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Abstract

Estimation of the diffusion propagator from a sparse set of diffusion MRI (dMRI) measurements

is a field of active research. Sparse reconstruction methods propose to reduce scan time and are

particularly suitable for scanning un-coperative patients. Recent work on reconstructing the

diffusion signal from very few measurements using compressed sensing based techniques has

focussed on propagator (or signal) estimation at each voxel independently. However, the goal of

many neuroscience studies is to use tractography to study the pathology in white matter fiber

tracts. Thus, in this work, we propose a joint framework for robust estimation of the diffusion

propagator from sparse measurements while simultaneously tracing the white matter tracts. We

propose to use a novel multi-tensor model of diffusion which incorporates the bi-exponential

radial decay of the signal. Our preliminary results on in-vivo data show that the proposed method

produces consistent and reliable fiber tracts from very few gradient directions while

simultaneously estimating the bi-exponential decay of the diffusion propagator.

1 Introduction

To obtain accurate information about the neural architecture, diffusion spectrum imaging

(DSI) was proposed by [1]. However, this technique requires many measurements, making it

impractical to use in clinical settings. Consequently, other imaging and analysis schemes,

which use fewer measurements have been proposed in [2–6]. These techniques acquire

important information about the neural tissue, which is missed by HARDI methods, yet,

only a few of these are used in clinical studies. Traditional methods that compute the entire

propagator incorporating the non-monoexponential decay of the signal, require many

measurements at high b-values (greater than 3000 s/mm2) [7, 8], making the scan time too

long for un-cooperative patients. Thus, reducing the number of measurements is an

important step towards making these techniques clinically viable.

Several methods have used the concept of compressed sensing to dramatically reduce the

number of measurements [5, 9–12]. However, all of these methods estimate the fiber

orientation distribution function (fODF) or the ensemble average propagator (EAP) at each

voxel independently. Tractography is done as a post-processing step, making it susceptible

to errors in estimation of the principal diffusion direction. On the other hand, most

neuroscience studies require tractography to analyze white matter fiber paths. Thus, we

propose a joint framework for tractography and EAP estimation using a causal filter - the
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unscented Kalman filter (UKF), allowing for incorporating the correlation in water diffusion

along the fiber tracts. With experiments on in-vivo data, we show that the proposed

framework is rather robust to the number of measurements required, giving very similar

results for sparse as well as dense set of measurements spread over two b-value shells (1000

and 4000 s/mm2). Thus, we propose a model based framework which is an alternative to the

compressed sensing based techniques in terms of the number of measurements required to

accurately represent the bi-exponential decay of the diffusion signal.

2 Our Contribution

The proposed work has several novel contributions and extends the work of [13] in a

significant way; (i) The method in [13] uses a multi-tensor model with the assumption of a

mono-exponential signal decay, making it inaccurate for use with high b-values. Note that,

several studies have established the bi-exponential decay of diffusion signal at high b-values

[8]. Thus, we propose a novel multi-tensor bi-exponential model of diffusion to represent the

signal in the entire q-domain, which also has an analytical form for computing the diffusion

propagator (EAP). Further, this representation is not limited to the spherical sampling

scheme as required by methods based on spherical functions. (ii) The proposed UKF based

method is robust enough for estimation of the EAP with very few measurements, thus

allowing for reducing the number of measurements required. (iii) Most sparsity based

methods report error in estimation of the EAP at an individual voxel level, making it

difficult to asses its effect on estimation of long and short range fiber tracts. To the best of

our knowledge, for the first time, we compare the effect of using different number of

measurements on tracing several different fiber bundles on a very high b-value data set. We

also report error in estimation of return-to-origin probability (RTOP), a measure derived

from EAP, for each fiber bundle. (iv) Further, we propose a novel probabilistic overlap

metric to compute fiber bundle overlap, which is less sensitive to noise.

3 Methods

The diffusion signal S(q) : ℝ3 → ℝ+ is a real-valued function, which determines the value of

S at location q in q-space. Alternatively, S can also be written as a function of b and a unit

vector u, such that S(b, u) : ℝ ×  → ℝ+, where  with δ being

the duration of the gradient pulse, Δ is the time between the gradients and q =|| q ||.

Signal Model

At low b-values, the signal decay as a function of b can be approximated by a Gaussian,

however at higher b-values, the signal decay is markedly bi-exponential in nature [7, 14].

Signal from high b-values can provide subtle information about the tissue, such as, fast and

slow diffusion fractions, which cannot be obtained by assuming a mono-exponential decay.

Further, as shown in [15], high b-value data is more sensitive to minor changes in the

underlying tissue. Consequently, we propose a novel multi-tensor bi-exponential model to

represent the diffusion signal in the entire q-space as follows:
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(1)

where w is the weight fraction of the fast diffusing component, Di = λ1mmT + λ2 (ppT +

vvT) and D̄
i = λ3mmT + λ4 (ppT + vvT) are the diffusion tensors, where we have assumed a

cylindrical shape for the diffusion tensor as in [13]. The corresponding diffusion propagator

(EAP) has the following analytical form:

(2)

Several analytical formulae can be derived from this expression, for example, the return-to-

origin probability (RTOP) P (0), is simply given by:

(3)

Modeling Assumptions

From reported experimental data [14] and some apriori knowledge about the human

anatomy, we make certain assumptions about the model in (1), which allows us to reduce the

number of unknowns while allowing for a robust estimation of the parameters. First, we

assume that the fast and slow diffusing tensors Di and D̄
i have the same orientation but

different shapes, i.e. different eigenvalues. This is a reasonable assumption, since the fast

and slow diffusing components essentially sample the same biological tissue, albeit at

different diffusion times (given by the low and high b-value data). Thus, they have the same

orientation and differ only in the “amount” of diffusion in different directions, which can be

easily represented using the two eigenvalues λ3, λ4 of D̄
i. Similar to the work in [13, 16], in

this preliminary work, we restrict our experiments to the case where n = 2 assuming at-most

two fiber crossings. The proposed framework is however general enough to be used for three

fiber crossings as well. This could be done by adaptively adding a third component if one of

the two tensor components becomes planar, indicating a three-fiber crossing. Experiments

done in [14] have shown that throughout the brain, the fraction of fast diffusing component

is around 0.7, while the slow fraction is 0.3. We thus fix w = 0.7 in our work. This, however

does not preclude us from modeling other diffusion fractions as can be seen by adjusting the

eigenvalues: exp(−buT Du) = exp(−buT (Diso + D2)u) = α exp(−buT D2u), where we have

decomposed a diffusion tensor D into a sum of isotropic tensor Diso and an anisotropic part

D2 leading to α = exp(−bDiso). Thus, changing the eigenvalues is equivalent to changing the

volume fraction of the diffusion tensor. This also proves that bi-exponential models cannot

have a unique solution. In our case, the UKF acts as a regularizer resulting in smooth

parameter estimation.

Thus, the number of unknowns per tensor compartment is 7 (3 for the eigenvector m, 2

eigenvalues of tensor Di and 2 eigenvalues of tensor D̄
i). For a two-fiber model, the total
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number of unknowns is 14. Note that, the proposed model is different from that of [7],

where the restricted compartment is modeled in terms of the axonal diameter. On the other

hand, the model of [14] is a general model with a separate bi-exponential fit done for each

gradient direction. This model does not account for consistency in the spherical domain,

making the estimation quite susceptible to noise (which is significant at high b-values). The

NODDI model [17] utilizes Watson functions for representing the intra-cellular components

and a customized acquisition sequence for optimal performance.

Unscented Kalman Filter

We use the unscented Kalman filter (UKF), as described in [13], for robust estimation of the

parameters in (1). The UKF framework has the advantage of estimating the model

parameters and performing tractography simultaneously, resulting in an inherent

regularization of the model parameters and the tracts themselves. To use this state-space

filter for estimating the model parameters, we define the following four filter components:

(1) The system state (x): the model parameters, (2) The state transition function (f): how the

model changes as we trace the fiber, (3) The observation function (h): how the signal

appears given a particular model state, (4) The measurement (y): the actual signal obtained

from the scanner.

The state x of the system consists of the parameters of the model given by: x = [m1 λ11 λ12

λ13 λ14 m2 λ21 λ22 λ23 λ24]. As in [13], we assume the state transition function to be an

identity matrix, since the diffusion signal does not change much when stepping from one

location to the next within a voxel (we take very small step size). The observation function

h(x) is given by equation (1), which “predicts” the signal based on the model parameters x.

Finally, y is the signal measured by the scanner (we perform interpolation as in [13] to

obtain the signal at sub-voxel locations). The UKF allows for recursive estimation of the

parameters x and the confidence in the estimation of x via a covariance matrix P. This is

extremely important, since model parameters (and the corresponding tracts) estimated with

low confidence can essentially be discarded.

To initialize the model parameters x, we first estimate a single tensor using the low b-value

data to obtain the principal diffusion direction m. Next, the UKF is run for several iterations

(typically 20) at the same location to obtain a reasonable estimate of the initial set of

parameters for the bi-exponential model (1). Next, we start the tractography process, by

alternately estimating the parameters x and taking a small step in the direction of the

principal diffusion direction, until a suitable termination criteria is reached.

4 Experiments

We performed several experiments on in-vivo human data to demonstrate the efficacy of the

proposed method in computing the EAP and tracing the fiber tracts. Our data set involved 4

different acquisitions of one subject done during the same scanning session. The scans were

acquired with N = {32, 40, 60, 120} gradient directions at the following b-value shells: b =

{1000, 4000}s/mm2 and spatial resolution of 2.5mm3. We acquired different sparsely

sampled scans to avoid interpolating the densely sampled data and sub-sampling it, which

could potentially introduce errors and change the actual SNR (due to smoothing in the
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interpolation process). In addition a T1 and T2-weighted images with 1mm3 resolution were

also acquired with a total scan time of 61 minutes. All diffusion images (of all scans) were

spatially normalized and corrected for motion and eddy current distortions using FLIRT

[18]. T1-image parcellation was performed with CMTK (www.nitrc.org/projects/cmtk)

using the SRI24 atlas [19] and it was subsequently registered to the diffusion space.

We performed whole brain tractography on each of the four data sets, using the proposed

method, by seeding 10 times (random) per voxel. Several fiber bundles connecting two

regions in the SRI24 atlas were extracted for subsequent analysis. Figure 1 shows tracts

connecting the precentral areas in the left and right hemisphere. On the left, we show the

tracts obtained with dense sampling of 120 measurements (60 gradient directions per shell)

and color coded with the return-to-origin probability (RTOP). As expected, RTOP is low in

gray matter (yellow-red) and high white matter (green-blue). Figure 1 (right) also shows the

precentral fiber bundles obtained using all the four sampling schemes; red(N = 120),

green(N = 60), blue(N = 40) and white(N = 32). Note that, all the other fiber bundles overlap

significantly with the one obtained using dense sampling (red). In Figure 2, we show two

views of a part of the cortico-spinal tract (CST) obtained by selecting fibers that pass

through the internal capsule. For the sake of clarity, we show results for N = 120 (red) and N

= 32 (white).

Next, we provide some quantitative results on how well the proposed method traces various

fiber bundles (from different scans) relative to the dense sampling method (gold standard)

with N = 120. To quantify the overlap between two fiber bundles, we propose to use the

Bhattacharyya metric B on probability distributions [20]. We compute probability

distribution for each of the spatial co-ordinates (x, y, z) of a fiber bundle (denote the

probability distribution function (pdf) on the x-coordinate of the gold standard as pg(x)).

Then, the Bhattacharyya metric Bx is given by: , where p(x) is the pdf

of a fiber bundle to be compared. To compute the distance between two fiber bundles, we

simply take an equally-weighted combination in each co-ordinate:

This metric has several advantages: 1). The values of B are bounded between 0 and 1. Thus,

B will be 1 for a perfect match between two fiber bundles and 0 for no overlap at all. 2).

Since the probability distributions are smooth, the metric accounts for minor deviations in

tracts due to noise (as opposed to discretizing the fibers to obtain a label map for computing

the dice coefficient).

We selected 66 different cortical regions from the SRI24 atlas and computed B for each of

the fiber bundles that connected these regions. Fiber bundles obtained using N = 120

measurements were considered as the “gold standard” and distance (B) between fiber

bundles obtained with sparser set of measurements were computed. Figure 3 shows the

connectivity network for the three different acquisitions color coded with the distance B

between the fiber bundles. Note that, B varies between 0.8 and 0.9 for all the acquisitions
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indicating a good overlap of the traced fibers. Further, as expected, the acquisition with N =

120 is closest to the gold standard, while the one with N = 32 has only a few fiber bundles

with overlap close to 0.8.

We performed a similar analysis on the network, by computing the normalized mean error E

in estimation of RTOP for each of the fiber bundles ( , where mg and m is the

mean RTOP for the gold standard and the other fiber bundle respectively). Figure 4 shows

result for all the three acquisitions (with the dense one being the gold standard). In general,

the percentage error in estimation of RTOP is small (around 2–3%), which is close to the

variability between two different scans of the same subject. However, there are a few fiber

bundles for which the percentage is around 10%, specially for the N = 32 acquisition data.

5 Conclusion and limitations

In this work, we proposed a novel bi-exponential multi-tensor tractography framework for

consistent estimation of the diffusion propagator and fiber tracts. We investigated our

technique on four different data sets from the same subject but with different number of

gradient directions. Our quantitative results showed that the tracts traced with sparser set of

samples (N = 32, 40, 60) showed good overlap with those traced using dense sampling of N

= 120. Further, the estimated diffusion measure of return-to-origin probability (RTOP) for

sparser data sets was quite consistent with that obtained from the dense one. We should

however note that, this work is quite preliminary in nature and essentially a proof-of-

concept. Our future work entails comprehensive comparison on several subjects as well as

quantifying error in different diffusion measures.
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Fig. 1.
(a) Tracts obtained with N = 120 measurements and colored using the estimated RTOP.

Notice the low values (red) in the gray matter and high values (blue) in white matter, as

expected. (b) Tracts generated using different number of measurements: red(N = 120),

green(N = 60), blue(N = 40) and white(N = 32). Note the significant overlap between the

fiber bundles. Overlap measure B60 = 0.97, B40 = 0.94, B32 = 0.92.
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Fig. 2.
Two views of the CST. Red - fibers obtained with dense sampling (N = 120) and white -

fibers with sparse sampling (N = 32). Note that, despite the sparse sampling the later method

traces similar regions of the brain. Overlap measure B32 = 0.9.
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Fig. 3.
Fiber bundle overlap measure B between the “gold standard” (N = 120) and the

corresponding fiber bundles obtained from sparser acquisitions. B is greater than 0.8 in all

cases (all acquisitions), and close to 0.9 in most cases.
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Fig. 4.
Color coding reflects normalized mean error in estimation of RTOP compared to the “gold

standard” in all fiber bundles traced for different acquisitions
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