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conduction speed produced by myelination allows rapid 
transmission of electrical signals over large distances 
between neuronal cell bodies and their axon terminals, 
and thus confers improved cognitive function [44]. Precise 
regulation of this conduction velocity may allow tuning 
of motor skills and sensory integration [128, 147]. Conse-
quently, any disruption, in pathology, of the two special-
ised structures that are essential for rapid conduction—the 
myelin sheath and the node of Ranvier—can be expected 
to alter sensory perception, cognitive processing and motor 
output. Numerous articles have reviewed the malfunctions 
which stem from loss of the myelin sheath in disorders 
such as multiple sclerosis, stroke, spinal cord injury and 
cerebral palsy [44, 94, 95, 134, 146]. However, despite its 
importance, pathological disturbances of the node of Ran-
vier (and its surrounding domains) have received far less 
attention. Here we aim to redress this situation (see also 
[139]), because recent studies have highlighted structural 
changes at the node of Ranvier and altered function of pro-
teins at this site as key players in neuronal dysfunction.

Myelin and the node of Ranvier

Saltatory conduction along myelinated axons evolved 
in vertebrates as a way of rapidly transmitting electrical 
impulses across large distances. The axon down which 
the action potential travels is wrapped by myelin, which is 
produced by oligodendrocytes in the central nervous sys-
tem (CNS) and by Schwann cells in the peripheral nervous 
system (PNS). This myelin sheath increases the effective 
resistance of the axonal membrane, lengthening its electri-
cal space constant and thus promoting signal spread along 
the axon. More importantly [7], however, myelin decreases 
the effective capacitance of the axonal membrane, so that 
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Introduction

Timely delivery of information is essential for the proper 
function of the nervous system. The increase in axonal 
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less charge (in the form of Na+) needs to enter to depolarize 
the cell. Both of these effects increase the action potential 
conduction speed. In addition, the reduction of Na+ entry 
leads to less ATP being used by the axon on Na+ pumping, 
thereby allowing the conduction of the action potential to 
be more energetically efficient for the axon, at the expense 
of more energy being used to maintain the resting potential 
of the ensheathing oligodendrocyte [55].

Fundamental to the function of myelinated axons is 
the existence of discrete sites where Na+ enters to gen-
erate the action potential: the nodes of Ranvier are small 
(~1 μm long) regions along myelinated axons where there 
is a break in the myelin sheath and the axon membrane is 
in contact with the bulk extracellular space, allowing Na+ 
entry through voltage-gated channels (Fig.  1). In order 
for nodes to form and function correctly, highly complex 
interactions are needed between the axon and its ensheath-
ing glial cell. These interactions have four functions. They 
serve to: (1) define the node as an area free of the glial 
sheath, (2) localise voltage-gated Na+ (Nav) channels in 
the axonal membrane at the node, (3) localise axonal K+ 
channels on either side of the node, and (4) attach the ends 
of the myelin sheaths to the axon on either side of the node 
so that current cannot easily pass under the myelin (which 
would negate its membrane capacitance-reducing and 
resistance-increasing effects). A large array of scaffold-
ing and cell adhesion proteins is required to mediate these 
axon–glial interactions (Fig. 2), and the complexity of the 

protein–protein interactions involved makes the structure 
of the node and surrounding regions prone to disruption in 
pathological conditions.

To understand how nodal function may be disrupted in 
disease, we need to understand the electrical principles by 
which the node operates, how it is formed and the mole-
cules which are essential for its function.

Electrical principles for healthy node of Ranvier 
function

Four general principles must be obeyed if the node of Ran-
vier is to function correctly. Firstly, the molecular mecha-
nisms described below must produce a high concentration 
of Nav channels in the nodal membrane, where they will 
experience the full transmembrane voltage change of the 
action potential. This is needed for rapid activation of the 
channels. Any channels that are mislocalised to internodal 
regions, where they are covered with multiple layers of 
myelin, will experience a smaller voltage change and acti-
vate less, and more slowly, because in the internode the 
voltage change of the action potential (~100 mV) will be 
spread across 2N + 1 membranes (where N is the number 
of myelin wraps), resulting in axonal channels experienc-
ing a depolarization of only 100/(2N +  1)  mV or around 
9 mV for a typical CNS axon with N = 5 wraps. In addi-
tion to being localised at the node, there needs to be a 

NodeParanode ParanodeJuxtaparanode Juxtaparanode

Soma
Axon initial
segment Myelinated axon Axon terminal

Fig. 1   Schematic diagram showing the different domains of a mye-
linated neuron. The axonal region around the node of Ranvier is 
expanded to show the different axonal domains: the node of Ranvier 
where voltage-gated Na+ channels are expressed, the paranode where 

the myelin is attached to the axon, and the juxtaparanode where most 
voltage-gated K+ channels are located. Each of these domains is 
characterised by the expression of specific proteins (shown in Fig. 2)
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sufficient number of Nav channels at the node to generate 
enough current to depolarise the next node along the axon: 
a decrease of the number of functioning Nav channels may 
cause propagation failure.

Secondly, most voltage-gated K+ channels (Kv1 type, 
see below) are localised to the juxtaparanodal region 
(Fig.  2) [47, 112], although Kv3.1b channels and slowly 
activating KCNQ (also known as Kv7) channels are present 
at the node itself [32, 34]. Placing K+ channels in the jux-
taparanode under the myelin sheath will reduce the voltage 
they experience, and hence reduce their activation under 
normal conditions, for the reasons described above. How-
ever, the exact degree of activation occurring will depend 
on how much current flow can occur under the myelin to 
the juxtaparanodal region, to maintain the extra-axonal 
voltage close to the bulk extracellular value of 0 mV. The 
application of 4-aminopyridine (4-AP, which blocks Kv1 
type channels) has little effect on the propagation of sin-
gle action potentials (bursts of action potentials were not 
tested) in dorsal column axons [76] and similarly knock-
out of Kv1.1 produces only a small prolongation of the 

action potential in PNS axons [132]. However, more vari-
able effects of 4-AP were reported in optic nerve axons, 
with Foster et  al. [45] reporting relatively minor effects 
(compared to those on unmyelinated axons) while Devaux 
et  al. [32, 33] found a profound broadening of the action 
potential, suggesting that these channels contribute differ-
ent amounts to action potential repolarization in different 
axons. Although Kv3.1b channels are also blocked by 4-AP 
(unlike KCNQ channels), the action potential broadening 
that 4-AP produces in optic nerve axons is still seen with 
Kv3.1b knocked out [32] implying that 4-AP has its effect 
by acting on Kv1 channels. Furthermore, during node 
development, at least in the PNS, these channels prevent 
re-entrant excitation of the nodes following single impulses 
[148].

Thirdly, for the myelin to reduce the effective axonal 
membrane capacitance well, there needs to be little cur-
rent flow under the myelin sheath [6, 120]. As described 
below in the description of the molecular apparatus at 
the paranode, this current flow is reduced by the forma-
tion of adhesive junctions between the ensheathing glial 
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Fig. 2   Schematic diagram of the proteins at the node of Ranvier, 
paranode and juxtaparanode. These domains are the location of ion 
channels (Nav1.6 and Nav1.1, KCNQ2/3, Kv3.1 and Kv1.1/1.2), 
cell adhesion molecules (neurofascin 155 (NF155), neurofascin 186 
(NF186), contactin 1 and 2, contactin-associated protein (Caspr 1 and 
2), cytoskeletal scaffolding proteins [Ankyrin (Ank) G and B, protein 

4.1B, and postsynaptic density protein 93/95 (PSD93/95)], cytoskel-
etal proteins (βII- and βIV-spectrin), and extracellular matrix proteins 
(brevican, versican and a secreted form of NrCAM). Targeting and 
scaffolding mechanisms ensure that each protein is segregated to its 
specific subdomain
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cells and the axon. However, these septate-type junctions 
still leave a spiral pathway between the extracellular space 
at the node and the extracellular space at the juxtaparan-
ode [120], through which some current may flow to allow 

partial activation of juxtaparanodal K+ channels. During 
pathology, as described below, disruption of the paranodal 
structure may loosen this junction, leading to more extra-
cellular current flow beneath the sheath (Fig. 3c) and more 

b
Neonatal hyperoxia. Node elongation
without disruption of the paranodal
junction [118].

a
Normal physiology. Paranodal
junctions segregate Nav from Kv1
channels.

c Multiple sclerosis, cerebral hypo-
perfusion and inhibition of ATP
production. Node elongation with a
loss of NF155 may allow extracellular
current flow to juxtaparanode.
[64,88,114].

d Multiple sclerosis and ageing. Node
and paranode elongation with
redistribution of Kv1 into paranode.
[60,64]

e Multiple sclerosis, EAE, glutamate
excitotoxicity, and spinal cord injury.
Myelin retraction, paranodal loop
eversion, node lengthening and
mixing of Nav, Kv1 and Caspr.
[47,48,64,101,138].
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Contactin/NF155
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Fig. 3   Cartoon illustrating potential mechanisms underlying enlon-
gated nodes of Ranvier in different pathologies. a Diagram of the 
nodal region in control conditions. Nav channels and Kv1 chan-
nels are segregated by paranodes. b In neonatal hyperoxia, nodes of 
Ranvier are enlarged without any observed disruption of the paran-
odal junction. c In multiple sclerosis, cerebral hypoperfusion and in 
an experimental model of energy deprivation, the node of Ranvier is 
enlarged, there is a loss of NF155, and Nav channels slightly over-
lap with the paranodal protein Caspr. The disruption of the paranodal 
junction may allow current flow to under the myelin sheath to pro-

mote the activation of Kv1 channels at the juxtaparanode, thereby 
compromising action potential firing. d In the ageing brain and in 
multiple sclerosis, an elongation of the paranode can be caused by a 
separation of the paranodal loops. This is accompanied by a redistri-
bution of Kv1 channels into the paranodal area, where they overlap 
with Caspr and NF155. e Myelin retraction, and a breakdown of the 
molecular organisation of the node of Ranvier, paranode and juxta-
paranode, are observed in multiple sclerosis, EAE, glutamate excito-
toxicity, and spinal cord injury
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activation of the juxtaparanodal K+ channels, which may 
prevent action potential propagation, especially during 
repeated firing.

Fourthly, the nodal length and diameter need to be con-
trolled. The speed with which nodal Nav channels acti-
vate is partly determined by the capacitance of the node, 
and hence by its membrane area [6, 153]. An increase in 
area, as occurs in some pathologies (see below), will tend 
to slow the action potential (unless extra Nav channels are 
inserted into the membrane to oppose this effect). Further-
more, an increase in node length, as also occurs in pathol-
ogy, will increase the axial resistance for the current flow 
from the node to the internode that is needed to depolarise 
the next node, again slowing the action potential, or even 
causing it to fail.

Below, we will relate the molecular organisation of the 
nodal components, and the changes that occur in pathology, 
to these principles of nodal function.

Molecular organisation of the node of Ranvier

As mentioned above, the node of Ranvier needs a high 
density of Nav channels to function correctly, and also has 
some Kv channels which (by controlling the resting poten-
tial and Nav channel inactivation) are thought to regulate 
the amount of current that the Nav channels generate [9]. 
In the CNS, the Nav channel isoforms found at nodes of 
Ranvier are Nav1.6, Nav1.1 and (earlier in development) 
Nav1.2 [35, 117]. Despite its small size (~1 μm), the node 
of Ranvier is a densely populated area of the axon, with a 
large number of cytoskeletal scaffold proteins and trans-
membrane adhesion proteins, all of which help to recruit 
and maintain the Navs at this site. PNS and CNS nodes 
have the same function, however, they differ slightly in 
structure and the mechanisms for their assembly are differ-
ent [141, 158]. The biggest structural difference is that in 
the PNS, the nodes of Ranvier are apposed by nodal micro-
villi emanating from myelinating Schwann cells. These 
microvilli may play a role in local ion buffering, but also 
express gliomedin, a glial protein known to be important 
for the clustering of Nav channels at PNS nodes of Ranvier 
(for more information on PNS nodes of Ranvier see [13, 
122]). Although CNS nodes of Ranvier are not contacted 
by protrusions of oligodendrocytes, they are often closely 
associated with astrocytic processes, the function of which 
remains unknown [58, 59].

The clustering of Nav channels at nodes of Ranvier is 
mediated by the scaffolding protein ankyrin G (Fig.  2). 
Ankyrin G is a large protein with various protein-binding 
domains that simultaneously connect a number of proteins 
at the node to the cytoskeleton (although ankyrin G has 
also been observed, albeit at much lower levels, localised 

to paranodes where it has an unknown role [111]). In addi-
tion to Nav channels ankyrin G has been shown to bind 
KCNQ channels, the adhesion protein neurofascin 186 
(NF186) and cytoskeletal spectrins. This ability to bind the 
transmembrane protein NF186 and simultaneously bind 
the spectrin-based cytoskeleton is what allows ankyrin G 
to behave as a scaffold maintaining Nav and KCNQ chan-
nels at the nodes of Ranvier [and at the axon initial segment 
(AIS), where all these proteins are also found] [109, 110]. 
It has recently been shown that ankyrin G is transported 
down the axon to the nodes of Ranvier via a direct interac-
tion with kinesin 1 [8]. Importantly, Nav channels are co-
transported with ankyrin G, suggesting that ankyrin G is 
not only critical for the stabilisation of Navs at the node of 
Ranvier but also crucial for the correct subcellular targeting 
of these channels [8]. Ankyrin G is recruited to the nodes as 
a result of a direct interaction with NF186. NF186 plays an 
important role in the assembly and maintenance of the node 
of Ranvier via its interactions with the extracellular matrix 
components brevican, versican and a secreted soluble form 
of NrCAM, as well as via the aforementioned interaction 
with ankyrin G [31, 141]. NF186 may also play a role in 
the function of the node as it has recently been shown to be 
important for nodal expression of the Nav channel acces-
sory beta1 subunit, which modulates Nav function [21, 31].

Pathologies of the node of Ranvier

Although small changes at the node of Ranvier can have 
large effects on the speed of action potential propagation, 
it is only in the last decade that disruption of this site in 
pathology has been investigated in depth.

The correct function of nodal Nav1.6, Nav1.1 and 
KCNQ channels is important for saltatory conduction along 
myelinated axons. Alteration of the electrical excitability, 
permeability or expression of Nav1.6 or Nav1.1 channels 
can result in autism, epilepsy syndromes, periodic paraly-
sis, or fibromyalgia (reviewed in [37]). Similarly, mutations 
in KCNQ2 and KCNQ3 channels result in benign familial 
neonatal convulsions and myokymia (spontaneous muscle 
quivering), highlighting their importance in controlling 
excitability [87]. However, given that these channels are 
not only expressed at CNS nodes, but also at the AIS and, 
to a lesser extent, somatodendritic compartments [34, 81, 
84, 149], further work is needed to establish whether it is 
the defects in the function of these channels at the node of 
Ranvier that are responsible for these disorders.

Quivering 3J mice, which show a frame-shift base inser-
tion in the Sptnb4 gene  encoding βIV-spectrin and thus 
lack the C-terminus of βIV-spectrin, display neuromyotonic 
and myokymic discharges similar to those observed in mice 
with KCNQ2 mutations. Axons in the quivering 3J mice 
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were properly myelinated and displayed proper targeting 
of Nav channels, Caspr and contactin, and Kv1 channels 
to the nodal and surrounding regions. However, despite 
KCNQ protein levels being unaffected overall in the brain, 
KCNQ channels were not found at either CNS or PNS axon 
initial segments or nodes of Ranvier, suggesting that the C 
terminal of βIV-spectrin is essential for correct localization 
of these channels to the Ranvier node and AIS.

An increase in the length of the node of Ranvier (defined 
by NaV or NF186 immunolabelling) has been observed in 
multiple sclerosis [64], experimental autoimmune encepha-
lomyelitis (EAE) [47], ageing [60], cerebral hypoperfu-
sion [114], inhibition of mitochondrial ATP production 
[88], spinal cord injury [101, 138], glutamate applica-
tion to mimic its release in excitotoxic disorders [48], 
neonatal hyperoxia [118], and exposure to loud sounds 
[142] (Fig. 3). It has been suggested that this lengthening 
is due to myelin retraction and a breakdown of the para-
nodal junction (Fig.  3c, e), leading to a redistribution of 
Kv channels and current flow under the myelin sheath [48, 
101] (see below). However, in some of these conditions it 
is possible that the node lengthens (giving the appearance 
of myelin retraction) whilst maintaining intact paranodal 
and juxtaparanodal structures (Fig. 3b) because there is an 
insertion of more membrane at the node, or lengthens due 
to a withdrawal from the axon of paranodal loops imme-
diately adjacent to the nodal domains (adnodal paranodal 
loops). In this case, juxtaparanodal Kv channels may not 
be abnormally activated, but the increase of nodal surface 
area would lead to an increased nodal capacitance and, 
unless more Nav channels were inserted, a reduction of the 
action potential conduction velocity. A conduction velocity 
decrease has been observed in a number of transgenic mice 
in which some axons have normal nodal Nav channels, 
internodal myelin and transverse bands (a prominent com-
ponent of the paranodal junctions), but exhibit an eversion 
of paranodal loops adjacent to the node, resulting in small 
but significant increases in nodal length [13, 16, 36, 61, 
119]. The exact mechanisms involved in regulating changes 
in nodal length, however, are yet to be determined.

Intriguingly, altered neuronal activity can increase the 
length [78] and alter the position [42, 52] of the axon initial 
segment, which has molecular similarities to the node of 
Ranvier. However, it is not known whether similar molec-
ular pathways underlie the increase of node length that 
occurs in pathology, nor whether alterations of node posi-
tions occur in the disorders mentioned above.

Subtle changes at the nodes which result in a failure of 
saltatory conduction may contribute to psychiatric disor-
ders. Recent imaging studies in patients with schizophrenia 
[28, 96], bipolar disorder [2, 144], autism [4, 105] and per-
sonality disorder [86] have identified abnormalities in white 
matter integrity. Although the molecular basis for disease 

onset remains unknown, recent studies in schizophrenic 
and in bipolar patients have identified changes in nodal 
proteins. For example, microarray-based gene expression 
analysis across all brain regions of post-mortem brains 
from schizophrenia patients revealed a significant decrease 
in the expression of ankyrin G and neurofascin when com-
pared to control tissue [121]. Furthermore, in the same 
study, analysis of the superior temporal gyrus, a region 
that has been shown to be altered in schizophrenia patients, 
found a significant downregulation of genes encoding for 
NrCAM and Nav1.6 in addition to neurofascin and ankyrin 
G [121]. Genome-wide association studies have found 
ANK3 (the gene  encoding ankyrin G) to be a susceptibil-
ity gene for schizophrenia, and associated identified single 
nucleotide polymorphisms (SNPs) with bipolar disorder [5, 
10, 43, 121, 125, 127]. Moreover, a different study found 
an epistatic interaction between ANK3 and KCNQ2 SNPs 
in bipolar disorder, i.e. the effect of a mutation in one gene 
was dependent on the mutation present in the other gene 
[72]. Given that these proteins are all found at high densi-
ties in the nodes of Ranvier as well as the AIS, it is possible 
that subtle abnormalities at these sites could affect action 
potential propagation and synchronicity of neuronal firing. 
ANK3 has also been identified as a susceptibility gene in 
other disorders such as autism [14], attention-deficit/hyper-
activity disorder (ADHD) [66, 80], intellectual disability 
[66] and epilepsy [70]. Although the nodes of Ranvier have 
not been directly investigated in these disorders, the impor-
tance of ankyrin G in node development and stability pin-
points this region as a promising new area to consider when 
investigating the molecular basis of psychiatric disorders.

Molecular organisation of the paranode

The CNS node of Ranvier is defined by its flanking axo-
oligodendroglial interactions which form the paranodes. 
Here, folds of uncompacted myelin interact directly with 
the neuronal axolemma, forming septate-like tight junc-
tions. Although in vitro it has been shown that the paran-
odal junction is not a requisite for myelination [82], its for-
mation is thought to be the first step in the development of 
nodes of Ranvier [141].

The paranode plays three important roles. Firstly, it acts 
as a diffusion barrier that separates the Nav channels in the 
node of Ranvier from the Kv1 channels in the juxtaparan-
odes. Studies on the AIS, which strongly resembles the node 
of Ranvier, in particular on the first paranodal junction at its 
distal end, have given insight into this. At this junction, the 
cytoplasmic proteins ankyrin-B, αII-spectrin and βII-spectrin 
define an intra-axonal boundary that precedes the presence 
of ankyrin G, which it localises in the developing AIS [157]. 
In addition, protein 4.1B is involved in the segregation of 
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molecules between the AIS and the first myelin segment. 
Because of the similarity of the AIS to the node of Ranvier, 
it is generally assumed that the role of the paranode at the 
interface of the AIS and the first internode must be similar to 
its role when flanking the node of Ranvier.

Secondly, the paranode is required for “glueing” the 
myelin to the axon and ensuring a tight connection between 
the myelin and the axolemma. This is not only important 
for restricting membrane proteins to the node of Ranvier, 
but also for reducing current flow under the myelin sheath 
(see “Electrical principles for healthy node of Ranvier func-
tion” section above). The strong interaction between myelin 
and the axolemma is achieved by a complex of three pro-
teins: axonal contactin-1 and contactin-associated protein 
1 (Caspr1) and oligodendrocyte NF155. Knockout experi-
ments in mice have shown that a deficiency in any of these 
proteins results in disruption of the axon–oligodendrocyte 
septate-like junctions which, in turn, causes axonal damage, 
slower nerve conduction and severe neurological defects, 
including ataxia and motor paresis, and death [13, 16, 49, 
106, 129, 158]. Caspr1 and contactin-1 were first identi-
fied as neural adhesion molecules, which form a complex 
targeted to the paranodal junctions during myelination [39, 
74, 103, 104, 116]. Shortly thereafter, NF155 was identi-
fied as the first glial component of the axo-glial paranodal 
junction [20, 143]. Contactin-1 and NF155 are similar in 
structure, both containing six immunoglobulin (Ig) domains 
and four fibronectin type III domains, but it is through the 
Ig domains that they are thought to interact with each other 
and with Caspr1. In turn, Caspr1 has a small cytoplasmic 
tail which contains a binding motif for the scaffold protein 
4.1B, and this interaction is important for stabilisation of the 
Caspr1/contactin-1/NF155 complex at the paranode. The for-
mation and maintenance of paranodal junctions are not only 
reliant on the Caspr1/contactin-1/NF155 complex, but also 
on GPI-anchored proteins, lipid raft-associated proteolipids 
and gangliosides, myelin galactolipids, as well as netrin and 
its receptor Dcc, which all play a role in the maintenance 
of the paranode, although the underlying mechanisms are 
poorly understood [56, 67, 68, 79, 99, 108, 124, 140].

Thirdly, using electron tomography Nans et al. [92] sug-
gested a role for the paranode in directing protein traffic to 
the nodes. They identified an extensive network of filamen-
tous linkers in the paranodal axoplasm connecting the jux-
taparanode, the paranode and the node of Ranvier to each 
other, and showed that transport vesicles were tethered to 
the paranode by short filaments [92].

Pathologies of the paranode

Given the complex molecular anatomy needed at the para-
node to maintain the association between myelin and axons 

(Fig. 2), it is not surprising that it is a vulnerable structure 
in demyelinating disorders. Multiple sclerosis (MS) is a 
complex disease characterised by the demyelination of 
CNS axons affecting multiple parts of the brain and spi-
nal cord, and leading to visual loss, paraesthesia, numb-
ness, paralysis and other deficits. Although oligodendrocyte 
death plays a large part in the aetiology of MS, a number 
of studies have suggested that a disruption of the paran-
odal junctions may happen early in the onset of the disease. 
Post-mortem analyses of patients with multiple sclerosis 
show a disruption of the molecular organisation at the para-
nodes [24, 27, 64, 154] with decreased expression of Caspr 
and NF155 perhaps as a result of degradation [85, 154], 
and studies in an experimental model of MS (EAE) have 
shown that paranodal domain injury precedes the formation 
of internodal demyelinating lesions [47].

Several pathological conditions, including spinal cord 
injury [15, 69, 93, 130], demyelination caused by the 
shiverer mutation [131], multiple sclerosis and EAE [47, 
64, 65], and glutamate application [48], result in paran-
odal disruption and a retraction of the myelin sheath. This 
produces an elongated appearance of the node of Ranvier 
as described above, and a movement of 4-AP-blockable 
Kv1 channels (which are normally found under the mye-
lin sheath in the juxtaparanode, see below) closer to the 
elongated node (Fig. 3c–e) [64]. In some cases, the chan-
nels move out from under the myelin sheath so that they 
become more activated [15, 48, 69, 93, 131] (see “Electri-
cal principles for healthy node of Ranvier function” section 
above), which will tend to oppose impulse propagation, 
especially during repetitive activity. Consistent with the 
loss of the barrier function of the paranode, preventing pro-
teins moving from the node into the internode, post-mor-
tem analyses of MS patients show a diffuse expression of 
Nav channels along the demyelinated axons in white matter 
lesions [26, 91]. In demyelinating regions, NF155 immu-
nolabelling shows an increase in the length of the paran-
odal regions [64], suggesting a separation of the paranodal 
loops (Fig. 3d). It is therefore likely that disruption of the 
clustering of nodal proteins participates in the conduction 
and locomotor deficits occurring in MS patients. Similarly 
the alterations of the paranodal axo-glial junctions, and the 
exposure from under the myelin of Kv1 channels described 
above, might contribute to the conduction defects. In agree-
ment with this, blockade of Kv1 channels using 4-AP 
(known clinically as fampridine) is a clinically approved 
approach to improve motor deficits and vision in patients 
with spinal cord injury and multiple sclerosis [15, 51, 63, 
93, 126, 130] (reviewed by [57, 71]).

The mechanisms responsible for the alterations in the 
paranodes and nodal regions in MS have not yet been 
resolved, although new research is beginning to build 
a picture of the steps involved. MS is thought to be an 



168	 Acta Neuropathol (2014) 128:161–175

1 3

autoimmune inflammatory disorder leading to demyelina-
tion and neurodegeneration. In agreement with this, anti-
bodies to myelin have been identified in patients with MS 
[12, 115, 136, 137, 150, 155]. Interestingly, antibodies to 
the nodal and paranodal proteins NF155 and NF186 have 
also been observed in a subset of MS patients [41, 89], and 
these patients respond well to intravenous Ig injection and 
plasma exchange to remove the antibodies. A causal role 
for neurofascin antibodies in disrupting axonal conduction 
in a complement-dependent manner was corroborated by 
in vitro experiments applying the antibodies to hippocam-
pal slice cultures [89]. Complement is a signal for attack 
by CNS microglia, and it has been shown that, independ-
ent of demyelinating lesions, there is a correlation between 
an increased microglial density and disruption of the para-
nodes in MS [65]. Furthermore, the elongation of paran-
odes observed in EAE mice can be blocked by preventing 
microglial activation with minocycline [65]. However, it is 
less clear whether microglial attack is involved in causing 
the paranodal disruption that occurs in spinal cord injury 
or with a raised extracellular glutamate concentration.

Intriguingly, disruption of the paranode has also been 
reported in ageing primates [60], with the movement of 
Kv1.2 channels from the juxtaparanode to the paranode 
where they are more likely to be activated as a result of 
better electrical coupling of the extra-axonal space to the 
extracellular space at the node. Conceivably, therefore, par-
anodal disruption could contribute to the cognitive decline 
that occurs in ageing.

Molecular organisation of the juxtaparanode

Adjacent to the paranodal region lies the juxtaparanode 
(Fig.  1). This part of the axon is directly under the com-
pact myelin, but does not extend for the entire length of 
the internode. Juxtaparanodes are enriched in Shaker-type 
Kv1 channels with Kv1.1 and Kv1.2 being the most pre-
dominant forms [112, 113, 148, 151, 152]. The impor-
tance of this cluster of Kv channels in mature myelinated 
axons, however, remains somewhat contested since, as 
reviewed above (see “Electrical principles for healthy node 
of Ranvier function” section), in normal conditions the 
application of 4-aminopyridine (to block Kv channels) to 
different axon tracts can have little effect on action poten-
tial propagation [45, 76] or can significantly broaden the 
action potential [32, 33]. Furthermore, at least in the PNS, 
whether Kv channels are clustered at the juxtaparanode 
or diffusely positioned along the internodes also seems to 
have little effect on the action potential propagation speed 
for single stimuli [107, 145]. This may be because the con-
duction speed depends primarily on the initial depolarizing 
phase of the action potential and less on its repolarization 

phase. Alternatively, it may reflect the fact that, even when 
these channels are correctly located at the juxtaparanode, 
they are little activated by the small voltage change they 
experience there. Despite this, Kv channels are thought to 
promote the fidelity of conduction by maintaining the inter-
nodal resting potential and preventing activation of any 
Nav channels present in the internodal axonal membrane. 
They thereby maintain the temporal precision of action 
potentials and dampen repetitive firing. During PNS node 
development, Kv1 channels prevent re-entrant excitation of 
the nodes [22, 50, 75, 77, 148].

The accumulation of Kv1 channels at the juxtaparan-
ode is dependent on the cell adhesion molecules contac-
tin-2 (known as TAG-1 in rodents) and Caspr2 [53, 107, 
145]. Although deletion of contactin-2 or Caspr2 prevents 
the accumulation of Kv1 channels at juxtaparanodes, so 
that they are diffusely expressed along the internodes, as 
described above this has little effect on the speed of nerve 
conduction when tested in the PNS [107, 145]. Contac-
tin-2 and Caspr2 are homologous to the paranodal proteins 
contactin-1 and Caspr1, and form a heteromeric com-
plex on the axonal membrane. In contrast to the paranode 
(where axonal contactin-1/Caspr1 binds to oligodendro-
glial NF155), the oligodendroglial binding partner to the 
contactin-2/Caspr2 complex is contactin-2, which is also 
expressed on the myelin sheath. Similar to what happens at 
the paranodes, contactin-2 and Caspr2 are stabilised at the 
juxtaparanodes via an interaction with the scaffolding pro-
teins 4.1B, ankyrin-B, αII-spectrin and βII-spectrin. All of 
these scaffolding proteins are also found at paranodes, sug-
gesting that perhaps the segregation of paranodes and juxta-
paranodes is in part accomplished by the different localisa-
tion of the glial adhesion molecules NF155 and contactin-2 
[19, 23, 30, 38, 62, 100]. Also found at the juxtaparanodes 
is the desintegrin and metalloprotease ADAM22, which 
is closely associated with Kv1 channels [98]. ADAM22 
recruits the MAGUK scaffold proteins PSD-93 and PSD-
95 to the juxtaparanodes, but the exact function of this is 
unknown [98]. Intriguingly, in peripheral nerves ADAM22 
is thought to play a role in controlling myelination via its 
interaction with a molecule secreted by Schwann cells, 
Lgi4 (leucine-rich glioma-inactivated 4) [102].

Pathologies of the juxtaparanode

Mutations in CNTN2 and CNTNAP2 (the genes encoding 
contactin-2 and Caspr2, respectively) have been identified 
in autism spectrum disorder, epilepsy, Tourette’s syndrome, 
schizophrenia and ADHD [11, 40, 46, 90, 97, 135]. In the 
CNS, contactin-2 deletion leads to a loss of Kv1 cluster-
ing at juxtaparanodes, a reduction of internode length, 
and abnormalities of learning and memory, although it is 
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unclear whether these are related to the paranodal and inter-
nodal alterations [123]. More recently it has been shown 
that, in addition to its role at the juxtaparanode, Caspr2 is 
expressed at synapses and involved in neural circuit assem-
bly, and it has been suggested that it is a failure in this func-
tion that may underlie the effect of Caspr2 mutations on the 
development of autism [3].

Genetic mutations in Kv1 channels in humans, or deple-
tion of the Kv1.1 gene in mice, result in hyperexcitability, 
episodic ataxia, myokymia and epilepsy [1, 17, 18, 25, 29, 
83, 132, 156, 160], consistent with a role for Kv1 channels 
in limiting action potential generation. However, Kv1.1 and 
Kv1.2 channels can also be found in the AIS and axon termi-
nals, and deletion of the Kv1.1 gene produces only a small 
prolongation of the compound action potential in mature 
nerves [132], making its loss at the juxtaparanode an unlikely 
explanation for the dramatic phenotypes observed in humans 
and mice. A more plausible explanation was provided for 
the PNS by Chiu and colleagues [22] who suggested that Kv 
channels expressed at the juxtaparanode of the last few inter-
nodes, before the synaptic terminal, play an important role in 
regulating neurotransmitter release.

Juxtaparanodal Kv channels are thought, however, to play 
an important role in demyelinating pathologies, where (as 
noted above) loss of the integrity of the paranodal axon–oli-
godendrocyte junction results in exposure of these channels 
from under the myelin. This will lead to them experiencing a 
larger voltage change during the action potential (see “Elec-
trical principles for healthy node of Ranvier function” section 
above), and generating a larger outward membrane current, 
which contributes to the loss of action potential propagation. 
Blockade of these channels using 4-AP is a current treatment 
for relieving the conduction defects in multiple sclerosis and 
other demyelinating diseases [15, 51, 54, 63, 93, 126, 130] 
(reviewed by [57, 71]). However, the occurrence of seizures 
prevents administration of the high doses of 4-AP that are 
maximally effective at promoting action potential propaga-
tion in demyelinating axons [71], and it has been suggested 
that the channels being blocked to improve function are not in 
the demyelinating axons but at synaptic terminals [133].

Auto-antibodies to Kv1 channels have been found to 
contribute to Morvan’s syndrome and limbic encephalitis 
[73]. These frequently bind to juxtaparanodal K+ channels, 
suggesting that block of these channels contributes to the 
symptoms of neuromyotonia (spontaneous muscle fibre 
activity), confusion, anxiety, agitation, delirium or insom-
nia seen in these patients.

Conclusions

Action potential propagation along myelinated axons 
is dependent on healthy nodes of Ranvier. A large and 

complex machinery has evolved to produce correctly func-
tioning nodes of Ranvier by ensuring the correct targeting 
of Nav and Kv channels, the formation of tight junctions 
between paranodal loops and the neuronal axolemma, 
and the control of nodal length and diameter. Here, we 
have described the different domains which comprise the 
nodes of Ranvier and explained how changes at these sites 
underlie the variations in neuronal excitability observed in 
a number of neuropathologies. However, further work is 
still required to fully understand the molecular mechanisms 
that re-structure the node of Ranvier in disorders such as 
multiple sclerosis, ageing, spinal cord injury and neonatal 
hypoxia. In addition, proteins found at the node of Ran-
vier have been implicated in the pathology of psychiatric 
diseases such as schizophrenia, bipolar disorder, autism, 
personality disorder, ADHD and cognitive impairment, 
but it is still unclear whether the nodes of Ranvier and 
action potential propagation are indeed altered in patients 
with these disorders. Research into the basic mechanisms 
underlying the development, maintenance and disruption of 
nodes of Ranvier and paranodal junctions is likely to gen-
erate new therapeutic targets for neurological disorders of 
excitability.
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