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ABSTRACT
Classification of antibody complementarity-determining region (CDR) conforma-
tions is an important step that drives antibody modelling and engineering, prediction
from sequence, directed mutagenesis and induced-fit studies, and allows inferences
on sequence-to-structure relations. Most of the previous work performed confor-
mational clustering on a reduced set of structures or after application of various
structure pre-filtering criteria. In this study, it was judged that a clustering of every
available CDR conformation would produce a complete and redundant repertoire,
increase the number of sequence examples and allow better decisions on structure
validity in the future. In order to cope with the potential increase in data noise, a
first-level statistical clustering was performed using structure superposition Root-
Mean-Square Deviation (RMSD) as a distance-criterion, coupled with second- and
third-level clustering that employed Ramachandran regions for a deeper qualitative
classification. The classification of a total of 12,712 CDR conformations is thus
presented, along with rich annotation and cluster descriptions, and the results
are compared to previous major studies. The present repertoire has procured an
improved image of our current CDR Knowledge-Base, with a novel nesting of con-
formational sensitivity and specificity that can serve as a systematic framework for
improved prediction from sequence as well as a number of future studies that would
aid in knowledge-based antibody engineering such as humanisation.

Subjects Bioinformatics, Computational Biology, Molecular Biology, Immunology
Keywords Antibody structure, Canonical model, CDR conformation, Dynamic hybrid tree-cut,
Humanisation, Clustering, Nested architecture, Redundant repertoire, Prediction

INTRODUCTION
Antibodies achieve the recognition and binding of antigens mainly by variation in the

length and sequence of six loops called complementarity-determining regions (CDRs),

three in the Light chain (CDR-L1, -L2, -L3) and three in the Heavy chain (CDR-H1, -H2,

-H3). Early comparison of the experimental data suggested that CDRs usually adopt one

of a limited number of possible conformations, depending on the presence of a few key

residues in the sequence. This observation gave rise to the canonical model in which the

three-dimensional conformation (or canonical class) of the corresponding loop could be
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predicted from sequence templates for five of the six CDRs (Chothia et al., 1986; Chothia

et al., 1989; Chothia et al., 1992; Chothia & Lesk, 1987). Since this initial classification,

further analysis has revealed novel classes, improved the predictability of the known

ones, and offered insights into antigen recognition and binding mechanisms (Martin &

Thornton, 1996; Al-Lazikani, Lesk & Chothia, 1997). Later, a number of studies (Shirai,

Kidera & Nakamura, 1996; Shirai, Kidera & Nakamura, 1999; Furukawa et al., 2001; Kuroda

et al., 2008) provided structure-determining sequence rules for the prediction of the base

conformation of the sixth and final CDR-H3.

Today, the increasing amount of new structural data presents an opportunity not

only to improve the accuracy of conformational prediction from sequence alone, by

identifying novel classes and reassessing the known ones; but also to study the basis of

loop folding and gain insights into subtle antibody/antigen interactions. Steps are being

taken in this direction that will enhance the capabilities of knowledge-based antibody

engineering, e.g., humanization (Saldanha, 2009) and assist attempts at de novo antibody

design (Yu et al., 2012). In this study, an updated repertoire of CDR conformations

was acquired by clustering and analysis of all available antibody loop structures. The

primary goal was to create a complete repository of the redundant CDR conformational

repertoire that is observed and deposited in the Protein Data Bank (PDB, Berman et al.,

2000), i.e., obtain a classification for every single CDR, regardless of quality or sequence

redundancies. This would allow a number of better informed, dedicated analyses regarding

sequence-to-structure relations, induced fit, structural consistency, mutation studies or

more targeted thermodynamic simulations. Most previous work was conducted when only

a limited number of structures were available (Chothia et al., 1989; Martin & Thornton,

1996; Barré et al., 1994; Rees et al., 1994; Reczko et al., 1995; Tomlinson et al., 1995; Morea et

al., 1997; Guarne et al., 1996; Morea et al., 1998; Morea, Lesk & Tramontano, 2000; Oliva

et al., 1998), or only specific CDRs were targeted for clustering (Kuroda et al., 2009;

Teplyakov & Gilliland, 2014), or the selected datasets were heavily filtered in order to

avoid redundancies and the inclusion of potentially wrong structures (North, Lehmann

& Dunbrack, 2011). The automatically updated online repertoire AbYsis is maintained at

http://www.bioinf.org.uk/abysis, however it doesn’t annotate the redundant CDR content.

In contrast, the very recently released CDR structural database SAbDab (Dunbar et al.,

2014) does contain the redundant CDR repertoire, but the characteristics of the clustering

method employed are very different from the present work, as indicated later.

A strategic decision was made to include all redundant CDR conformations, especially

those from the same antibody presented in different PDB structure files and those from

multiple copies of the same antibody variable chain within the same PDB file. Previous

experience with examining CDR conformations suggested that different structures or

copies of the same CDR may reveal its conformational flexibility, which is a useful aspect

for molecular modellers and biologists who study the antigenic interface. By randomly

selecting only one structure file and one variable chain copy of a given CDR, there is the

risk of picking a non-representative instance which is different from the CDR’s average

conformation, or picking a structure that contains errors or invasive crystal packing.
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Furthermore, random selection also removes from the dataset the possibility of observing

an antibody in both its free and bound state, wherever this is available. Finally, it was

judged that a poor average crystallographic resolution does not a priori point to a wrong

structure and that a corresponding pre-filtering would potentially prevent the inclusion of

new conformations in the repertoire.

The second goal was to take advantage of all antibody structural information in order to

create CDR clusters that can lead to advancement in the area of conformational prediction

from sequence alone (Nikoloudis, Pitts & Saldanha, 2014). The enrichment of the cluster

populations (CDRs with the same or similar conformations) with as many examples as

possible is crucial to allow the making of connections between sequence and structure.

The present analysis aimed to serve as a preliminary framework not only by producing an

updated conformational dataset, but also by creating a novel nested clustering architecture

that is more beneficial for prediction from sequence alone. Specifically, the nested

repertoire tries to optimise the trade-off between the proliferation of sequence examples

and a possible detrimental effect from small structure-solving errors.

By including all available CDR structures in the dataset, any conclusions on conforma-

tional validity were shifted to the post-clustering stage of analysis. However, at the same

time there is an increase in noise of the dataset and as a consequence it was expected

that the extents of some of the natural conformational clusters could be distorted or

overlapping. These characteristics were taken into consideration in the design of the

clustering steps in order to optimise the cluster separation, while minimising the loss

of cluster specificity and/or sensitivity. The clustering procedure itself should help with

the assessment of conformational validity and act as a first filter by efficiently excluding

outliers from the natural clusters.

METHODS
Acquisition of antibody structure files
The three-dimensional coordinates of all antibody structures were downloaded from

the PDB (Berman et al., 2000). Since the presence of antibody variable chains inside a

PDB file is not annotated in a unique and systematic way, the advanced search tool of the

database was used in order to apply composite search filters. The simple text search query

of the database with the keywords “antibody” or “immunoglobulin” returns hundreds of

unwanted PDB files, for example those that only contain a constant antibody fragment

(Fc) or those that contain the keyword in their primary citation without any relevant

structures in the file. Conversely, in several cases, antibody variable chains (Fv) are found

in PDB files that do not contain the keywords “antibody” or “immunoglobulin” at all. In

order to refine the obtained results, multiple queries were run using a variety of relevant

keywords and their combinations with appropriate logical AND/OR/NOT connectors. The

keywords employed typically included: “antibody”, “immunoglobulin”, “Fab”, “Fv”, “Fc”,

“light chain”, “heavy chain”, “intact”, “complete”, “camelid”, “llama”, “VHH”, “light dimer”

and “Bence -Jones”.
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Table 1 Summary of clustering dataset contents. Total clustered members per CDR include outliers and
singletons.

Total PDB files 1,351

Files containing structures from two
antibodies/idiotypes-anti-idiotypes

8/5

Total antibody structures 1,359

Total number of CDRs 13,086

CDRs with missing Cα coordinates 374

Total clustered CDRs 12,712

CDR-L1 clustered 2,155

CDR-L2 clustered 2,174

CDR-L3 clustered 2,164

CDR-H1 clustered 2,057

CDR-H2 clustered 2,130

CDR-H3 clustered 2,032

Total non-redundant CDR sequences 2,827

PDB files with lambda isotypes 194

Heavy only 77

Light only 78

PDB files with bound antibodies 673

The final dataset comprised of exactly 1,351 PDB structure files, 8 of which contain

variable chains from two different antibodies (5 were idiotype-anti-idiotype complexes),

increasing the total number of antibody structures to 1,359. The total number of included

CDRs is 12,712, 2,827 of which are unique in sequence. Table 1 contains a summary of the

dataset contents. The dataset was locked on the 31st of December 2011 and should reflect

the complete repertoire of antibody CDR structures up to that date. The set should be

complete, given the proviso that there was a lack of specific tagging or annotation in the

required PDB files.

Numbering of antibody variable chains and definition of CDR
extents
All the antibody variable chain sequences in the dataset were structurally numbered in

order to detect the beginning and end of each CDR, using regular expressions for the

detection of the location of conserved sequence patterns. The initially adopted numbering

scheme was the Chothia scheme (Chothia & Lesk, 1987) because it correctly places the

insertion points in CDR-L1 and CDR-H1, but also because it is very frequently used in

the CDR-related literature. The definitions used for the extents of CDRs-L1, -L2, -L3

and -H3 were also those established by Chothia & Lesk (1987) because they are most

commonly used. However, for CDR-H1 and CDR-H2, the definitions adopted were those

used in North, Lehmann & Dunbrack (2011). Based on previous experience from the

visual examination of CDR-H1 structural superpositions, it was noted that the N-terminal

portion of the loop where Kabat’s (Kabat et al., 1991) and Chothia’s CDR-H1 differ shows

great variability both in sequence and structure. Thus, it was judged that this cluster
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Figure 1 Superposition of 7-residue and 11-residue CDR-L2. The 5 C-terminal residues of 1A4K (in
red) 7 residue CDR-L2 (L52–L56) are superposed to the equivalent portion of 3FFD (in blue) 11 residue
CDR-L2. Position L51 is highlighted in green, as the best insertion point in the structural numbering
scheme. Graphics created with Swiss-PdbViewer (http://www.expasy.org/spdbv/).

analysis would be more revealing and useful if the CDR-H1 extent was considered as

the entire length of the loop, namely residues H23–H35. As far as CDR-H2 was concerned,

it was observed that the C-terminal portion of Kabat’s definition (i.e., residues H59–H65)

remained relatively unchanged conformationally in most CDRs. Therefore, only the length

of the symmetrical loop portion between residues H50–H58 was retained for the CDR-H2

definition.

CDR length and numbering scheme amendments
A number of antibodies contained a CDR with more residues than the current scheme

could accept. The CDRs concerned were CDR-L2, -L3, -H1, -H2 and -H3. These CDRs,

except for CDR-L2, already contained an insertion locus so the maximum allowed length

was extended by adding more insertion positions (letters) to the numbering scheme. An

insertion point was required in CDR-L2 for an 11-residue length. By superposing the

new 11-residue loop (PDB code 3FFD) on a typical 7-residue one (1A4K), it was strongly

suggested that the insertion point in CDR-L2 should be placed at position L51 (Fig. 1).

Two more cases required intervention in the numbering scheme. The first was in

Light chain framework-3 (LFR3), where structure 1PW3 showed a 2-residue insertion.

Superposition of this structure to the respective portion of a typical Light variable chain

(1A4K) revealed that an insertion point should be introduced at position L67 (Fig. 2).

The second case was raised by two anti-HIV antibodies observed in structures 3RPI and

3SE8, showing an insertion of 3 and 7 residues respectively in Heavy chain framework-3

(HFR3). Superposition of these frameworks onto a typical HFR3 (3MLY) suggested that

an insertion point should be placed at residue H74 (Fig. 3). Table 2 summarises all the

amendments brought to the initial numbering scheme in order to accommodate the

special cases discovered in the dataset.

Clustering overview
In order to increase the usefulness of the clustering result in a way that meets the needs of

a wider range of applications, a novel three-level nested cluster architecture was devised.

At the parent-level, members of the same cluster share the least similarity in terms of
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Figure 2 Superposition of Light Framework 3 with an insertion onto a typical LFR3. Residues L60–L75
of crystal structure 1PW3 (in red), containing an insertion, are superposed onto a typical example of the
equivalent Light chain fragment (here 1A4K, in blue). The new insertion point was introduced in position
L67 (highlighted in green). Graphics created with Swiss-PdbViewer (http://www.expasy.org/spdbv/).

Cα-atom Root-Mean-Square Deviation (RMSD), as the cluster is designed to include all

the variants of a conformational theme within the limits of a statistical cluster validation.

At the daughter-level, RMSD variance is successively reduced and members of the same

cluster are increasingly similar. This stratified scheme could also be perceived as a variation

of sensitivity to the potential natural flexibility of a CDR conformation (looser clusters), as

well as a trade-off to the specificity of a particular shape (tighter clusters).
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Figure 3 Superposition of Heavy Framework 3 with an insertion onto a typical HFR3. The Cα-trace
of a two-leg superposition of residues H65–H73 and H76–H78 of crystal structures 3RPI (in yellow)
and 3SE8 (in red), containing an insertion, onto the equivalent residues of a typical structure without
an insertion (here 3MLY, in blue). The proposed insertion point H74 is highlighted in green in 3MLY
and is shown with its side chain (Ser). Graphics created with Swiss-PdbViewer (http://www.expasy.org/
spdbv/).

First-level clusters were formed by the use of a statistical clustering method, while

second- and third-level clusters were defined using qualitative criteria. More specifically,

the data was initially analysed by average- and complete-distance hierarchical clustering

using RMSD distance matrices, and pruning of the resulting trees was performed with

the Dynamic Tree Cut algorithm (Langfelder, Zhang & Horvath, 2007). RMSD distance

matrices were obtained by performing all-by-all Cα-atom superpositions of the entire

CDR loops, per individual CDR length. The result of hierarchical clustering was a set of

level-1 structural classes, as traditionally produced by various methods in all previous CDR

conformational studies, meaning that members of the same cluster were similar to a degree

that is defined by the tree-pruning and clustering criteria.
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Table 2 Modifications brought to the numbering scheme. Modifications brought to the numbering
scheme in the light of new and atypical sequences. LFR3, light chain framework 3; HFR3, heavy chain
framework 3. CDR-H3 insertion positions H100uvw were not required in the present dataset, but were
added for the technical continuity up to the pre-existing positions H100xyz and for future use. Thus
3U1S has a CDR-H3 length of 31 residues.

Locus Numbering
scheme addition

Maximum
CDR length

Structures with the
new maximum length

CDR
extents

CDR-L1 – 17 N/A L24-L34

CDR-L2 L51abcd 11 2GSG, 2H32, 2H3N, 2OTU,
2OTW, 2QHR, 3FFD

L50-L56

LFR3 L67ab N/A 1PW3 N/A

CDR-L3 L95cd 13 2GSG, 2OTU, 2QHR, 3FFD,
3MLW

L89-L97

CDR-H1 H31cdefghijk 24 3K3Q H23–H35

CDR-H2 H52ef 15 3TWC, 3TYG H50–H58

HFR3 H74abcdefg N/A 3SE8 N/A

CDR-H3 H100nopqrstuvw 34 3U1S H95-H102

Subsequently, φ/ψ angles were calculated for all CDR residues, each residue was

attributed to a Ramachandran region and Ramachandran logos were formulated for

each CDR. For practical and computational reasons, the boundaries of the different

Ramachandran regions were based on the Ramachandran Plot subdivision used by North,

Lehmann & Dunbrack (2011) (Fig. 4). Two types of Ramachandran logos are defined for

each CDR, namely one where similar conformational regions were represented by the same

letter (also suggested in North, Lehmann & Dunbrack, 2011), which will henceforth be

called the reduced-Ramachandran Logo or r-RL, and one where every conformational

region is represented individually, called the full-Ramachandran Logo or f-RL. For

the formation of level-2 clusters, the members of any given parent level-1 cluster were

regrouped by identical r-RL, meaning that members of the same cluster contain residues

at each CDR position that belong to similar conformational regions. For the formation

of level-3 clusters, the members of any given level-2 cluster were regrouped by identical

f-RL, meaning that members of the same cluster contain residues at each CDR position

that belong to the exact same conformational region. An example showing the layout of

this nested cluster architecture can be seen in Fig. 5. Outliers/singletons were all given the

tag ‘-O-‘ in their conformational logo, which created a common parent class that allowed

the subsequent formation of 2nd- and 3rd-level clusters within outlier space, as well.

Clustering method
The RMSD distance matrices produced for each CDR/length combination were used for

hierarchical analysis in the statistical package RGui (GNU project, http://www.sciviews.

org/ rgui/). The average-linkage and complete-linkage algorithms were preferred to

single-linkage in order to avoid chaining effects in dense configurations of the dataset

in conformational space, and were both explored for every CDR/length combination.

Hierarchical trees (dendrograms) that gave a Cophenetic Correlation Coefficient (CPCC)
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Figure 4 Ramachandran plot divided into conformational regions. A: α-helix region; B: β-sheet
region; D: δ-region; G: γ -region; L: left-handed helix region; P: polyproline II region. For the con-
struction of reduced-Ramachandran logos (r-RL), residues belonging to regions with similar confor-
mations were represented by the same letter: (A/D) = A, (B/P) = B, (L/G) = L. For the construction
of full-Ramachandran logos (f-RL), each conformational region was represented individually. E.g.,
Ramachandran logos for CDR-L3 1TJH L:r-RL: BBAABBBBB f-RL: BBDABPPPB.

lower than 0.6 were directly discarded as pointing to poor fitting of the data. In all

cases at least one of the hierarchical methods achieved a CPCC score greater than 0.6.

Both hierarchical trees were considered whenever the CPCC was acceptable and

comparatively evaluated using the criteria below.

The Dynamic Hybrid Tree Cut method of the Dynamic Tree Cut statistical package in

RGui was utilised for dendrogram pruning. The package has been previously successfully

used for the detection of biologically meaningful clusters in a protein–protein interaction

network in Drosophila (Dong & Horvath, 2007). The Dynamic Hybrid Tree Cut algorithm

offers flexibility, by allowing the user to set the desired pruning parameters for cluster

and outlier recognition. Specifically, the algorithm defines four cluster shape criteria:

(1) the minimum number of cluster members (N0, minClusterSize), (2) the maximum

scatter of the pairwise distances between the lowest merged objects (CDR structures) in

each cluster, called the cluster core (dmax, maxAbsCoreScatter), (3) the maximum joining

height at which a cluster attaches to the rest of the dendrogram (hmax, cutHeight), and

(4) the minimum distance between the core scatter and the joining height of a cluster to

the dendrogram, called the cluster gap (gmin, minAbsGap). The core scatter is defined as the

average of all pairwise dissimilarities between objects belonging to the core of the cluster.
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Figure 5 Example of the nested clusters architecture. Level-1 cluster H1-13-III (i.e., the third top-level
cluster of 13-residues CDR-H1), defined by RMSD-based hierarchical clustering, contains 3 Level-2
clusters, the members of each sharing the same reduced-Ramachandran logo, and in total 11 Level-3
clusters, the members of each sharing the same full-Ramachandran logo. All Level-3 clusters share the
same reduced-Ramachandran logo with their parent Level-2 cluster, but each one displays a distinct
full-Ramachandran logo.

Consequently, a branch is considered a cluster when it contains a minimum number of

members (N0), its joining height is at most hmax, its core is tightly connected (dmax) and

distinct from its neighbourhood (gmin). Specifically, the minimum cluster gap distance

(gmin) can be perceived as the minimum allowance for the cluster to expand its diameter

from its core until it reaches a neighbouring cluster.

Although these pruning parameters are explained in depth in the corresponding

method paper (Dong & Horvath, 2007), an example of the application of pruning

parameters to an actual dendrogram from this analysis can be seen in Fig. 6. The number of

objects assigned to the core of a cluster is derived from the following implemented formula:

nc = min


(N0/2 +


N − N0/2),N


(1)

with nc the number of core objects, N0 the defined minimum cluster size and N the total

number of objects in the cluster. As a consequence, the core of small clusters can be as large

as the whole cluster, while the core of large clusters remains a fraction of the lowest joined

objects.
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Figure 6 Illustration of the parameters taken into account for the dendrogram pruning of CDR-L1/12 residues with the Dynamic Hybrid method.
The minimum gap statistic (gmin) defines the minimum required distance between the average core scatter and the joining height of the clusters
(‘Gap’), for successful cluster formation. In this example, gmin is set lower than the displayed Gaps, so nodes above its value were considered as
different clusters.

The algorithm examines the dendrogram in a bottom-up manner and attempts to

perform three types of branch merges: a merge of two singletons which creates a new

branch, the addition of a singleton to a branch, or a merge of two branches. In each

step two branches are tested against the pruning criteria: if both considered branches

satisfy the criteria then both are declared “closed” and no further objects are added in

the current step. Otherwise, the branches are merged and this new group is reassessed for

cluster conformity during the next merge with an adjacent branch. Objects too far from a

cluster are left unlabelled as outliers. Once all possible object assignments are performed,

the method allows a further optional ‘Partitioning Around Medoids-like’ step (PAM).

During this step, unlabelled objects (outliers) are considered one-by-one and are assigned

to existing clusters based on a user-defined maximum allowable distance, or when their

distance is smaller than the cluster’s radius. There are two options available for the cluster

radius definition (parameter: useMedoids[=FALSE/TRUE]). If average distances are being

used (FALSE), then the radius of the cluster is defined as the maximum of the average

distances between objects in the cluster. If instead medoids are used (TRUE), then the

radius is defined as the maximum distance of the cluster’s medoid to the cluster’s objects.

In order to detect the pruning parameters that lead to the best clustering result, an

R routine was created which cycles the pruning method through a range of hmax, then
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gmin, then dmax using 0.1 increment steps. In each step, the quality of the clusters was

assessed by calculation of the average Silhouette Coefficient (SC) and a cut-off of 0.51 was

defined as the minimum required coefficient value for a reasonable structure to be found.

The minimum number of members per cluster (N0) was set to 2, in order to make sure

that true singletons that could not form a compact cluster core with sufficient separation

from neighbouring clusters were left as outliers. The output of this routine returned the

clustering parameters, the number of clusters and outliers, the average SC and an auxiliary

index showing the ratio of outliers over clusters.

Multidimensional scaling was applied to all distance matrices and 2D maps were

produced for visual inspection of the clusters. In addition, 3D maps were created and

consulted through the visualisation tool GNUPLOT (Williams et al., 2007–2011), for better

perception of the configuration of the global population of each CDR/length combination.

The 2D/3D maps and the respective Silhouette Plots of pruning results with average SC

greater than 0.51 and all positive individual Silhouette Widths (SW) were consulted in

all cases in order to continually have a visual appreciation of the data configuration and

clustering evolution, and to make informed decisions which allowed the final formalisation

of the clustering procedure. Given that the desired clustering result would ideally produce

as many well separated clusters and as few outliers as possible, the auxiliary index offered a

quick composite comparison between pruning results, and was defined as:

a = (1 + S)/C (2)

where S is the number of outliers/singletons and C the number of clusters. The unit (1) was

added to the index’s numerator in order to allow the comparison between pruning results

with 0 outliers/singletons, but a different number of clusters.

Another index employed during the clustering procedure was that of the ideal

maximum cluster diameter, which took into consideration the examined CDR length (l):

Di = 1 +


l − 9

10


. (3)

The rationale behind this formula was to define an ideal maximum diameter by adding

or subtracting 0.1 Å per residue respectively above or below a length of 9. For a CDR with

9-residues, this diameter was set empirically at 1.0 Å, based on experience of manual 3D

superpositions of CDR-L3/9-residues with the graphics program Swiss-PdbViewer (Spdbv;

Guex & Peitsch, 1997). Observations suggested 1.0 Å to be an appropriate cut-off for

significant visual conformational similarity for CDRs of this length. This auxiliary index

played no further analytical role than to merely define a cut-off at which the possibility

of cluster splitting was to be explored during the clustering procedure. In no case did

it impose a diameter threshold for cluster formation. Conversely, cluster merging was

explored between clusters that contained one or more members with greater affinity for

the second cluster (revealed by its negative SW). If the merge resulted in a global average

SC ≥ 0.51 then it was retained, otherwise the entire partition was discarded. In the end,

the preferred clustering parameters were those that resulted in global average SC equal
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or higher than 0.51, all positive individual SWs and the lower auxiliary index α (Eq. (2)).

If the number of outliers remained high, the optional PAM-stage was applied at the end of

the tree cut procedure, but its results were only retained if all of the above partition quality

criteria were satisfied.

When the optimal clustering result was obtained, the clusters’ cores, medoids, most

distant members and their diameters were extracted for that CDR/length combination via

a dedicated R routine. Clustering summaries were created with Java code, as well as lists

and various post-analytical data that are detailed later.

RESULTS
Clustering results
Tables of results were constructed for 58 CDR/length combination, gathering information

that describes each individual cluster, which can be consulted for quick reference

(Tables 3–7 for CDR-L1/-L2/-L3/-H1/-H2 and a separate supplementary table for

CDR-H3, Supplemental Information 4). A summary table with all clustered lengths is

available in Table 8. Detailed membership assignments can be found in two forms: one

where every CDR is shown in alphabetical PDB order with all available clustering and

data-mined information (cis/trans peptides, structure resolution, crystal space group,

sequence, Ramachandran logos, cluster core label, bound state, light isotype, heavy or light

chain only) and one where the same information is given in cluster order (Supplemental

Information 6 and Supplemental Information 5). The ω-angle cut-off for cis-peptide

detection was set to ±30◦; absence of cis-content that satisfied these limits resulted in an

all-trans (allT) label. Bound state was flagged based on a list of bound antibodies obtained

from SAbDab (Dunbar et al., 2014). This list did not contain idiotype-anti-idiotype

complexes, therefore the 5 such files in the dataset were additionally flagged as bound

(entries 1CIC, 1DVF, 1IAI, 1PG7, 3BQU).

Comparison of clustering results
The level-1 clusters obtained in this work were compared to the clustering results

of previous major CDR studies (Tables 9–13 for CDR-L1, -L2, -L3, -H1 and -H2,

Supplemental Information 2 for CDR-H3). Specifically, comparisons were made with

the clusters found in Martin & Thornton (1996) because it was the first five CDR clustering

performed on a significant CDR dataset (57 antibody structures, 269 CDRs), presented

most major conformational classes and for these reasons is regularly cited in research of

this kind. Comparisons were also made with the clustering results in North, Lehmann

& Dunbrack (2011) as this is the most recent relevant analysis, which used the largest

CDR dataset (932 antibody structures before filtering, 1897 CDRs after filtering) until the

present study. Also included were the results from Kuroda et al. (2009) for the comparisons

in CDR-L3, as this recent dedicated analysis used an RMSD-based approach, as is the

case in this work, while using a considerable number of CDR structures (212 CDR-L3

structures). For the first five CDRs, the present study comprised 1,359 antibody structures

and 10,680 CDRs (and a total of 12,712 CDRs including CDR-H3). Commenting on these

comparisons is made in the discussion section below.
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Table 8 Summation of clustered lengths per CDR. (A) Summation of clustered lengths per CDR, with population, non-redundant sequences,
number of clusters and outliers information. CDR lengths that were clustered for the first time are highlighted in bold/italics. (B) The complete
CDR-H3 conformation, using the H95-H102 extents definition, has not been extensively clustered before; therefore only lengths that were not
considered in Kuroda et al. (2009) are noted as new for conformity with the literature. CDR-H3 lengths 4 and 24 are marked with an asterisk as the
corresponding structures are also found in North, Lehmann & Dunbrack (2011), but acknowledged as 2 residues longer, due to different CDR-H3
extents (H93-H102).

(A)

CDR Observed lengths
(new lengths)

Total structure
population

Unique
sequences

Level-1
clusters

Level-1 only
structure population

Singletons/outliers

7 2 1 1 2 0

9 10 4 2 10 0

10 127 28 1 126 1

11 1,042 180 4 1,033 9

12 82 26 4 81 1

13 81 26 3 81 0

14 207 25 7 193 14

15 80 34 2 32 48

16 352 74 5 319 33

L1

17 172 36 1 171 1

Total 10 lengths 2,155 434 30 2,048 107

CDR Observed lengths Total structure
population

Unique
sequences

Level-1
clusters

Level-1 only
structure population

Singletons/outliers

7 2,161 278 3 2,159 2
L2

11 13 3 2 13 0

Total 2 lengths 2,174 281 5 2,172 2

CDR Observed lengths
(new lengths)

Total structure
population

Unique
sequences

Level-1
clusters

Level-1 only
structure population

Singletons/outliers

5 10 4 1 10 0

7 5 2 1 5 0

8 138 43 6 136 2

9 1,725 358 6 1,720 5

10 113 27 12 107 6

11 142 38 9 135 7

12 19 6 4 19 0

L3

13 12 2 3 11 1

Total 8 lengths 2,164 480 42 2,143 21

CDR Observed lengths
(new lengths)

Total structure
population

Unique
sequences

Level-1
clusters

Level-1 only
structure population

Singletons/outliers

10 6 2 1 6 0

12 2 2 0 0 2

13 1,845 450 11 1,681 164

14 72 17 1 70 2

15 128 29 3 125 3

16 3 2 1 2 1

H1

24 1 1 0 0 1

Total 7 lengths 2,057 503 17 1,884 173

(continued on next page)
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Table 8 (continued)

(B)

CDR Observed lengths
(new lengths)

Structure
population

Unique
sequences

Level-1
clusters

Level-1 only
structure population

Singletons/outliers

8 6 2 1 6 0

9 436 117 6 435 1

10 1,508 381 10 1,356 152

11 3 3 0 0 3

12 171 38 4 171 0

H2

15 6 3 2 5 1

Total 6 lengths 2,130 544 23 1,973 157

CDR Observed lengths
(new lengths)

Structure
population

Unique
sequences

Level-1
clusters

Level-1 only
structure population

Singletons/outliers

3 18 4 1 18 0

4* 38 12 2 36 2

5 93 28 6 85 8

6 33 12 3 30 3

7 97 41 7 69 28

8 168 46 7 141 27

9 181 55 8 132 49

10 377 98 35 292 85

11 231 64 26 151 80

12 206 51 21 174 32

13 130 42 22 105 25

14 128 40 19 104 24

15 96 23 18 81 15

16 40 16 8 28 12

17 28 14 6 19 9

18 37 11 6 31 6

19 48 12 9 46 2

20 13 4 3 13 0

21 10 1 1 10 0

22 33 4 2 31 2

23 1 1 0 0 1

24* 12 2 2 12 0

25 1 1 0 0 1

28 12 2 1 12 0

H3

31 1 1 0 0 1

Total 25 lengths 2,032 585 213 1,620 412

Cumulative
total
(all CDRs)

58 lengths 12,712 2,827 330 11,840 872
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Table 9 Comparison of level-1 conformational clusters obtained in CDR-L1 with external sets. The
cluster medoid/median or representative of the external sets was used for identification of correspon-
dences. In brackets, next to each correspondence, is the full, 3-level classification in this work of the
representative of the external set and the number of corresponding members in full population compar-
ison. Martin & Thornton (1996) cluster 14F is marked with a question mark, because its representative
(2BJL, superseded by 4BJL) actually has a 13-residue CDR-L1.

This work
[CDR-L1 cluster]

Martin & Thornton, 1996
⟨corresponding cluster/canonical⟩
(level-3 of external median)
(corresponding members)

North, Lehmann & Dunbrack, 2011
⟨corresponding cluster⟩
(level-3 of external median)
(corresponding members)

L1-7-I – –

L1-9-I – –

L1-9-II – –

L1-10-I 10A/1 (L1-10-I-1-1) (4/4) L1-10-1 (L1-10-I-1-1) (20/20)
L1-10-2 (L1-10-I-2-2) (2/2)

L1-11-I 11A/2 (L1-11-I-2-1) (22/22) L1-11-1 (L1-11-I-1-2) (76/76)
L1-11-2 (L1-11-I-2-1) (55/55)

L1-11-II – L1-11-3 (L1-11-II-1-2) (3/5)

L1-11-III 11B/- (L1-11-III-1-1) (1/1) –

L1-11-IV – –

L1-12-I – L1-12-1 (L1-12-I-1-1) (5/5)

L1-12-II – L1-12-2 (L1-12-II-1-2) (4/5)

L1-12-III – –

L1-12-IV – L1-12-3 (L1-12-IV-1-2) (2/2)

L1-13-I 13A/5λ(L1-13-I-1-2) (2/2)
14F/-?(L1-13-I-7-1) (1/1)

L1-13-1 (L1-13-I-1-2) (7/7)

L1-13-II – L1-13-2 (L1-13-II-1-1) (4/4)

L1-13-III – –

L1-14-I 14B/7λ(L1-14-I-2-3) (3/3) L1-14-1 (L1-14-I-1-3) (14/14)

L1-14-II 14C/- (L1-14-II-13-1) (1/1)
14E/-(L1-14-II-14-1) (1/1)

L1-14-2 (L1-14-II-4-1) (3/4)

L1-14-III – –

L1-14-IV – –

L1-14-V 14A/6λ(L1-14-V-1-2) (1/1) –

L1-14-VI – –

L1-14-VII – –

L1-15-I – L1-15-1 (L1-15-I-1-11) (8/11)

L1-15-II – –

L1-16-I 16A/4 (L1-16-I-1-51) (8/9)
16C/-(L1-16-I-1-20) (1/1)

L1-16-1 (L1-16-I-1-1) (62/68)

L1-16-II – –

L1-16-III – –

L1-16-IV – –

L1-16-V – –

L1-17-I 17A/3 (L1-17-I-1-17) (4/4) L1-17-1 (L1-17-I-1-3) (21/21)

(continued on next page)
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Table 9 (continued)
This work
[CDR-L1 cluster]

Martin & Thornton, 1996
⟨corresponding cluster/canonical⟩
(level-3 of external median)
(corresponding members)

North, Lehmann & Dunbrack, 2011
⟨corresponding cluster⟩
(level-3 of external median)
(corresponding members)

Outliers

L1-12-O 12A/6 (L1-12-O-1-1) (1/1) –

L1-14-O 14D/- (L1-14-O-3-1) (1/1) –

L1-15-O 15A/5 (L1-15-O-6-1) (1/1)
15B/- (L1-15-O-1-4) (2/2)

L1-15-2 (L1-15-O-3-1) (2/2)

L1-16-O 16B/- (L1-16-O-8-1) (2/2) –

Table 10 Comparison of level-1 conformational clusters obtained in CDR-L2 with external sets. See
notes in Table 9. In North, Lehmann & Dunbrack (2011), the CDR extents were defined as L49-L56,
instead of L50-L56; hence a direct comparison is not possible. Nonetheless, since position L49 is fairly
conserved structurally and for reference reasons, a correspondence of the longer by 1 residue clusters is
shown, based on the representative of those clusters (in square brackets and in full-italics).

This work
[CDR-L2 cluster]

Martin & Thornton, 1996
⟨corresponding cluster/canonical⟩
(level-3 of external median)
(corresponding members)

North, Lehmann & Dunbrack, 2011
⟨corresponding cluster⟩
(level-3 of external median)
(corresponding members)

L2-7-I 7A/1 (L2-7-I-2-1) (55/55) [L2-8-1 (L2-7-I-2-1) (290/290)
L2-8-2 (L2-7-I-6-2) (9/9)
L2-8-4 (L2-7-I-10-1) (2/2)
L2-8-5 (L2-7-I-14-2) (2/2)]

L2-7-II – [L2-8-3 (L2-7-II-1-2) (3/3)]

L2-7-III 7B/1 (L2-7-III-1-6) (1/1) –

L2-11-I – [L2-12-2 (L2-11-I-1-1) (2/2)]

L2-11-II – [L2-12-1 (L2-11-II-2-1) (2/2)]

Rogue clusters and sequences
Assigned as ‘rogue’ were two conformational clusters that contain one or more members

with identical CDR sequences. This definition was first used for CDR conformations by

Martin & Thornton (1996) with respect to their unpredictability by canonical sequence

templates when all their key residues are overlapping. In this work there is an expansion

of this notion with the term ‘rogue CDR sequences’. This refers specifically to those

identical sequences that are found to exist with more than one distinct conformation.

The extraction of such sequences allows for further investigation, which can reveal any

particular circumstances or neighbouring sequence features that led to a different CDR

conformation despite the identical sequence. For example, examination of antibody Fvs

with rogue CDR sequences may reveal the influence of neighbouring main-chain atoms, a

particular framework residue influencing the CDR conformation, a conformational switch

due to interface interactions (e.g., with an antigen), intrusive crystal-packing interactions,

or even suggest some experimental error.
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Table 11 Comparison of level-1 conformational clusters obtained in CDR-L3, with external sets. See notes in Table 9. In Kuroda et al. (2009),
no cluster representatives are available, so the cluster member with the best resolution was arbitrarily selected in each case, in order to identify the
correspondences with the results from the present study.

This work
[CDR-L3 cluster]

Martin & Thornton, 1996
⟨corresponding cluster/canonical⟩
(level-3 of external median)
(corresponding members)

North, Lehmann & Dunbrack, 2011
⟨corresponding cluster⟩
(level-3 of external median)
(corresponding members)

Kuroda et al., 2009
⟨corresponding cluster⟩
(representative)
(level-3 of external representative)
(corresponding members)

L3-5-I – – –

L3-7-I 7A/4 (L3-7-I-1-2) (1/1) L3-7-1
(L3-7-I-1-2) (2/2)

4(1MIM)
(L3-7-I-1-1) (1/1)

L3-8-I 8B/- (L3-8-I-1-1) (1/1) L3-8-1
(L3-8-I-1-1) (14/15)

3B(1PZ5)
(L3-8-I-2-1) (4/4)
6(1Q9W)
(L3-8-I-1-1) (6/6)

L3-8-II L3-8-cis6-1
(L3-8-II-2-1) (3/3)

7(2FAT)
(L3-8-II-2-1) (2/2)

L3-8-III 8A/3 (L3-8-III-1-1) (1/1) L3-8-2
(L3-8-III-2-1) (3/4)

3A(1YQV)
(L3-8-III-1-1) (2/2)

L3-8-IV – – –

L3-8-V – – –

L3-8-VI – – –

L3-9-I 9A/1 (L3-9-I-1-1) (40/40) L3-9-cis7-1
(L3-9-I-1-1) (219/219)
L3-9-2
(L3-9-I-9-1) (12/12)
L3-9-cis7-2
(L3-9-I-15-2) (8/8)
L3-9-cis7-3
(L3-9-I-12-4) (2/2)

1(1MJU)
(L3-9-I-1-2) (159/161)

L3-9-II 9C/4λ (L3-9-II-1-8) (2/2)
9D/- (L3-9-II-1-4) (2/2)
9E/1 (L3-9-II-5-1) (1/1)

L3-9-1
(L3-9-II-2-1) (17/22)

1A (1A6V)
(L3-9-II-1-4) (5/5)
1B (7FAB)
(L3-9-II-1-8) (1/1)
1C (1Q0X)
(L3-9-II-2-2) (2/2)

L3-9-III 9B/2 (L3-9-III-1-1) (1/1)
9F/- (L3-9-III-7-1) (1/1)

L3-9-cis6-1
(L3-9-III-1-1) (1/1)

(9-)2 (2FBJ)
(L3-9-III-1-1) (1/1)

L3-9-IV – – –

L3-9-V – – –

L3-9-VI – – –

L3-10-I – – –

L3-10-II – – –

L3-10-III – L3-10-1 (L3-10-III-1-2) (2/6) –

L3-10-IV – L3-10-cis7,8-1 (L3-10-IV-1-2) (1/1) 5(1JGU) (L3-10-IV-1-2) (1/1)

L3-10-V – – –

L3-10-VI – – –

L3-10-VII 10B/-(L3-10-VII-3-1) (1/1) – –
(continued on next page)

Nikoloudis et al. (2014), PeerJ, DOI 10.7717/peerj.456 28/40

https://peerj.com
http://dx.doi.org/10.7717/peerj.456


Table 11 (continued)
This work
[CDR-L3 cluster]

Martin & Thornton, 1996
⟨corresponding cluster/canonical⟩
(level-3 of external median)
(corresponding members)

North, Lehmann & Dunbrack, 2011
⟨corresponding cluster⟩
(level-3 of external median)
(corresponding members)

Kuroda et al., 2009
⟨corresponding cluster⟩
(representative)
(level-3 of external representative)
(corresponding members)

L3-10-VIII – – –

L3-10-IX – – –

L3-10-X – – –

L3-10-XI – L3-10-cis8-1 (L3-10-XI-1-2) (1/2) –

L3-10-XII 10C/- (L3-10-XII-3-1) (1/1)
10D/- (L3-10-XII-8-1) (1/1)

– –

L3-11-I 11A/5λ (L3-11-I-1-1) (2/2) L3-11-1 (L3-11-I-1-2) (8/9) (11-)2 (2FB4) (L3-11-I-1-1) (3/5)

L3-11-II – L3-11-cis7-1 (L3-11-II-1-2) (1/1) 8(2NY1) (L3-11-II-1-2) (1/1)

L3-11-III – – –

L3-11-IV – – –

L3-11-V 11B/- (L3-11-V-1-1) (1/1) – –

L3-11-VI – – –

L3-11-VII – – –

L3-11-VIII – – –

L3-11-IX – – –

L3-12-I – – –

L3-12-II – L3-12-1 (L3-12-II-1-1) (1/1) –

L3-12-III – – –

L3-12-IV – – –

L3-13-I – L3-13-1 (L3-13-I-1-1) (1/3) –

L3-13-II – – –

L3-13-III – – –

Outliers

L3-10-O 10A/5 (L3-10-O-6-1) (1/1) – –

All cluster populations were parsed for rogue CDR sequences and a list of CDRs,

tagged by their cluster assignment, was created for future detailed analysis (Supplemental

Information 1). Also in the same file, entries with completely identical Fvs which belong

to different conformational clusters (full-chain rogues) are reported separately, while

entries containing bound antibodies are flagged as such by an asterisk. Furthermore,

cluster populations were compared in all CDR/length sets, and the minimum number of

amino acid differences, position-by-position, was calculated between any two sequences of

different clusters. This difference was termed the ‘minimum pairwise Sequence Distance

between clusters’, or mSD (essentially a minimum Hamming distance between sequences).

Matrices showing the mSD between all clusters were constructed for every CDR/length,

and heatmaps were produced in order to allow a quick visual appreciation of the degree

of sequence dissimilarity between clusters (Supplemental Information 3). The purpose

of these heatmaps is to assist mutation studies by promptly directing the researcher to

clusters/CDR sequences of interest, as well as sequence-to-structure studies by biologists or

modellers.

Nikoloudis et al. (2014), PeerJ, DOI 10.7717/peerj.456 29/40

https://peerj.com
http://dx.doi.org/10.7717/peerj.456/supp-1
http://dx.doi.org/10.7717/peerj.456/supp-1
http://dx.doi.org/10.7717/peerj.456/supp-1
http://dx.doi.org/10.7717/peerj.456/supp-3
http://dx.doi.org/10.7717/peerj.456/supp-3
http://dx.doi.org/10.7717/peerj.456/supp-3
http://dx.doi.org/10.7717/peerj.456


Table 12 Comparison of level-1 conformational clusters obtained in CDR-H1 with external sets. See
notes in Table 9. In Martin & Thornton (1996), the CDR extents definition is significantly different
(H26-H35), but correspondences based on median structures are shown for reference (in square brackets
and full-italics).

This work
[CDR-H1 cluster]

Martin & Thornton, 1996
⟨corresponding cluster/canonical⟩
(level-3 of external median)
(corresponding members)

North, Lehmann & Dunbrack, 2011
⟨corresponding cluster⟩
(level-3 of external median)
(corresponding members)

H1-10-I – H1-10-1 (H1-10-I-1-2) (2/2)

H1-13-I [10A/1 (H1-13-I-1-2) (43/44)] H1-13-1 (H1-13-I-1-1) (261/267)
H1-13-2 (H1-13-I-13-4) (2/7)
H1-13-4 (H1-13-I-2-19) (3/4)
H1-13-7 (H1-13-I-8-4) (3/3)

H1-13-II – H1-13-8 (H1-13-II-4-1) (2/3)

H1-13-III – H1-13-6 (H1-13-III-1-2) (2/4)
H1-13-cis9-1 (H1-13-III-2-4) (2/2)

H1-13-IV – –

H1-13-V – –

H1-13-VI – –

H1-13-VII – –

H1-13-VIII – H1-13-5 (H1-13-VIII-1-5) (4/4)

H1-13-IX – –

H1-13-X – –

H1-13-XI – –

H1-14-I [11A/2 (H1-14-I-11-1) (1/1)] H1-14-1 (H1-14-I-3-11) (11/11)

H1-15-I [12A/3 (H1-15-I-2-7) (1/1)] H1-15-1 (H1-15-I-2-3) (9/9)

H1-15-II – –

H1-15-III – –

H1-16-I – –

Outliers

H1-12-O – H1-12-1 (H1-12-O-1-1) (1/1)

H1-13-O [10B/1 (H1-13-O-66-1) (1/1)
10C/1 (H1-13-O-20-3) (1/1)
10D (H1-13-O-31-1) (1/1)]

H1-13-3 (H1-13-O-14-1) (5/5)
H1-13-9 (H1-13-O-57-1) (1/3)
H1-13-10 (H1-13-O-34-1) (2/2)
H1-13-11 (H1-13-O-56-1) (1/2)

H1-16-O – H1-16-1 (H1-16-O-1-1) (1/1)

H1-24-O – –

Investigation of structure resolution in outlier space
As a preliminary layer of quality assessment for the outliers in the present clustering,

the min, max, average and median resolutions were calculated in clustered and outlier

spaces per CDR/length (-L1, -L3, -H1, -H2, being of the highest interest). These values

were plotted as stock charts for comparison, in order to observe any global correlation

between the outlier space content and possibly erroneous CDR structures due to poor

resolution (Supplemental Information 7). In only four cases (CDR-H1/15-, CDR-H1/16-,

CDR-L1/12- and CDR-L1/16-residues) was the median resolution of outlier space found
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Table 13 Comparison of level-1 conformational clusters obtained in CDR-H2, with external sets. See
notes in Table 9.

This work
[CDR-H2 cluster]

Martin & Thornton, 1996
⟨corresponding cluster/canonical⟩
(level-3 of external median)
(corresponding members)

North, Lehmann & Dunbrack, 2011
⟨corresponding cluster⟩
(level-3 of external median)
(corresponding members)

H2-8-I – H2-8-1 (H2-8-I-1-1) (2/2)

H2-9-I 9A/1 (H2-9-I-1-1) (8/8) H2-9-1 (H2-9-I-1-1) (76/77)
H2-9-3 (H2-9-I-3-2) (2/2)

H2-9-II – H2-9-2 (H2-9-II-1-2) (2/2)

H2-9-III – –

H2-9-IV – –

H2-9-V – –

H2-9-VI – –

H2-10-I 10A/2 (H2-10-I-1-6) (17/21) H2-10-1 (H2-10-I-1-3) (151/155)
H2-10-6 (H2-10-I-5-1) (2/3)

H2-10-II 10B/3 (H2-10-II-1-4) (11/11) H2-10-2 (H2-10-II-1-1)(40/42)
H2-10-4 (H2-10-II-4-1) (7/7)
H2-10-5 (H2-10-II-3-1) (3/3)

H2-10-III – –

H2-10-IV – –

H2-10-V – –

H2-10-VI – –

H2-10-VII – –

H2-10-VIII – –

H2-10-IX – –

H2-10-X – –

H2-12-I 12A/4 (H2-12-I-5-1) (2/2)
12B/4 (H2-12-I-1-11) (2/2)

H2-12-1 (H2-12-I-1-1) (26/26)

H2-12-II – –

H2-12-III – –

H2-12-IV – –

H2-15-I – H2-15-1 (H2-15-I-1-1) (1/1)

H2-15-II – –

Outliers

H2-10-O 10C/3 (H2-10-O-20-1) (2/2)
10D/2 (H2-10-O-36-1) (1/1)
10E/2 (H2-10-O-34-1) (1/1)
10F/2 (H2-10-O-11-2) (1/1)

H2-10-3 (H2-10-O-3-10) (10/11)
H2-10-7 (H2-10-O-20-1) (2/2)
H2-10-8 (H2-10-O-13-1) (1/2)
H2-10-9 (H2-10-O-29-3) (2/2)

to be more than 0.5 Å higher than the respective median in clustered space, and in only

two cases (CDR-H1/15-residues, 3 outliers in total, and CDR-L1/12-residues, 1 outlier in

total) was the outlier median resolution value above 2.8 Å. In conclusion, average structure

resolution does not appear to be a determinant factor of the outlier content, although

it remains possible that wrong structures due to poor resolution may exist between the

outliers. In fact, as proposed throughout this work, any decisions on structure validity

should be considerably easier to make during targeted analysis of the structures/clusters
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of interest, when using the results of the present clustering. The supplementary file

(Supplemental Information 7) also contains complementary bar charts showing the

percentages of bound content in outlier and clustered space.

DISCUSSION
The early approach to CDR conformational classification defined a strict threshold of simi-

larity for clusters, beyond which any new conformation becomes the first member of a new

class/cluster. As the number of new antibody structures increased almost exponentially

in the past decades, the definition of a strict similarity threshold became problematic as

many conformational variants of known classes appeared in the similarity-criterion space

between different clusters. An obvious solution to this new and complex data structure

was the pre-exclusion of all structures with characteristics that could potentially point to

wrong conformations, or essentially be characterised as “noise” in the data. For instance, in

the latest CDR clustering (North, Lehmann & Dunbrack, 2011), the data was considerably

simplified by removing structures based on several filtering criteria: crystal resolution;

high CDR backbone, or non-reported B-factors; presence of cis-peptide bonds for residues

other than a proline; highly improbable backbone conformations and loops with very

high conformational energies. In the present study however, the goal was set to obtain

a classification for every available CDR, so any “data noise” had to be handled by the

clustering methodology.

The primary characteristic of the CDR clustering performed in this study is that the

main, or level-1, clusters do not carry a pre-defined degree of conformational similarity.

This would require the strict definition of a threshold in the RMSD distance on all

Cα-atoms from the cluster’s medoid, or as a maximum cluster diameter (e.g., Martin &

Thornton, 1996; Kuroda et al., 2009). Alternatively in North, Lehmann & Dunbrack (2011),

a dihedral angle-based distance measure was used in order to define a threshold for cluster

merging (65◦ between each dihedral pair), while the main clustering method (an affinity

algorithm) practically produced a final result that is roughly equivalent or close to the

level-2 clustering in this study (clustering by r-RL). In contrast in this study, level-1 clusters

were formed with no use of discreet distance thresholds whatsoever, but instead based on

the greater affinity of each object towards its assigned cluster as expressed by the all-positive

SWs; while the average SC ensured a typically textbook-defined, reasonable or better global

partition of clusters (SC ≥ 0.51).

This approach was selected for two reasons: (1) in order to reduce the subjectivity

that is inherent with every threshold definition and clustering decision in general,

and (2) in order to allow the adherence of conformational variants to their most

apparent closest conformational theme. This in turn may reveal the natural flexibility

in physiological conditions, or structural mechanisms and synergies that are specific

to an antibody’s function. Indeed, it becomes more straightforward to comparatively

examine the reason for a conformational variant when it is found connected to its closest

conformational theme, rather than when treated as a completely distinct conformation

or as an outlier/singleton. This is also the most important difference between the present
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antibody CDR clustering analysis and the clustering by UPGMA offered by the recently

released CDR structural database SAbDab (Dunbar et al., 2014).

The clustering algorithm employed in this study offered simultaneous flexibility in

selecting the most appropriate pruning parameters, and in-depth description of clusters by

its definition of cluster core objects. Researchers wishing to retrieve the most representative

objects (the most tightly represented conformation) of each cluster may select any one of

the cluster’s core CDRs (tagged as such in the clustering results listings). Furthermore, the

presentation of each cluster’s extremities in the results (most distant members forming the

cluster’s diameter), allows the rapid assessment of the extents of conformational variability

of the cluster so that researchers can make informed decisions as to the importance of any

observed deviations of their target structure with regard to the overall conformational

characteristics of the cluster.

In practice over 80% of the clustering was straightforward in establishing a partition

with an SC ≥ 0.51, all positive individual SW, the highest number of clusters possible

with close-to-ideal maximum diameters and the lowest number of outliers. In fact, the

formalisation of the complete procedure contains few subjective features, namely those

of the ideal maximum cluster diameter index and of the overall stringency in examining

all possible outcomes (average and complete hierarchical trees, 2nd-stage PAM). In the

first case, the index had a merely suggestive role in triggering the assessment of a possible

cluster splitting strategy, while in the second case the optional PAM stage or one of the

two hierarchical methods may be completely omitted, especially if an acceptable result is

already obtained. Therefore, this clustering method can be entirely machine-coded and

carried out in a fully automated way, if required.

The major challenge in this clustering was brought by the initial decision to include all

the available antibody structures as of the 31st December 2011 edition of PDB, in order

to create a complete CDR conformational repertoire. While this decision allowed a richer

result, and for all the reasons and possible advantages detailed earlier, it was accepted

that noise was added to the dataset by the inclusion of a number of potentially erroneous

structures. The usual strategy followed in such cases is data re-sampling, or bootstrapping,

in order to assess the effects and influence of noise to the dataset configuration by some

estimator (e.g., percentiles, medians, variance, etc.) and to attempt projections for the

evolution of partitions in the future. There was reluctance in pursuing such a methodology

in this case, mainly because the appearance of new antibody structures in the PDB follows

a constantly varying scientific interest for diseases, therapeutics and basic research, and as

such the obtained dataset cannot be considered representative of some random process. In

this sense it is anecdotal that a few months before the closure of the dataset, a considerable

number of anti-HIV and anti-‘flu antibody structures (33/128 structures released in 2011,

i.e., ∼26%), all with very characteristic CDR conformations, had emerged in the PDB

following the research trend for that period.

The solution to noise data was the efficient exclusion of outliers/singletons from clusters,

coupled with the nested architecture of the final clustering result. The efficient exclusion

was ensured by the requirement that clusters form a tight core while all cluster objects
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present an individual positive SW with respect to the global cluster partition. Though it

was still possible that few, very small 2- or 3-member clusters failed to form due to the

positive SW requirement, the subsequent 2nd- and 3rd-level qualitative clustering, based

on Ramachandran Logos, would create a common conformational tag to allow recognition

and classification of even such small outlying groups. Daughter-level sub-clusters mainly

provide a means to identify all the members of important or subtle conformational

variants of the parental theme, and by that fact offer more common examples for the

researcher to compare their CDR with. Finally, it remains the individual researcher’s

decision as to which CDR conformations are useful, important, or potentially wrong.

However when consulting the clustering results of this study, the data is classified in such

a way and with no loss of information due to pre-filtering, that the researcher has at their

disposal all the necessary information to help them take that decision.

As a means of external validation, it is important to observe the comparison and relation

of conformational CDR clusters between this and the major previous studies. As far as

the first five CDRs are concerned, in many cases clusters from previous work were found

to correspond to level-1 clusters from this study on a one-to-one basis (36/72 compared

clusters from North, Lehmann & Dunbrack (2011), 21/49 compared clusters from Martin &

Thornton (1996), 8/13 compared clusters from Kuroda et al. (2009)), while in several cases

more than one cluster from those external sets was found to correspond to the same level-1

cluster (correspondingly for the aforementioned studies: 25/72 clusters contained in 9

level-1 clusters, 15/49 clusters contained in 7 level-1 clusters, and 5/13 clusters contained in

2 level-1 clusters). This is characteristic of the different clustering strategies adopted in each

study, as the external sets imposed discreet similarity thresholds on their cluster definition,

but also of the fewer number of structures in their datasets which allowed for a sharper,

more specific clustering when the data configuration was favourable. In all those cases,

the external clusters are still distinct in the present clustering result, as they almost always

correspond to different level-2 clusters from this study. In only two cases (clusters 16A/16C

in CDR-L1 from Martin & Thornton (1996), and clusters 1A/1B in CDR-L3 from Kuroda

et al. (2009)) were external clusters differentiated only at the 3rd-level, meaning that the

full, 3-level conformational logo is required to describe them. Finally, in several cases

small 2-, or 3-member external clusters, or mere singletons, were found to correspond to

outliers in this study (11/72 in North, Lehmann & Dunbrack (2011), 13/49 in Martin &

Thornton (1996)), because of the specific requirements for the existence of a tight core and

all positive individual SW, as explained previously. Even so, these small external clusters

are still distinct in the present result as their members are regrouped at the 2nd-level of

clustering. The additional full population analysis of cluster assignments between this

study and previous work showed consistency of membership correspondences, at 98%

(262/268) for Martin & Thornton (1996), at 97% (1,534/1,589) for North, Lehmann &

Dunbrack (2011) and at 98% (188/192) for Kuroda et al. (2009). Most of the observed

discrepancies concerned outlying conformations (6/6, 32/55 and 2/4, correspondingly for

the aforementioned works). In comparison, the present clustering analysis revealed 117
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level-1 clusters in the first five CDRs, 66 of which have no correspondences and are novel.

This is due to the larger dataset and to the lack of data pre-filtering.

In CDR-H3, full population correspondences with North, Lehmann & Dunbrack

(2011) were expectedly poor (56%, 171/307). This is explained by the much larger

number of clustered structures (2,032 versus 307) and the different strategy employed

in level-1 cluster formation, but also to some extent, by the discrepancy of 2 residues

in the respective CDR-H3 definitions. Indeed, the inclusion of all available CDR-H3

loops in the present clustering procedure allowed an even clearer appreciation of their

pronounced conformational hypervariability: 25 H3 lengths, 213 clusters, most of which

are in fact singletons that technically acquired the status of a ‘cluster’, because they were

represented by more than one structure in the initial dataset. In fact, only 53/213 clusters

were populated by more than 1 unique CDR sequence; while a revealing total of another

412/2,032 structures were left as outliers/singletons. In this landscape of variability in

conformation, sequence and length, the adopted level-1 clustering methodology doesn’t

expand a cluster’s radius towards closely-related conformations, but instead restricts that

radius appropriately, excluding structures that both fail to form a well-separated core and

do not clearly belong to one cluster rather than another. However, these outlying structures

are still further classified based on their Ramachandran logos, whenever possible (i.e., at

level-2 and -3 of the classification scheme).

All these observations are suggestive of the advantages brought by the multi-level

clustering structure, as nearly all identified external clusters are distinct at the 2nd-level

of our clustering (mainly in the first five CDRs), with the 1st-level expanding towards

closely-related conformational variants when possible, while efficiently excluding outliers.

3rd-level clusters procure even deeper specificity when required. It becomes apparent that

the trade-off between conformational specificity and sensitivity is locked in the clusters of

previous studies based on the existence of a strict, but subjective, formation threshold. In

contrast, the present clustering result produced a more adaptable framework, where the

sensitivity and specificity of conformational similarity are more intuitively distributed in

its three different levels. As an example of the conformational variability between level-1

clusters in this study and North, Lehmann & Dunbrack (2011), a comparative view of all

detected clusters in CDR-H1 13-residues (displaying a rich cluster repertoire) superposed

on those from North, Lehmann & Dunbrack (2011) where applicable, is presented in Fig. 7.

The description and commenting of each CDR/length combination obtained in this

study may be of small value at this point, firstly due to the massive volume of the data

involved, but mainly because the detailed examination of each cluster could warrant a

separate, dedicated study in its own right (something that the present study aims to assist

and encourage). Nonetheless, it is interesting to observe that in almost all CDR/length

combinations with substantial content in unique CDR sequences (i.e., more than 10

unique sequences) there is usually a single cluster which regroups the large majority of

the available known conformations, while the remaining fraction may be populating

a considerable number of much smaller clusters. In the 15 lengths (first 5 CDRs) that

contained more than 10 unique sequences in their clustered population and produced
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Figure 7 A comparative view of all CDR-H1/13 residue clusters obtained in this work (in yellow), superposed to their correspondences from North,
Lehmann & Dunbrack (2011), where applicable. Level-1 clusters from this work expand whenever possible towards closely-related variants, which
are then further classified at levels 2 and 3 (complete 3-level classification in this work of the external median is given in brackets). This can be
appreciated in clusters H1-13-I and H1-13-III from this work. The last four structures of this figure correspond to cluster medians from North,
Lehmann & Dunbrack (2011) that were classified as outliers/singletons in this work.

more than one cluster, the major cluster of each length represented on average 74% of the

available unique sequences (median: 86%). The case of H2/10-residues is the one exception

with two well-populated clusters (H2-10-I and -II) with an approximate 1:2.5 ratio in

non-redundant members. L3/10-residues are the only other exception where no major

cluster is observed despite the considerable amount of available unique sequences.

Given the considerable volume of structural data included in the work, the above fact

could be suggesting that in contrast to the original observation that CDRs adopt one of

a limited number of possible conformations in L1, L2, L3, H1 and H2, in fact three out

of four CDR sequences seem to result in variants of the prominent conformation for

that CDR length. To take this matter even further and based on the respective median,

it can also be inferred that in half the well-populated CDR lengths, a variant of the

prominent conformational theme is adopted by close to nine out of ten CDR sequences.

Furthermore, the animal sources of CDR members of these major clusters are sufficiently

varied to suggest that the respective conformations are ubiquitously maintained.

These observations combined highlight the importance of subtle conformational

variations in antigen recognition and, therefore, of the detailed repertoire provided at

levels 2 and 3 of the present clustering analysis (e.g., by rogue analysis at the daughter

cluster level). In contrast, the hypervariable (in length, sequence and conformation)
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CDR-H3 appears as the loop that consistently confers the most pronounced layer of

conformational variation in the antibody binding interface.

It is known from experience with humanised antibodies (Saldanha, 2009) that the

conservation of residues which maintain the conformation of the CDR in the designed

sequence often leads to binding versions and vice versa. Further investigation of the

clusters, particularly at levels 2 and 3, for these residues will enhance the modelling and

design of humanised sequences by recognition, within the variants, of subtle differences to

the main conformational theme.

CONCLUSION
By producing a classified snapshot of the entirety of the CDR conformations in the

PDB, the aim was to present the experimentally known repertoire in a way that also

allows inferences on the relationship between conformations. The latter exist as the

result of backbone flexibilities, induced-fit, local sequence causing subtle variants, or

even erroneous experimental data. Consequently, any conclusions on the quality or

truthfulness of a structure can be drawn by the aid of this classification, instead of

arbitrarily discarding all dubious cases from the very beginning. The dedicated analysis

of structures belonging to different clusters, despite having the same CDR or even complete

Fv sequence, could prove helpful towards this end. Therefore, the present clustering study

can be viewed as a necessary ‘logistical task’, where no information is lost, whose value is

best described by the possibilities it offers for a range of future specialised analyses, rather

than a ‘one-stop’ study that allows derivation of final conclusions on the available CDR

conformations. The results provided here include richly annotated cluster summaries and

cluster memberships, a three-level classification, detailed comparisons with previously

established CDR conformational clusters, lists of rogue CDR sequences and minimum

Sequence Distance heatmaps.

The focus of this study was to produce a complete repertoire of available CDRs, with

multi-level clusters that allow the user to select the desired conformational specificity or

sensitivity, but also with an increased potential for predictability from sequence. As a piece

of subsequent work based on the present clustering results, a comparative assessment of

predictive methods from sequence of CDR conformation (canonical templates, sequence

rules and a new method named Disjoint Combinations Profiling (DCP)) was carried out

by the same group (Nikoloudis, Pitts & Saldanha, 2014), with very encouraging results. An

implication that could be attributed to those results, considering that no clustered data

was discarded, is that the present clustered set was conformationally meaningful at its

level-1 instance, despite the designed tendency of clusters to expand towards potential

variants of the main conformational theme. This is based on the fact that using this

clustered set for training/updating produced DCP models achieving a range of 90%–99%

cumulative accuracy on predictable conformations of the new dataset (CDR-L1, -L3,

-H1, -H2, -H3-base), while canonical templates achieved 91% and 94% in CDR-L1 and

CDR-L3, respectively. Therefore, the clustering goal of presenting a complete repertoire

of conformational families could be considered successful as the most related backbone
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variations were attributed correctly to the most appropriate class. This clearly did not

negatively influence class identification from sequence and possibly even enhanced it.

Additionally, this companion article also includes a visual analysis of CDR structures that

fall into different conformational classes despite being present in identical Fv sequences.

In conclusion, an accurate CDR classification is presented with novel characteristics,

richly annotated and post-analysed clustered data, and also compared with previous work.

In all cases, it is believed that the present analysis fills a gap in antibody CDR studies, by

creating links between all related prior knowledge, while proposing new directions for

future research.
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Barré S, Greenberg AS, Flajnik MF, Chothia C. 1994. Structural conservation of hypervariable
regions in immunoglobulins evolution. Nature Structural Biology 1:915–920
DOI 10.1038/nsb1294-915.

Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE.
2000. The protein data bank. Nucleic Acids Research 28:235–242 DOI 10.1093/nar/28.1.235.

Chothia C, Lesk AM. 1987. Canonical structures for the hypervariable regions of immunoglobu-
lins. Journal of Molecular Biology 196:901–917 DOI 10.1016/0022-2836(87)90412-8.

Nikoloudis et al. (2014), PeerJ, DOI 10.7717/peerj.456 38/40

https://peerj.com
http://dx.doi.org/10.7717/peerj.456
http://dx.doi.org/10.7717/peerj.456
http://dx.doi.org/10.7717/peerj.456
http://dx.doi.org/10.7717/peerj.456
http://dx.doi.org/10.7717/peerj.456
http://dx.doi.org/10.7717/peerj.456
http://dx.doi.org/10.7717/peerj.456
http://dx.doi.org/10.7717/peerj.456
http://dx.doi.org/10.7717/peerj.456
http://dx.doi.org/10.7717/peerj.456
http://dx.doi.org/10.7717/peerj.456
http://dx.doi.org/10.7717/peerj.456
http://dx.doi.org/10.7717/peerj.456
http://dx.doi.org/10.7717/peerj.456
http://dx.doi.org/10.7717/peerj.456
http://dx.doi.org/10.7717/peerj.456
http://dx.doi.org/10.7717/peerj.456
http://dx.doi.org/10.7717/peerj.456
http://dx.doi.org/10.7717/peerj.456
http://dx.doi.org/10.1006/jmbi.1997.1354
http://dx.doi.org/10.1038/nsb1294-915
http://dx.doi.org/10.1093/nar/28.1.235
http://dx.doi.org/10.1016/0022-2836(87)90412-8
http://dx.doi.org/10.7717/peerj.456


Chothia C, Lesk AM, Levitt M, Amit AG, Mariuzza RA, Phillips SEV, Poljak RJ. 1986. The
predicted structure of immunoglobulin D1.3 and its comparison with the crystal structure.
Science 233:755–758 DOI 10.1126/science.3090684.

Chothia C, Lesk AM, Tramontano A, Levitt M, Smith-Gill SJ, Air G, Sheriff S, Padlan EA,
Davies D, Tulip WR, Colman PM, Spinelli S, Alzari PM, Poljak RJ. 1989. Conformations of
immunoglobulin hypervariable regions. Nature 342:877–883 DOI 10.1038/342877a0.

Chothia C, Lesk AM, Gherardi E, Tomlinson IM, Walter G, Marks JD, Llewelyn MB, Winter G.
1992. Structural repertoire of the human VH segments. Journal of Molecular Biology
227:799–817 DOI 10.1016/0022-2836(92)90224-8.

Dong J, Horvath S. 2007. Understanding network concepts in modules. BMC Systems Biology 1:24
DOI 10.1186/1752-0509-1-24.

Dunbar J, Krawczyk K, Leem J, Baker T, Fuchs A, Georges G, Shi J, Deane CM. 2014. SabDab:
the structural antibody database. Nucleic Acids Research 42:1140–1146
DOI 10.1093/nar/gkt1043.

Furukawa K, Shirai H, Azuma T, Nakamura H. 2001. A role of the third complementarity-
determining region in the affinity maturation of an antibody. Journal of Biological Chemistry
276:27622–27628 DOI 10.1074/jbc.M102714200.

Guarne A, Bravo J, Calvo J, Lozano F, Vives J, Fita I. 1996. Conformation of the hypervariable
region L3 without the key proline residue. Protein Science 5:1931–1933
DOI 10.1002/pro.5560050921.

Guex N, Peitsch MC. 1997. SWISS-MODEL and the Swiss-PdbViewer: an environment for
comparative protein modelling. Electrophoresis 18:2714–2723 DOI 10.1002/elps.1150181505.

Kabat EA, Wu TT, Perry HM, Gottesman KS, Foeller C. 1991. Sequences of proteins of
immunological interest, 5th edition. Bethesda, MD: US Department of Health and Human
Services, National Institutes for Health.

Kuroda D, Shirai H, Kobori M, Nakamura H. 2008. Structural classification of CDR-H3 revisited:
a lesson in antibody modelling. Proteins: Structure, Function, and Bioinformatics 73:608–620
DOI 10.1002/prot.22087.

Kuroda D, Shirai H, Kobori M, Nakamura H. 2009. Systematic classification of CDR-L3 in
antibodies: implications of the light chain subtypes and the VL–VH interface. Proteins:
Structure, Function, and Bioinformatics 75:139–146 DOI 10.1002/prot.22230.

Langfelder P, Zhang B, Horvath S. 2007. Defining clusters from a hierarchical cluster tree: the dy-
namic tree cut package for R. Bioinformatics 24:719–720 DOI 10.1093/bioinformatics/btm563.

Martin AC, Thornton JM. 1996. Structural families in loops of homologous proteins: automatic
classification, modelling and application to antibodies. Journal of Molecular Biology
263:800–815 DOI 10.1006/jmbi.1996.0617.

Morea V, Lesk AM, Tramontano A. 2000. Antibody modeling: implications for engineering and
design. Methods 20:267–279 DOI 10.1006/meth.1999.0921.

Morea V, Tramontano A, Rustici M, Chothia C, Lesk AM. 1997. Antibody structure, prediction
and redesign. Biophysical Chemistry 68:9–16 DOI 10.1016/S0301-4622(96)02266-1.

Morea V, Tramontano A, Rustici M, Chothia C, Lesk AM. 1998. Conformations of the third
hypervariable region in the VH domain of immunoglobulins. Journal of Molecular Biology
275:269–294 DOI 10.1006/jmbi.1997.1442.

Nikoloudis et al. (2014), PeerJ, DOI 10.7717/peerj.456 39/40

https://peerj.com
http://dx.doi.org/10.1126/science.3090684
http://dx.doi.org/10.1038/342877a0
http://dx.doi.org/10.1016/0022-2836(92)90224-8
http://dx.doi.org/10.1186/1752-0509-1-24
http://dx.doi.org/10.1093/nar/gkt1043
http://dx.doi.org/10.1074/jbc.M102714200
http://dx.doi.org/10.1002/pro.5560050921
http://dx.doi.org/10.1002/elps.1150181505
http://dx.doi.org/10.1002/prot.22087
http://dx.doi.org/10.1002/prot.22230
http://dx.doi.org/10.1093/bioinformatics/btm563
http://dx.doi.org/10.1006/jmbi.1996.0617
http://dx.doi.org/10.1006/meth.1999.0921
http://dx.doi.org/10.1016/S0301-4622(96)02266-1
http://dx.doi.org/10.1006/jmbi.1997.1442
http://dx.doi.org/10.7717/peerj.456


Nikoloudis D, Pitts JE, Saldanha JW. 2014. Disjoint combinations profiling (DCP): a new
method for the prediction of antibody CDR conformation from sequence. PeerJ 2:e455
DOI 10.7717/peerj.455.

North B, Lehmann A, Dunbrack Jr RL. 2011. A new clustering of antibody CDR loop
conformations. Journal of Molecular Biology 406:228–256 DOI 10.1016/j.jmb.2010.10.030.

Oliva B, Bates PA, Querol E, Avilés FX, Sternberg MJE. 1998. Automated classification of
antibody complementarity determining region 3 of the heavy chain (H3) loops into canonical
forms and its classification to protein structure prediction. Journal of Molecular Biology
279:1193–1210 DOI 10.1006/jmbi.1998.1847.

Reczko M, Martin ACR, Bohr H, Suhai S. 1995. Prediction of hypervariable CDR-H3 loop
structures in antibodies. Protein Engineering 8:389–395 DOI 10.1093/protein/8.4.389.

Rees AR, Staunton D, Webster DM, Searle SJ, Henry AH, Pedersen JT. 1994. Antibody design:
beyond the natural limits. Trends in Biotechnology 12:199–206
DOI 10.1016/0167-7799(94)90083-3.

Saldanha JW. 2009. Humanization of Recombinant Antibodies. In: Little M, ed. Recombinant
antibodies for immunotherapy. USA: Cambridge University Press, 3–19.

Shirai H, Kidera A, Nakamura H. 1996. Structural classification of CDR-H3 in antibodies. FEBS
Letters 399:1–8 DOI 10.1016/S0014-5793(96)01252-5.

Shirai H, Kidera A, Nakamura H. 1999. H3-rules: identification of CDR-H3 structures in
antibodies. FEBS Letters 455:188–197 DOI 10.1016/S0014-5793(99)00821-2.

Teplyakov A, Gilliland GL. 2014. Canonical structures of short CDR-L3 in antibodies. Proteins
Epub ahead of print DOI 10.1002/prot.24559.

Tomlinson IM, Cox JPL, Gherardi E, Lesk AM, Chothia C. 1995. The structural repertoire of the
human Vκ domain. EMBO Journal 14:4628–4638.

Williams T, Kelley C, Lang R, Kotz D, Campbell J, Elber G, Woo A, various authors. 1986–1993,
1998, 2004, 2007–2011. GNUPLOT, version 4.4, for MS-Windows 32-bit. Independent
production.

Yu CM, Peng HP, Chen IC, Lee YC, Chen JB, Tsai KC, Chen CT, Chang JY, Yang EW, Hsu PC,
Jian JW, Hsu HJ, Chang HJ, Hsu WL, Huang KF, Ma AC, Yang AS. 2012. Rationalization
and design of the complementarity determining region sequences in an antibody–antigen
recognition interface. PLoS ONE 7:e33340 DOI 10.1371/journal.pone.0033340.

Nikoloudis et al. (2014), PeerJ, DOI 10.7717/peerj.456 40/40

https://peerj.com
http://dx.doi.org/10.7717/peerj.455
http://dx.doi.org/10.1016/j.jmb.2010.10.030
http://dx.doi.org/10.1006/jmbi.1998.1847
http://dx.doi.org/10.1093/protein/8.4.389
http://dx.doi.org/10.1016/0167-7799(94)90083-3
http://dx.doi.org/10.1016/S0014-5793(96)01252-5
http://dx.doi.org/10.1016/S0014-5793(99)00821-2
http://dx.doi.org/10.1002/prot.24559
http://dx.doi.org/10.1371/journal.pone.0033340
http://dx.doi.org/10.7717/peerj.456

	A complete, multi-level conformational clustering of antibody complementarity-determining regions
	Introduction
	Methods
	Acquisition of antibody structure files
	Numbering of antibody variable chains and definition of CDR extents
	CDR length and numbering scheme amendments
	Clustering overview
	Clustering method

	Results
	Clustering results
	Comparison of clustering results
	Rogue clusters and sequences
	Investigation of structure resolution in outlier space

	Discussion
	Conclusion
	References


