778 179
ALK Oncogene LoL chr2:30143499_G_C rs4358080 0.092
KDM6A Tumor suppressor chrX:44913052_T_A rs5952285 0.066
SMARCA4 Tumor suppressor D1599D chr19:11170839_T_C rs7275 0.063
?Genes selected from the boxed fractions from Figure 3A. Cancer-driver genes are as described previosly [58].
bOfficial gene names as defined by the HUGO Gene Nomenclature Committee (http://www.genenames.org/).
“DDR is DNA damage response, and SLC is solute carrier.
9Amino acid impact. Example, R116Q indicates a change from R (Arg, arginine) to Q (GIn, glutamine).
9Denotes the chromosome number, start location, and the nucleotide change. _* indicates that either an addition (+) or a deletion (=) of nucleotides.
€Single nucleotide polymorphisms identifiers as defined at dbSNP (http://www.ncbi.nlm.nih.gov/projects/SNP/).
fFrequency calculated as described in Materials and Methods.
doi:10.1371/journal.pone.0101670.t002
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[50], and presence or absence in COSMIC [51] were done within
Annovar [52], and have been described previously [11].

Variant identifiers, reference sequence accession
numbers, and frequency of variants

Previously identified variants are defined by the National
Center for Biotechnology Information (NCBI) database of Single
Nucleotide Polymorphisms site (dbSNP) [53]. The accession
number is for the reference sequence from the NCBI used in
determining amino acid change affects [54]. For comparison to
the NCI-60 variants, we used the ESP5400 (downloaded
December 20, 2011).

The frequency of variants present in the ESP5400 in Figure 3A
and B is calculated as an average of the allelic frequencies for each
cell line (as determined by Annovar). The number of genomes in
the ESP5400 was 5400. The 1000 Genomes were not included in
this calculation due to their being a different and variable form of
data (whole genome sequencing) as opposed to exome sequencing
(as for the NCI-60 and ESP5400) that might distort the ratio of
frequencies in Figure 3A and B.

Determination of statistical enrichment,

overrepresentation, and underrepresentation

Calculation of enrichment for cancer-driver genes in Figure 3
and Table S2 was done using Fishers exact testing. For enriched
and depleted groups of “present” variants in Figure 3A, the 2.5%
cutoff occurred within a large group with equivalent ratios, all of
which were included. The determination of the percent of protein
function affecting variants in Figure 3B was done using a sliding
window of 2001 (variants).

Quantitation of drug activities

The 50% growth inhibitory levels (GI50s) at 48 hours were
determined by the Developmental Therapeutics Program (DTP)
[20] as described previously [55]. All GI50 data was assessed and
transformed to z scores as described previously [15], yielding
patterns for 19,940 compounds (CellMiner version 1.4 [23]).

Comparison of variants and drug activities

The combination of up to five variants with the highest
correlation to each compounds activity was identified. Only
variants that were “amino-acid changing” were included; defined
as missense, splice-sense, frameshift, read-through, non-frameshift
insertion or deletion (nucleotides are changed in factors of 3), or
premature stops. Other criteria for inclusion of variants for
comparison to drug activity are, 1) there are <13 cell lines with any
single variant, ii) the combination identified for a gene were
associated to the response of at least three cell lines, iii) they did not
occur in segmental duplications (assessed using Annovar), and iv)
they did not map to more than one genomic location (using BLAT
[56]). Drugs activities were considered shifted for a cell line if they
were changed from the 60-cell line mean by 0.5 standard
deviations.

The Matthews correlation coefficient (MCC) was calculated as
follows:

(TP)(TN)—(FP)FN)
/(TP+FP)(TP+FN)(TN + FP)(TN +FN)

MCC=

TP is the number of true positives (number of cell lines that
have the variant and respond to the drug), F’P number of false
positives (number of cell lines that have the variant but do not
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respond to the drug), F'N the number of false negatives (number of
cell lines that do not have the variant but respond to the drug), and
TN the number of true negatives (number of cell lines that do not
have the variant and do not respond to the drug).

Precision is the fraction of the variant(s)-containing cell lines that
also have the drug response, calculated as: TP/(TP+FP).

Recall is the fraction of cell lines with drug response that also
have variant(s), calculated as FN/(TP+FP).

The “Genetic variant summation” web-based tool

The summation of variants for an individual gene is derived
from the observed level of the variant. If there are multiple
variants present, these probabilities are considered to be indepen-
dent. The maximum effect of a single gene’s variants may go to
100% for any cell line, and are calculated as follows.

Gene variant percentage per cell

=1—[(1=Pl)x(1—P2) ..... (1—Pn)]

P1 = Percentage for variant 1

P2 = Percentage for variant 2

Pn = Percentage for variant n

The summation of amino acid changing variants for multiple
genes is the sum of the individual genes values for each cell line
(with no maximum value).

Composite correlations for gene’s variants versus
compounds based on presence or absence in the non-
cancerous genomes

For the comparison of variants either present or absent in the
non-cancerous genomes to drug response in lolo, the gene’s
variants (from one to five) that yielded the highest significant
correlations for each of the compounds were characterized as
being either present or absent in the non-cancerous genomes,
totaled, and their proportions determined at four p value
thresholds  (p<<0.05, 2x10* 1x107° and 1x10™° using
Matthew’s correlation).

Results

Variants in the NCI-60 and new CellMiner tool to facilitate
their retrieval and interpretation

Of the 140,171 individual genetic variants identified [11],
86,887 (62%) are “present” in either the 1000 Genome project or
the ESP5400 non-cancerous genomes, whereas 53,284 (37%) are
absent (cancer cell associated). As described previously [11], the
data are accessible through our CellMiner web-based tool [23]
with tabular data for individual genes retrieved at the “Query
Genomic Data” tab by checking “DNA:Exome Seq” in Step 3
[see Figure 1A [11]]. Graphical data can be retrieved at the “INCI-
60 Analysis Tools” tab using the “Graphical output for DNA:
Exome sequencing” tool [see Figure 1B [11]].

Catalog of homozygous deleterious variants across the
NCI-60

Among the variants, we catalogued a subset of 1,447 that are: 1)
homozygous, ii) absent from the 1000 Genomes and the ESP5400,
iti) alter the amino acid sequence and iv) likely to affect protein
function. The criteria for affecting protein function were the
mtroduction of 1) splicesense changes, 1i) frameshifts, 1ii) premature
stops, or 1iv) missense changes with SIFT values <0.05, or
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A. C.

Compound synopsis: Comparison of FDA-approved drugs to
FDA-approved drugs 110 compounds

Drugs in clinical trials 53
Known mechanism of action drugs 354
Total 19,940

12 1
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8 -
6

CooremdrR O
Resistant

12 4

110 FDA-approved drugs
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CO:HCT_116
LE:HL_60
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RE:786_0
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CNS:SNB_75
RE:CAKI_1
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RE:ACHN
PR:PC_3
RE:UO_31
CNS:SF_295
OV:IGROV1
ME:MALME_3M
LC:NCI_H23
OV:OVCAR_8
CNS:SF_268
BR:MDA_MB_231
BR:HS578T
OV:NCI_ADR_RES
CO:HCC_2998
OV:OVCAR_4
RE:SN12C
BR:BT_549
LC:HOP_62
RE:A498
LC:A549
ME:SK_MEL_2
ME:UACC_257
LC:NCI_H226
PR:DU_145
LC:EKVX
RE:TK_10
ME:SK_MEL 28
CNS:SNB_19
OV:SK_OV_3
LC:NCI_H322M
OV:OVCAR_5

r=0.75
p=37x10"

Sensitive

0
o0 A
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1/7 1/5 1/3 1/2 1 2 3 4 5 7 9 12

Sensitive Resistant

19,940 Compounds

1.2 -0.8 -0.4 (] 0.4 0.8
Resistant Sensitive

Figure 4. Overall drug responses in the NCI-60. A. Compounds and drugs used in the present analyses. B. The cellular responses to the 19,940
compounds were categorized for each cell line, as resistant (z score =—0.5), no response (z score >—0.5 to <0.5), or sensitive (z score =0.5). The
number of compounds categorized as leading to sensitivity or resistance was determined for each cell line. The ratio of these resistance:sensitivity
determinations (plotted as —log10 values) is on the x-axis. The cell lines are on the y-axis. Asterisks denote ABCB1-positive cells as measured by
rhodamine efflux [46]. Arrowheads denote cell lines that are TP53 wild-type. C. Scatter plot of resistance:sensitivity ratios for the 19,940 compounds

PLOS ONE | www.plosone.org 8 July 2014 | Volume 9 | Issue 7 | 101670



NCI-60 WES and Pharmacogenomics

(x-axis) versus the 110 FDA-approved drugs (y-axis). The same ratios of resistance:sensitivity from B were determined for the subset of 110 FDA-
approved drugs. Each point is a cell line (plotted as -log values). Tissues of origin are indicated: BR is breast, CNS is central nervous system, CO is
colon, LC is lung cancer, LE is leukemia, ME is melanoma, OV is ovarian, PR is prostate, and RE is renal.

doi:10.1371/journal.pone.0101670.g004

Polyphen-2 (values =0.85). The numbers of variants that fit each
of these criteria are presented in Figure 2A.

In all, 1,199 genes contain variants from at least one of the four
categories. A subset of putative function affecting mutations that
occur in cancer-relevant genes is presented in Table 1, with the
complete listing of 1,447 variants (that fit the above criteria) in
Table S1. Tumor suppressor homozygous variants are presented
in Figure 2B, including several not previously described (BCOR,
SETD2, TUSC3 and PBRMI) in either the Cancer Cell Line
Encyclopedia [13] or the Sanger Cancer Genome Project [14]
[57]. The 1,199 gene set (Table S1) are significantly enriched (p<
2x10~2* for previously recognized cancer-driver genes [58].

Identification of normal variants either enriched or

depleted in the NCI-60

There are 84,861 “normal” variants (SNPs) in the NCI-60 that
are also present in the ESP5400 database. Their distribution,
expressed as their frequencies in the NCI-60 variants/ ESP5400 is
visualized in Figure 3A. Variants that: 1) occur in the top or bottom
2.5% of ratio values, and with ratios greater than 10:1 (enriched),
or smaller than 1:10 (depleted) for the ESP5400 dataset were
identified. This yielded 2,792 enriched and 319 depleted variants.
Of these, 1,547 (52.9%) of the enriched, and 88 (73.9%) of the
depleted variants affect amino acids in 1,214 and 84 unique genes,
respectively. Variants that do not affect amino acid sequence have
been included as these changes can still potentially have biological
effects.

Figure 3B depicts the frequency of the normal variants that are
predicted to affect protein function (as defined in Figure 2A). As
variant frequency in the NCI-60 (the x-axis values) increases from
a ratio of 1, so does the proportion of those functionally relevant
variants (the y-axis values). A subset of the enriched or depleted
variants that occur in previously recognized cancer-driver genes
[58] is listed in Table 2. The total list of enriched or depleted
variants is in Table S2.

Overall drug activity database for the NCI-60

Growth inhibition 50% data (GI50, from the D'TP) were filtered
and converted to z scores [15] for 19,940 compounds (Table S3),
including 110 FDA-approved drugs (Figure 4A). Cell lines were
considered to be either sensitive or resistant to a compound if their
response was shifted by =0.5 or =—0.5 standard deviations from
the 60 cell line mean, respectively. The number of compounds to
which each cell line was found to be sensitive or resistant was
totaled. Ratios calculated from these two totals (Figure 4B)
revealed a 83-fold range between the most sensitive (leukemia SR)
and most resistant (ovarian OVCAR-5) cells. Eliminating the
leukemias, which are generally most sensitive to drugs, the
resistance/sensitivity ratio range remained at 65-fold.

The same analysis for the 110 FDA-approved drugs included in
the database yielded a 87-fold range (with or without leukemias).
Comparison of all compounds to FDA-approved drugs (Figure 4C)
showed a robust statistical significance (r =0.75, p=3.7x10"'? by
Pearson’s correlation), indicating cellular response to all com-
pounds is quite similar to the FDA-approved subset. Notably, we
did not find significant correlation (r=—0.12) between the drug
response ratios and ABCBI1 gene expression, or TP53 wild-type
versus mutant status (asterisks and arrows, respectively, in
Figure 4B) [46]. In addition, we looked for associations to the
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protein function affecting variants (as defined in Figure 2) for: i)
DNA damage response, ii) oncogenes, iii) tumor suppressors, iv)
ABC transporters, v) solute carriers, vi) apoptosis genes, and vii)
the total number of genes (with protein function affecting
mutations) per cell line, but found no significant relationship.
However, drug sensitivity was found significantly correlated with
cell line doubling-times (p<<0.0015) [59], and epithelial (BR, CO,
LC, OV, PR, and RE) versus non-epithelial (CNS, LE, and ME)
tissue of origin status (p<<0.02).

Comparison of single gene variants with drug responses

The 42,990 amino acid changing variants were compared to the
activities of the 19,940 compounds from Figure 4A (~16.5x107°
compound-gene-cell line combinations). For each gene, the
combinatorial of one to five variants that yielded the highest
correlation to each compound activity was determined, and
Mathew’s correlation coefhicients (MCC) were computed. Our
selection criteria for variants associated with drug response
included i) MCC of =0.596 (p=0.0002 for n = 35), ii) precision
=0.70, iii) overall precision for a gene’s variants of =0.50, and iv)
that three or more cell lines had both the identified variant(s) and a
consistent shift in drug response (either more sensitive or resistant;
see Materials and Methods for details). Variants were included
regardless of presence or absence in the normal genomes, as our
goal was to recognize both disease-associated and germline
influences on pharmacological response.

Using these criteria, we identified 80,265 increased-sensitivity,
and 21,436 increased-resistance gene-drug pairs (Table S4A and
B, respectively). For the 19,940 compounds assessed, this includes
at least one gene match for 13,891 of the compounds, involving
7,288 unique genes. For the 163 drugs that are either FDA-
approved or under clinical trial, we identified 406 increased-
sensitivity and 205 increased-resistance gene drug pairs. There are
75 and 58 recognized cancer-driver genes in the increased
sensitivity, and resistance listings (Table S4A and B), respectively.
Some genes have variations that are associated with multiple
compounds, a potential flag for pharmacological importance.
These include i) the DNA damage responder RAD52 with 45
sensitive and 0 resistance-correlated compounds, 1) the kinase
BRAF with 56 sensitive and three resistance-correlated com-
pounds, iii) the zinc finger domain containing gene ZC3H4 with
229 sensitive and 3 resistant-correlated compounds, and iv) the
helicase CHD4 with 976 sensitive and 27 resistance-correlated
compounds. A subset of the gene-drug pairs including FDA-
approved or clinical trial drugs, and genes of interest in either the
cancer or pharmacological context, are shown in Table 1. This is
an unbiased mathematical comparison designed to identify
relationships between genetic variants and drugs, and the resultant
pairings should be considered in the context of biological and
pharmacological knowledge. Significant correlation is not a proof
of a causal relationship but could be a valuable tool to generate
hypotheses.

Comparison of variants either present or absent in the
non-cancerous genomes to drug response in toto

To obtain an indication of relative contribution to pharmaco-
logical response for the genetic variants, we summed those variants
from Table S4A and B (column D, AA Impact) with respect to
their presence or absence in the non-cancerous genomes. Based on
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Go to the Genomics and Bioinformatics Group website
http://discover.nci.nih.gov/cellminer/

B.
m NCI-60 Analysis Tools | Query Genomic Data Sets | Query Drug Data | Download Data Sets | Cell Line Metadata | Data Set Metadata
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Figure 5. The “Genetic variant versus drug visualization”’ web-based tool and output examples. A. The tool is accessed through our
CellMiner web-application at http://discover.nci.nih.gov/cellminer/. B. Within the “NCI-60 Analysis Tools” tab (shown in red), the tool is selected by
checking the box in Step 1. The compound and gene identifiers (up to 150 pairs) are entered in Step 2, using NSC numbers for the compounds, and
HUGO names for the genes. Enter your email address and click “Get data” in Step 3 to receive the output (as an Excel file). C. The output incudes a
bar-plot of the compound activity z scores. The x-axis is the activity z scores, and the y-axis the NCI-60 cell lines ordered by tissue of origin. The
tabular output includes the cell lines (in column 1), the compound z scores (in column 2), followed by the amino acid changing variants. Cell lines
whose activities or variant status contribute to a statistically significant relationship are indicated by yellow coloring. For the bar plot, brown fills
indicate cell lines for which no variant correlates with a shift in drug activity, and the white fill that the cell line has a variant correlated to a shift in the
drug activity, but that that cell does not contribute to the correlation. For the tabular data, the purple filled in headers indicate the variant(s) that
have significant correlation to the compound activity. The white box indicates that the cell line contains a variant that correlates to the compound,
but that that cell line has no significant shift in drug activity (that is it is less than plus or minus 0.5 standard deviations from the mean at 0).
doi:10.1371/journal.pone.0101670.g005

these summations, the proportion of variants correlated to A Web-based tool to identify variants for a single gene or
pharmacological response was 56.7% absent and 43.3%, present in a pathway or functional group

(in the normal genomes). This is evidence that more than half of
the effect of genetic variants on pharmacological response come
from the group absent from the non-cancerous genomes. This
occurs despite the absent variants occurring in fewer cell lines, and
thus being numerically much less abundant (7.0%) than the
present (93.0%). Biologically, this implies that the present variants

As different variants can affect the function of a given gene (for
instance TP53 or most tumor suppressor genes), and molecular
pathways can be affected by genetic variants present in the
different genes constituting the pathway, we designed a tool to
both identify and sum those variants. This is the “Genetic variant
summation’ tool, accessible using the same URL as in Figure 5A,
individually tend to be less influential in their effect on and found under the “NCI-60 Analysis Tools” tab. The tool is
pharmacology; however, this is compensated for due to their used by checking “Cell line signature” and “Genetic variant
numerical predominance. summation” in Step 1 (Figure 6A). Up to 150 genes (or a single

gene) can be queried in a single search either by entering the list of

A Web-based tool to explore and visualize variant-drug genes (using official HUGO names), or by uploading the genes
relationships from a .txt or xIs file in Step 2. In Step 3, users enter their email
To facilitate the exploration of potential relationships between address, and click “Get data” to obtain the results, which are sent
gene’s variants and compound activities, we created the “Genetic by email within minutes as Excel files.
variant versus drug visualization” tool (Figure 5). This tool is In the example in Figure 6A, six genes from the pharmacolog-
accessible through the URL in Figure 5A under the “NCI-60 ically important EGFR-ERBB2-RAS pathway were included as
Analysis Tools” tab, as shown in Figure 5B. The tool is selected in input (the tool works similarly well if users only wish to retrieve
Step! and the “compound:gene” combinations of interest entered data for a single gene). For each gene or gene list, the “Genetic
in Step 2 with the compound as NSC number followed by a colon variant summation” tool returns an Excel file that lists: 1) a
and the HUGO gene name (Fig. 5B); note that up to 150 complete list of all the variants that affect amino acids (in a first
combinations can be entered in the same query (see example in worksheet, “AA Change”), and ii) in a second worksheet (“Prot.
Fig. 5B). In Step 3, users enter their email address and click “Get Func. Affecting AA Change”), the subset of those variants that are
data” to receive the output. both predicted to affect protein function (based on the criteria
For each query, the output, sent by return email within a few listed in Figure 2A) and absent in the non-cancerous 1000
minutes, as an Excel file, contains a bar plot of the compound Genomes and the ESP5400. To simplify the presentation,

activity z scores (Figure 5C). In addition, there is side-by-side Figure 6B only shows data from this second group (“Prot. Func.
tabular data for these activity values, plus the amino acid changing Affecting AA Change”) for KRAS and selected cell lines. For each

variant percentages for the input gene for each cell line. Significant cell line and variant, the numbers indicate the percent conversion
correlations (p<0.05) are indicated by yellow coloring of the bars for that variant. For instance, in Figure 6B, four of the colon
for compound activity, and yellow highlighting of the percent carcinoma cell lines show protein-affecting variants. The classical
conversions for the variants (Figure 5C). Additional information activating mutations G12V and G13D are observed in 3 cell lines:
not shown in Figure 5C include: i) the drug name, ii) the drug ~ HCT116, HCT15 and SW620. SW620 score 100 for the G12V
mechanism of action (if known), iii) the compound PubChem mutation indicating homozygous mutation, whereas HCT116 and
identifier, iv) the variant genomic location, v) the variants HCT15 score 36 and 42 for the G13D mutation indicative of
nucleotide and amino acid changes, vi) the SIFT and Polyphen- heterozygous mutation [11].

2 scores for each variant, and whether these are considered to In the summary row (illustrated in Fig. 6B), for any given gene,
affect protein function, and vii) whether individual variants occur multiple variants can be observed in the same cell line; in which
(and at which frequency) in normal genomes (either in the 1000 case, the gene variants summation “Summary” is set to a
Genomes or the ESP5400). The two examples in Figure 5 illustrate maximum of 100 percent for each cell line to reflect homozygosity
the validity and usefulness of the approach. As expected, the (see Materials and Methods).

activity of the BRAF inhibitor, vemurafenib is highly selectively for The Genetic variant summation tool also provides the
the BRAF-V600E mutated cell lines, which include most of the summation pattern for the whole NCI-60 for the set of genes
melanoma and 2 of the colon cell lines. Other associations can be included in the search (Figure 6D). Several summation pattern
explored at will. Notably, ifosfamide was correlated with RAD52 examples are given in Figure 6D, for different subsets of gene
mutations (Fig. 5C, right panels). combinations (see Fig. 6A and Fig. 6D left panel for the 6 gene

result, and see right panel in Fig. 6D for BRAF alone). Additional
information provided for the variants in the Excel spreadsheet (not
shown in Fig. 6) includes: i) SIFT scores, ii) Polyphen-2 scores, iii)
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A.
m NCI-60 Analysis Tools | Query Genomic Data Sets | Query Drug Data | Download Data Sets | Cell Line Metadata | Data Set Metadata

Step 1: Select analysis type:
™ cell line signature

(® Input list
Input the identifier(s):

AKT3
BRAF
EGFR
ERBB2
KRAS
NRAS

(® Genetic variant summation (input HUGO name)

Step 2 - Identifiers may be input as a list of file (maximun 150 names). Select input format:
() Upload file

Step 3: Your E-mail Address | youremail@org

Your results will be e-mailed to you when they are complete.

B.

KRAS protein function affecting amino acid changing individual variant percentages and summations by cell line

Gene syn Probe name

AA impact HCC_2998 HCT_116  HCT_15 SW_620 CCRF_CEM RPMI_8226

A549 HOP_62 NCI_H23 NCI_H460

kras chr12:25378562_C_T A146T 39
chr12:25380275_T_A Q61H - - - 100
chr12:25398281_C_T G13D 36 42 - -
chr12:25398284_C_A G12V - - 100 -
chr12:25398284_C_G G12A - - 65
chr12:25398284_C_T G12D 28
chr12:25398285_C_A G12C - 77 78
chr12:25398285_C_T G12S - - - - - - 100 - -
Summary 39 36 42 100 28 65 100 77 78 100
C.
S of protein fi ffecting, amino acid changing variant(s) in the NCI-60 for all genes
Gene symbol SF_268 COLO205 HCC_2998 HCT_116 HCT_15 HT29 KM12 SW_620 CCRF_CEM HL_60 K_562 RPMI_8226
EGFR 32 0 0 0 0 0 50 0 0 0 0 36
ERBB2 0 0 47 0 0 0 0 0 0 0 0
KRAS 0 0 39 36 42 0 0 100 28 0 0 65
NRAS 0 0 0 0 0 0 0 0 0 99 0 0
BRAF 0 71 0 0 0 21 0 0 0 0 0 0
AKT2 0 0 0 0 0 0 0 0 0 0 0 0
AKT3 0 0 38 0 0 0 0 0 0 0 45
Totals: 32 7| 124 36 42 21 50 100 28 99 45 101
D.
AKT3
BRAF AKT3
EGFR BRAF  AKT3  AKT3  AKT3
ERBB2 ERBB2 BRAF BRAF EGFR AKT3  BRAF
KRAS KRAS EGFR KRAS ERBB2 BRAF ERBB2 BRAF  KRAS
NRAS NRAS ERBB2 NRAS NRAS NRAS NRAS KRAS NRAS BRAF
3 =
- = B
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Figure 6. The “Genetic variant summation’ tool, and output. A. The tool is accessed through CellMiner at http://discover.nci.nih.gov/
cellminer/, under the “NCI-60 Analysis Tools” tab as described in Figure 5A. The tool is selected in Step 1, and the gene identifiers (up to 150) are
entered as HUGO names in Step 2. Enter your email address and click “Get data” in Step 3 to receive the output (as an Excel file). B. The output
incudes two versions of the data. The first contains the amino acid changing variants for each input gene. The second contains the subset of these
that are included in one of the protein function affecting categories (as defined in Figure 2), and are absent from the non-cancerous 1000 Genomes
and ESP5400. Both provide i) chromosome number, i) nucleotide location and change, iii) amino acid number and change, iv) percent conversion of
each cell line for that variant for the NCI-60, and v) the summation of the gene’s variants present for each cell line (to a maximum of 100%). The
example of KRAS is shown for a subset (due to space constraints) of the cells. C. The tool provides a summation of the variants for all genes in the
input. The summary values from B for each gene are added together (with no maximum) to provide a measurement of variant burden (see “Totals”,
bottom row). D. The totals from C are used to create a bar graph. The x-axis is the summation of variants values (“Totals” from C). The y-axis is the cell
lines, color-coded by tissue of origin [15,70]. Several outputs are included for illustration, with the first being from the 6-gene input in A.

doi:10.1371/journal.pone.0101670.g006

type of amino acid affecting change (missense, nonsense, etc.), and
1v) percent presence in the 1000 Genomes and ESP5400. Users are
invited to explore on their own using our CellMiner tool to fully
appreciate the extent of the data made readily available in the
Excel result files.

Use of genetic variation patterns in the exploration of
drug response

The “Totals” of the amino acid-changing, protein function-
affecting variants as visualized in Figure 6D can be used as input
for our previously described and publicly available ‘Pattern
comparison” tool (also found under the NCI-60 Analysis Tools
tab) to interrogate any given pathway for potential pharmacolog-
ical impact [15]. An example is given for illustration in Figure 7.
The pattern from the Figure 7A gene input list generated using the
“Genetic variant summation” tool is input to the “Pattern
comparison” tool. From this pattern, 12 drugs with known
mechanisms of action showed significant correlations, eight of
which target the pathway of the input genes. That is, drugs
targeting that pathway are robustly enriched (p=2.6x107°) as
accessed using the Fishers Exact 2-tailed test calculation [60]. By
varying the input selection of genes, one may identify either the
minimal or optimal grouping of genes whose genetic variants are
correlated to these drugs activities (Figure 7B). Additionally, by
viewing the drug gene interactions in the pathway context, one
may determine those grouping of variants correlated to either
increased (positive correlations, grouped within the red box in
Figure 7C) or decreased (negative correlations, grouped within the
blue box in Figure 7C) drug activities. BRAF activation is seen to
have significant relationship to both sides of the pathway, although
it is most robust for the BRAF, MEK, and ERK inhibitors
(Figure 7C).

Discussion

The present study provides novel insights into and tools for
exploring both genetic variant status and pharmacological
response, based on a systematic analysis of both. It also describes
how the data can be readily accessed by non-bioinformatics users
(Figure 1 and Figures 5-7). Figure 2, Table 1, and Table Sl
variants (putatively protein function affecting and absent in the
non-cancerous genomes) identify putatively cancer-associated
functionally significant homozygous variants, and thus provide
valuable models of cancer cell behavior and drug response in the
presence of significant genetic alterations. This is informative in
the context of both synthetic lethal studies, and the identification
of putative gene knockout cell lines. Examples from Table 1 and
Table S1 include a wide variety of cancer and pharmacology
important genes, including drug targets (CKN2A, PTEN,
MAP3KY5), tumor suppressors (TP53, APC, VHL, CDH4),
oncogenes (BRAF, KRAS, EGIR), and apoptosis (TRAF1 and
PIK3R2), DNA damage response (FANCM, MLHI1, TDPI), and
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drug efflux (ABCB1) genes. We have previously verified functional
alteration for TDPI1 [61].

The variant frequency ratios in the NCI-60 compared to non-
cancerous genomes (Figure 3A) revealed inflection points at which
variant frequencies markedly deviate from the non-cancerous
genomes. Interestingly, the percentage of protein function
affecting, amino acid changing variants (Figure 3B) increases as
these ratios increase, implying functional relevance for the
enriched subset. As these variants occur in the normal population,
but at unusually high or low levels in individuals that have gone on
to develop cancer, there is implication of cancer pre-disposing or
protective functions. The presence of the 42 known cancer-driver
genes presented in Table 2 strengthens this hypothesis.

The systematic consideration of pharmacological response led
to the identification of the broad cellular diversity (in pharmaco-
logical response) visualized in Figure 4B. This implies the presence
of some combination of causal molecular events; however their
detailed identification is beyond the scope of the current study.
Our variant versus compound assessment (Table 3 and Table S4A
and B) identifies significant mathematical relationships between
gene variants and compound activities. Both germline and somatic
variants are included as our purpose is to reveal potential
influences on pharmacological response regardless of this distinc-
tion.

The Table S4A and B of significant relationships can be queried
by either gene or drug, dependent on the user’s interest, with
specific pairings of interest easily visualized using the Genetic
variant versus drug visualization tool (Figure 5). Examples from
these tables verifying previously associated pairings include BRAF
with i) vemurafenib (r=0.939), i) the MEK-ERK inhibitor
hypothemycin (r=0.621), and iii) the MEK inhibitor ARRAY-
162 (NSCs 761431 354462, and 764042 respectively)
[11,13,14,62,63,64]. Prior literature also provides indirect prior
evidence for multiple pairings. SETD2 is a histone methyl-
transferase correlated (r=0.637) to increased sensitivity in
azacytidine (NSC102816). Closely related 5-aza-2’-deoxycytidine
has been shown to mediate histone methylation levels [65]. IGF1IR
Is an anti-apoptotic correlated (r=0.627) to increased sensitivity
for the TOP2 inhibitor XK-469 (NSC697887). The same gene has
been previously associated with another TOP2 inhibitor, etoposide
[66]. STAT2 is a pro-apoptotic correlated (r=0.603) with
increased sensitivity the DNA  synthesis inhibitor aphidicolin
glycinate (NSC303812). The same gene has been previously
associated with another DNA synthesis inhibitor, 5-flourouracil
[67]. RAD52 is a homologous recombination gene correlated
(r=0.629) with increased sensitivity for the A7 alkylating agent
ifosfamide (NSC109724) (Figure 5C). Homologous recombination
has been previously shown to be involved in the repair of A7
alkylating agents [68]. Our large-scale statistical assessment of the
relationships between genes’ variants and compounds’ activities
(Table 3 and Table S4A and B), present all results of the analysis,
consistent with prior publications [13,14].

July 2014 | Volume 9 | Issue 7 | 101670


http://discover.nci.nih.gov/cellminer/
http://discover.nci.nih.gov/cellminer/

A.

NCI-60 WES and Pharmacogenomics

m NCI-60 Analysis Tools | Query Genomic Data Sets | Query Drug Data | Download Data Sets | Cell Line Metadata | Data Set Metadata

(®)Genetic variant

[/] Pattern comparison

AKT3 : Drugs targeted to the input pathway
BRAF summation NSC Drug name Mechanism of action Correlation
EGFR g _ 693255 AG-1478 EGFR inhibitor -0.424
ERBB2 g = 718781 Erlotinib EGFR or ERBB2 inhibitor -0.369
Creates pattern i 733504 Everolimus mTOR inhibitor -0.458
KRAS P Identifies drugs 683864  Temsirolimus mTOR inhibitor -0.370
NRAS with correlations
to this pattern 761431 Vemurafenib ~ BRAF inhibitor 0.440
679828 PD-98059 MEK inhibitor 0.447
741078 Selumetinib MEK inhibitor 0.631
354462 Hypothemycin MEK / ERK inhibitor 0.371
4 non-targeted drugs

Using different different combinations of variants, one can elucidate putative relationships
between mutational status and drug activity

Minimum identifiers

Optimal identifiers

NSC Drug name Mechanism of action Correlation Gene(s) Correlation Gene(s)
693255 AG-1478 EGFR inhibitor -0.386  BRAF, KRAS -0.448  AKT3, BRAF, ERBB2, KRAS, NRAS
718781  Erlotinib EGFR or ERBB2 inhibitor -0.369  AKT3, BRAF, EGFR, ERBB2, KRAS -0.369  AKT3, BRAF, EGFR, ERBB2, KRAS
733504  Everolimus mTOR inhibitor -0.393  BRAF, NRAS -0.517  AKT3, BRAF, EGFR, ERBB2, NRAS
683864 Temsirolimus mTOR inhibitor -0.365  AKT3, EGFR, ERBB2, NRAS -0.388  AKT3, BRAF, ERBB2, KRAS, NRAS
761431  Vemurafenib  BRAF inhibitor 0.907 BRAF 0.907  BRAF
679828  PD-98059 MEK inhibitor 0.584 BRAF 0.661 BRAF, NRAS, ERBB2
741078  Selumetinib  MEK inhibitor 0.605 BRAF 0.737  AKT3, BRAF, NRAS,
354462  Hypothemycin MEK / ERK inhibitor 0.667 BRAF 0.681 BRAF, NRAS

C.

—] EGFR - ERBB2

!

/

!

MTOR —

PIK3CB, HRAS
PTEN == piK3C3 KRAS
PIK3R5 NRAS ;
‘ RAF1
AKT1,2,3
‘ =] (MEK) MAP2K1, J.
MAP2K3, == BRAF
TSC1, 2 MAP2K6

!

—] (ERK) MAPK1, 3, 15

Figure 7. Use of the “Genetic variant summation” tool output for pharmacological exploration. A. The 6-gene input from Figure 6A
yields a summation pattern for the NCI-60. Input of this pattern to the “Pattern comparison” tool [15] identifies 12 significantly correlated drugs with
known mechanism-of-action, including 8 that target the input pathway. B. By using the different outputs from the “Genetic variant summation” tool
from Figure 6D as inputs to “Pattern comparison”, one may identify the minimum and optimal identifiers for the 8 drugs that target the input
pathway. C. The molecular pathway from which the input genes were selected, including the targets of the 8 correlated drugs from A and B. The red-
filled and blue-filled boxes indicate the drugs that work better, or worse, respectively, in the presence of the genetic variants from A and B.
doi:10.1371/journal.pone.0101670.g007
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“Drug mechanism of action abbreviations: A7 is alkylating at N-7 position of guanine; Apo is apoptotic, Db is DNA binder; DNMT is DNA methylttransferase inhibitor; Ds is DNA synthesis inhibitor; PKC is protein kinase C inhibitor;
STK is serine threonine kinase; T1 is topoisomerase 1 inhibitor; T2 is topoisomerase 2 inhibitor; and YK is tyrosine kinase inhibitor.

PNational Service Center identifier.
9Matthew’s correlation coefficient.

doi:10.1371/journal.pone.0101670.t003
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Our web-based “Genetic variant versus drug visualization™ tool
(Figure 5) was designed to facilitate exploration of potential gene
variants versus drug relationships. An example from the vemur-
afenib versus BRAF comparison (Figure 5C) is that one
melanoma, LOXIMVI, although having the V600E alteration,
has reduced sensitivity as compared to the other cell lines with that
mutation. Thus LOXIMVI provides a test case for V600E
containing melanomas that have resistance to vemurafenib, a
frequent clinical problem. A second example comes from the
ifosfamide versus RAD52 pairing (Figure 5C). It suggests that
while the RAD52 Q221E and Y415X variants might contribute to
increased drug sensitivity, the S346X does not (X is a stop codon).

The second pharmacogenomic CellMiner tool introduced in the
present publication is the “Genetic Variant Summation” tool.
Using the web-based “Genetic Variant Summation” tool shown in
Figure 6A, one may quickly identify the summations for variants
present for any gene, and for gene combinations of interest
(examples presented in Figure 6D). Moreover, by using these
summations as input into our ‘“Pattern Comparison” tool [15],
one in turn gains insight into relationships between variants and
pharmacological response. In the presence of the genetic variants
of the six genes from Figure 6A and 7A, the EGFR, ERBB2, and
MTOR inhibitors (within the blue box in Figure 7C) work less well
(have negative correlations), while the BRAF, MEK and ERK
inhibitors (within the red box in Figure 7C) work better (have
positive correlations). One may also gain insight into which genes
are most influential, in this case BRAF for the BRAF, MEK and
ERK inhibitors (Figure 7B, bottom half). Perhaps as importantly,
one may identify mutations not significantly influential, such as
those in KRAS and NRAS for the clinically important vemur-
afenib, and KRAS for selumetinib.

Taken in context with the CCLE and GDS databases, we
believe the NCI-60 has both liabilities and assets. The limited
number of cell lines renders difficult the detection and statistical
assessment of possible effects of rare genetic alterations. Likewise,
disease types absent within the set (for instance sarcomas and
hepatocellular carcinomas) are not assessable. Offsetting this, is the
unmatched array of clinically relevant drug and compound
information available in the NCI-60 DTP database, which
includes FDA-approved, clinical trial, known mechanism of action
drugs, and a vast number of compounds, including natural
products that can serve as seeds for novel anticancer classes [19].
The raw numbers for pharmacological comparison are: 1) for
CCLE, 24 drugs on less than 1000 cells yielding <24,000
responses, ii) for GDS, 138 drugs on less than 1000 cells yielding <
138,000 responses, and iii) for the NCI-60 19,940 compounds for
60 cells yielding 1,196,400 responses. This combination of known
and unstudied compounds is and will remain a unique asset for the
field. Known drugs may be used to identify important novel
molecular parameters in pharmacology, as was done for SLFN11
[69,70]. The unstudied compounds are particularly useful when
screening for any parameter for which drugs do not currently exist,
as was done in the case of Ro5-3335 for core binding factor
leukemia [71]. This aspect is entirely missing from both CCLE
and GDS. An additional important consideration for these activity
measurements are that the assays run for each group are different,
with  CCLE measuring ATP levels at 72-84 hours, GDS
measuring either nucleic acid content or oxidation-reduction at
72 hours, and the DTP measuring total protein at 48 hours post
treatment. As no one measurement type or time gives all
information, these datasets should be considered to be compli-
mentary, not exclusively informative. A second important asset for
the NCI-60 is the broad scope and quality of the associated
molecular data (see introduction), which will be difficult, or more
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accurately unfeasible to obtain for 1,000 cell line sets. These
multiple forms of molecular data become invaluable for systems
pharmacological approaches. Thus, the NCI-60 is and will remain
an important resource in conjunction with the other cell line and
upcoming patient tumor xenograft (PDX) databases.

The present document can be viewed as a compendium for
using the NCI CCR CellMiner [23] and its associated NCI DTP
[20] websites. One of our aims is to allow the broadest possible
range of users to assess genomic variant status and compound
activity in the NCI-60, and their relationships to one another in a
systematic and intuitive fashion. The variant data provide a
compilation of homozygous protein function affecting variants. It
identifies variants that occur in the general population that are
enriched or depleted in the context of cancer, implying a role in
predisposition or protection with respect to cancer progression.
The cell lines are revealed to have significant intrinsic variability
for drug resistance, increasing their usefulness as pharmacological
response models. All significant gene variant-drug correlations are
identified, providing a unique resource for the field. An assessment
of the total relative influences of genetic variants relative to their
presence or absence in normal genomes is provided. Finally, the
introduction of the “Genetic variant versus drug visualization”
and “Genetic variant summation” web-based tools will enable the
exploration of relationships between DNA variation and pharma-
cological response, both for single genes and groups of genes for
non-informaticists. This will provide the opportunity to generate
hypothesis, discover novel therapeutic agents, and gain insights
based on cancer genomics.
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