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Abstract

Most aspects of mammalian function display circadian rhythms driven by an endogenous clock.

The circadian clock is operated by genes and comprises a central clock in the brain that responds

to environmental cues and controls subordinate clocks in peripheral tissues via circadian output

pathways. The central and peripheral clocks coordinately generate rhythmic gene expression in a

tissue-specific manner in vivo to couple diverse physiological and behavioral processes to periodic

changes in the environment. However, as the world industrialized, activities that disrupt

endogenous homeostasis with external circadian cues have increased. This change in lifestyle has

been linked to increased risk of diseases in all aspects of human health, including cancer. Studies

in humans and animal models have revealed that cancer development in vivo is closely associated

with the loss of circadian homeostasis in energy balance, immune function and aging that are

supported by cellular functions important for tumor suppression including cell proliferation,

senescence, metabolism and DNA damage response. The clock controls these cellular functions

both locally in cells of peripheral tissues and at the organismal level via extracellular signaling.

Thus, the hierarchical mammalian circadian clock provides a unique system to study

carcinogenesis as a deregulated physiological process in vivo. The asynchrony between host and

malignant tissues in cell proliferation and metabolism also provides new and exciting options for

novel anti-cancer therapies.

Introduction

Circadian rhythms in physiological and behavioral processes in plants and animals have

been known since fourth century BC. These rhythms were originally attributed to a passive

response of organisms to diurnal changes in external light cues, but were later discovered to

be generated by an endogenous clock in all species studied1. In mammals, circadian rhythms

are generated by a central clock located in the hypothalamus suprachiasmatic nucleus (SCN)

that constantly synchronizes with environmental cues via circadian input pathways and

controls the peripheral clocks through circadian output pathways2,3.
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Both central and peripheral clocks are operated by the same set of circadian genes expressed

in all tissues studied. The molecular clockwork in mammals has been described in detail in

several recent reviews4–6. Briefly, it is based on autoregulatory transcriptional feedback

loops driven by the heterodimer of bHLH-PAS transcription factors BMAL1/CLOCK or

BMAL1/NPAS2 that activate their downstream transcriptional repressor targets

Cryptochrome (Cry1,2) and Period (Per1–3) at the beginning of a circadian day. The

accumulation of PER and CRY proteins in the cytoplasm at the end of a circadian day,

controlled by the SCF (Skp1-Cullin-F-box protein) E3 ubiquitin ligase complexes, casein

kinase 1ε/δ (CK1ε/δ) and AMP kinase (AMPK), leads to the formation of a PER/CRY

repressor complex that translocates into the nucleus at the beginning of a circadian night to

inhibit the activity of BMAL1/CLOCK or BMAL1/NPAS2 heterodimers and recruit the

transcriptional termination complex to the Per and Cry genes7. In addition, the transcription

of Bmal1 is alternatively regulated by its own transcription targets, the nuclear receptors

Rev-erbα/β (the repressors) and Rorα (the activator)8–10. The multiple interlocked

autoregulatory feedback loops result in a robust circadian variation in the expression and

activity of Bmal1 over a 24 hour period, providing a driving force for circadian oscillation of

the molecular clockwork.

The circadian regulators also target clock-controlled genes to generate circadian rhythms in

all major cellular processes in both SCN neurons and peripheral organs, resulting in a

rhythmic expression of 3–10% of all mRNAs expressed in a given tissue due to time-

dependent interactions between the circadian regulators with specific gene promoter

sequences, transcription factors, or transcriptional initiation, elongation and termination

complexes, as well as the key factors controlling chromatin remodeling7,11–15. The clock-

controlled genes usually do not share overlapping expression patterns between tissues,

suggesting a key role for the circadian clock in controlling tissue-specific function in vivo.

Clock-controlled genes expressed in all tissues studied include the key regulators of cell

proliferation, metabolism, senescence and DNA damage response16–23.

The molecular clock in SCN neurons and peripheral tissues can be entrained or phase-

shifted by cellular signaling. The most potent circadian time cue for the SCN clock is light

which is received by a subset of melanopsin-expressing retinal ganglion cells and

transmitted directly to the SCN neurons via the retinohypothalamic tract (RHT). Upon

activation, the RHT produces neurotransmitters that activate a cascade of signal transduction

events leading to circadian phase resetting24,25. Although the SCN clock on its own is

capable of generating autonomic circadian outputs, the constant coupling of the central clock

with environmental cues provides a survival advantage by synchronizing daily physiology

and behavior with local time cues25,26. A shift in environmental cues, such as traveling

across several times zones on an aircraft, induces a phase-shift in the central clock and the

subsequent SCN-controlled phase-shift in peripheral tissues via circadian output pathways to

reestablish the endogenous circadian homeostasis to the new local time. The number of days

needed to fully adjust to the new time zone is dependent on the number of time zones

crossed during the trip. Constant back-and-forth phase-shifts of environmental light cues

resulted from rotating work schedules or chronic jet-lag, disrupts endogenous circadian

homeostasis by uncoupling the central and peripheral clock coordination27–29.
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The best studied circadian output pathways include the autonomic nervous system (ANS)

and neuroendocrine system (NES) that control all aspects of mammalian physiology as well

as the peripheral clocks via cellular signaling. The rhythmic activities of these systems

provide a mechanism for the central clock to control peripheral tissues directly and

indirectly via peripheral clocks24,29–33.

Dramatic changes in lifestyles since the industrial revolution due to increased use of

artificial lighting, nightshift working schedules, or rapid long-distance transmeridian

travelling have led to frequent disruption of endogenous circadian homeostasis in modern

societies. These changes in lifestyle are coupled with a significant increase in the risk of

diseases in all aspects of human health including cancer.

Circadian dysfunction promotes cancer development in humans

Circadian disruption is an independent cancer risk factor for humans

Recent epidemiology studies have linked circadian disruption to increased susceptibility of

cancer development in all key organ systems in humans. The cancers observed from these

studies included breast, ovarian, lung, pancreatic, prostate, colorectal and endometrial

cancers, non-Hodgkin's lymphoma (NHL), osteosarcoma, acute myeloid leukemia (AML),

head and neck squamous cell carcinoma, and hepatocellular carcinoma34–49. Circadian

dysfunction-induced cancer risk increases with the number of years, the frequency of

rotating work schedules, and the number of hours per week working at night among human

night-shift workers45,46,50–52. Together, these findings suggest that loss of circadian

homeostasis could be an independent cancer risk factor for humans53. Due to the prevalence

of night shift-work schedules in modern societies, the World Health Organization’s

International Agency for Research on Cancer (IARC) listed "shiftwork that involves

circadian disruption" as a probable carcinogen in 2007.

Circadian disruption is associated with poor prognosis and early mortality of cancer
patients

Loss of circadian homeostasis not only promotes cancer development, but is also associated

with poor performance to anticancer treatments and early mortality among cancer patients.

After adjusting for other factors that might affect survival, circadian rhythm in salivary and

serum cortisol levels as well as daily rest/activity patterns are used as independent prognosis

factors for survival and therapeutic response of patients with metastatic breast, lung and

colorectal cancers54–61.

Disruption of the molecular clockworks in human cancers

Ample evidence has linked dysfunction of the molecular clock with pathogenesis of human

cancers (Table 1). The mechanisms of dysregulation of the core circadian genes in human

cancers discovered to date include epigenetic silencing by promoter methylation,

deregulation at the transcriptional and post-transcriptional levels, and structural variations of

clock proteins due to circadian gene polymorphisms.
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When compared to normal host tissues, decreased expression and polymorphism of the core

circadian genes Per1, Per2 and Per3 are frequently found in human breast, endometrial,

prostate, pancreatic, colorectal and non-small cell lung cancers (NSCLC), as well as

hepatocellular carcinoma, neck squamous cell carcinoma, glioma, AML and chronic

myeloid lymphoma (CML)62–73. In CML, breast, endometrial and NSCLC, this deregulation

is often linked to hypermethylation of CpG islands or aberrant acetylation in the promoters

of Per genes, which leads to gene silencing72,74–77. Other core circadian genes are also

frequently deregulated or silenced in human cancers. For example, the epigenetic

inactivation of Bmal1 is often linked to hematologic malignancies including NHL, diffuse

large B-cell lymphoma, acute lymphocytic leukemia (ALL) and AML, whereas

polymorphisms in Clock, Cry1, Cry2 and Npas2 gene are frequently found associated with

increased risk or recurrence of NHL, AML, endometrial ovarian, colorectal and breast

cancers76,78–82. In most studies examining the role of the molecular clock in human cancers,

deregulation or polymorphism of multiple or all core circadian genes is observed. For

example, deregulation or polymorphism of Per1, Per2 and Per3, Clock, Bmal1, Cry1, Cry2,

Clock, Npas2, and/or CK1ε are frequently found in human CML, prostate, pancreatic and

epithelial ovarian cancers, leukemia, pleural mesothelioma, hepatocellular carcinoma,

glioma and neck squamous cell carcinoma69,75,81,83–90. Based on these discoveries, a

combined deregulation of Cry1 and Bmal1, or Cry1 and Per2, has been suggested as a

negative prognostic marker for epithelial ovarian cancer and CML, respectively84,86,91.

Deregulation of the core circadian genes in human cancers is closely associated with a

constitutive activation of intracellular inflammatory and oncogenic signaling pathways

including constitutive activation of p38, c-Myc, NF-kB, Bcl-XL, and protein kinase A

(PKA)68,78,92–94, aberrant chromatin remodeling, deregulation of inflammatory cytokines,

catalase, Tip60, telomerase, PARP [poly (ADP-ribose) polymerase], Sirt1 and

p30078,92,93,95–97, over-expression of ERα, G1 and S-phase cyclins and suppression of

tumor suppressors ATM, p53, p21 and Wee183,94,98–100. Deregulation of the molecular

clock is correlated with the loss of control in cell proliferation, metabolism, DNA replication

and repair, senescence, apoptosis, DNA damage response and increased drug resistance in

all types of human cancer cells studied (Table 1)68,78,83,88,94,96,98,99,101–107.

Central clock dysfunction increases cancer risk in humans

In the hierarchical organization of the mammalian circadian clock, the peripheral clock can

only sense changes in environmental light cues via central clock-controlled circadian output

pathways. Thus, central clock dysfunction induced by frequent back-and-forth phase-shifts

of environmental cues may play a key role in promoting cancer development among human

night-shift workers by disrupting the homeostasis of neuroendocrine function95,108–110. This

hypothesis is supported by the facts that visually impaired people who are insensitive to

changes in environmental circadian light cues and largely or completely depend on a free-

running endogenous clock to organize their daily physiology display a lower cancer risk

compared to the general population111–113.
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In summary, ample evidence obtained from human studies suggests that the mammalian

circadian clock plays a key role in tumor suppression. Therefore, disruption of circadian

homeostasis of mammalian physiology is a novel risk factor for cancer (Table 1).

Circadian disruption promotes cancer development in animal models

The central clock suppresses tumor initiation and progression in animal models

The pioneer studies to investigate the role of circadian disruption in cancer development

using experimental animal models started in late 1960s. These studies demonstrate that

disruption of circadian endocrine rhythms either by constant light exposure or pinealectomy

increases spontaneous and carcinogen-induced mammary gland and hepatocellular

carcinogenesis in rodents114–116. Similar experiments conducted in recent years have also

shown that disruption of circadian homeostasis by a short period of back-and-forth or

consecutive phase advance shifts of environmental light cues, or by constant light exposure

significantly accelerate tumor growth in animals117–121. Compared to sham-operated

animals, mice lacking a central clock due to surgical ablation of the SCN were unable to

maintain circadian rhythmicity in locomotor activity, body temperature and immune

function. This loss of circadian homeostasis in SCN-lesioned mice is coupled with a

significant decrease in survival time due to increased rate of tumor growth compared to

control tumor bearing mice with an intact SCN122. Together, these studies agree with the

findings from human studies in that circadian dysfunction increases the risk of cancer by

demonstrating that disruption of the central circadian clock promotes cancer development

and progression in rodents.

Variation in cancer phenotypes reported for circadian gene-mutant mouse models

The role for mammalian circadian genes in cancer genetics was first reported in 2002 in a

study showing that mice expressing a mutant PER2 (Per2m/m) defective in PER2-mediated

protein/protein interactions due to a 85 amino acids in-frame deletion in the PAS domain of

Per2 gene display multiple tumor-prone phenotypes including increased spontaneous and γ-

radiation-induced lymphoma, hyperplastic growth in salivary and preputial glands,

resistance to radiation-induced apoptosis in thymocytes, and deregulation of key tumor

suppressors, cyclins and proto-oncogenes, such as p53, Gadd45α, Cyclin D1, Cyclin A, c-

Myc and Mdm2123,124. The same study also shows that Per2-null (Per2−/−) mice display

similar cancer prone phenotypes as Per2m/m mice (Supplemental data)124.

In contrast, other reports indicate that mice deficient in other core circadian genes either lack

neoplastic phenotypes or are tumor resistant. For example, mice lacking Bmal1 (Bmal1−/−)

show significant reduced lifespan and premature aging, but not spontaneous tumor

development125. Hepatocytes in mice lacking both Cry1 and Cry2 (Cry1−/−;Cry2−/−)

proliferated slower than wild-type (Wt) hepatocytes in the first 72 hours immediately after

partial hepatectomy126. Ablation of both Cry1 and Cry2 reduced cancer risk for p53-null

mice127. Clock-mutant (Clockm/m) and Cry1−/−;Cry2−/− mice did not show predisposition to

cancer in response to a low dose of γ-irradiation128,129. Furthermore, MEFs isolated from

Cry1−/−;Cry2−/− mice do not show deficiencies in γ-radiation-induced cell cycle arrest,

whereas Clockm/m MEFs show lower levels of DNA synthesis and cell proliferation than
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wild-type controls19,128. Together, the studies described above led to the conclusion that the

cancer-prone phenotypes discovered in Per2m/m and Per2−/− mice are the result of loss of

a ”none-clock function” of the Per2 gene but not the function of the mammalian circadian

clock6.

The molecular clock suppresses tumor development in mice

We e suggest that a more detailed analysis of the available information supports a direct role

for the molecular clock in tumor suppression in mice.

First, the observation of a temporary slowdown in Cry1−/−;Cry2−/− hepatocyte proliferation

immediately after partial hepatectomy cannot predict whether Cry1−/−;Cry2−/− mice are

tumor-resistant under normal physiological conditions. Surgical stress caused by partial

hepatectomy can suppress the growth of hepatocellular carcinoma in mouse livers until the

third post-operative day130. In fact, compared to wild-type controls, most mouse models

prone to spontaneous hepatocellular carcinoma show an initial delay in hepatocyte

proliferation after partial hepatectomy. For example, compared to wild-type controls, mice

lacking the nuclear receptor FXR display a delay in hepatocyte proliferation after partial

hepatectomy until the 9th post-operative days. However, Fxr−/− mice quickly regain the

ability of rapid hepatocyte proliferation and develop malignant liver tumors after 12 months

of age131,132. Since Cry1−/−;Cry2−/− mice show significantly dampened Bmal1 expression

and deregulation of the Mitogen-activated Protein Kinase/Extracellular Signal-regulated

Kinase (MAPK/ERK) pathway in the liver133–135, it would be important to examine whether

the temporary delay in hepatocyte proliferation in Cry1−/−;Cry2−/− mice after partial

hepatectomy is caused by deficiencies in cellular signaling essential for G1 cell cycle

initiation136,137.

Second, the conclusions that Per-mutants are cancer-prone but Cry-mutants are tumor

resistant are confounded by significant differences in the phenotypes of control wild-type

and p53-null mice but not Per- and Cry-mutant mice in different studies29,124,127,128. For

example, the conclusion that a single 4-Gy sublethal dose of γ-irradiation led to a similar

rate of decline in the survival of irradiated wild-type and Cry1−/−;Cry2−/− mice was based

on an unusual sensitivity of wild-type mice to γ-irradiation128, which was not observed in

the earlier study indicating increased sensitivity of the Per2-mutant mice to the same 4 Gy

sublethal γ-radiation124.

Similarly, discrepancies on the effects of Per or Cry gene ablation on the survival and tumor

developing rate of p53-null mice can also be attributed to a significant difference in the

average and maximal lifespans of p53-null mice29,127, which vary from 15 to 30 and 28 to

60 weeks of age, respectively, as reported in different studies138–145. In accordance with our

studies demonstrating that chronic back-and-forth jet-lag significantly accelerated tumor

development and reduced survival of p53-null mice29, mice harboring both a mutant p53

correspondent to the p53R175H hotspot mutation in humans and a mutant Per2 allele

(Per2S662G)146, which leads to a short and phase-advanced behavior rhythm among human

patients suffering from familial advanced sleep phase syndrome due to a single serine to

glycine mutation within the CKIε binding region in PER2147, also display increased tumor

incidence and decreased survival compared to p53R175H mice148. These findings suggest
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strongly that circadian dysfunction cooperates with loss of p53 to promote tumor

development.

Different research teams have also independently reached the same conclusion that Per- and

Cry-mutant mice display a similar neoplastic growth of osteoblasts in bone149,150, and that

disruption of Period genes increases cancer risk in mice29,124,148,151–153. Therefore, it

would be important to verify the role of Per and Cry genes in cancer risk since Per and Cry

genes are both indispensable for operating the same negative loop in the molecular clock

and display the same deregulated behavioral phenotypes123,154,155. In addition, despite of a

high Per2 mRNA expression, PER2 protein is not detected in peripheral tissues of

Cry1−/−;Cry2−/− mice156. Indeed, when Per- and Cry-mutant mice of the same mouse strain

were studied under the exact same conditions, the two mouse models display the same

increased rate of tumor development in the skeletal, immune, reproductive and digestive

systems when kept in steady-state 12 hour light/12 hour dark (24 hour LD) condition, in

response to a sub-lethal dose of γ-radiation, or treated with chronic jet-lag after γ-

radiation29. Together, the evidence obtained from studying mice lacking Per or Cry under

the same conditions strongly argues that as found in human studies, the Cryptochrome genes

also function in tumor suppression in rodents.

Third, Clockm/m mice show a significant decrease in survival compared to wild-type controls

at 80 weeks of age after a sub-lethal dose of γ-radiation. No significant difference in tumor

incidence or the rate of radiation-induced apoptosis between wild-type and Clockm/m

splenocytes was reported. The decrease in the survival of irradiated Clockm/m mice was

attributed to accelerated aging but not tumor development129. Since only the apoptotic

response of in vitro cultured Clockm/m splenocytes to a lethal not a sub-lethal dose of γ-

radiation was studied, and that the similar aging phenotypes displayed by irradiated

Clockm/m mice are also commonly observed in other irradiated circadian gene-mutant mouse

models29,124,128,129, a role for Clock in tumor suppression cannot be ruled out without

examining the cancer risk of Clock−/− and Clock−/−;Npas2−/− mice as well as irradiated

Clockm/m mice after 80 weeks of age. This is because aging is considered a primary risk

factor for cancer157, and the mammalian CLOCK may play a direct role in DNA damage

repair after γ-radiation158. In addition, CLOCK and NPAS2 play overlapping roles in the

molecular clock159,160. Unlike Per2m/m and Per2−/− mice that show a similar deregulated

circadian phenotype123,124,155,161, Clockm/m and Clock−/− mice display different circadian

behavioral phenotypes and patterns of deregulation of gene expression in somatic

cells162–165.

Fourth, the observations of aggressive aging phenotypes and lack of tumor incidence among

Bmal1-null mice are not sufficient to exclude a role for Bmal1 in tumor suppression. When

kept in stable 24 hour LD cycles, most spontaneous tumors are identified after 50 weeks of

age in circadian gene-mutant mice29, which is an age most Bmal1−/− mice would not live

to125. After being treated with a sublethal dose of γ-radiation, although the maximal life-

span of Bmal1−/− mice was further decreased, about 6–7% of them developed malignant

lymphomas before or at about 40 weeks of age. This rate of tumor development in irradiated

Bmal1−/− mice is very similar to the reported rate of tumor development among irradiated

Per- and Cry-mutant mice29,124,128. In addition, Bmal1+/− mice that have a similar life-span
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as Per- and Cry-mutants display the same rate of spontaneous and radiation-induced tumor

development in the same organ systems as Per- and Cry-mutant mice29.

Bmal1-null mice also display a delay in anagen progression and decreased cell proliferation

in secondary hair germ cells, which is coupled with increased G1 cell cycle block as shown

by decreased levels of RB phosphorylation, increased expression of cyclin-dependent kinase

inhibitors p21WAF1/CIP1 and p16Ink4A, and accelerated epidermal aging166. In contrast, mice

lacking Bmal1 only in keratinocytes show constitutive elevation of cell proliferation and

intracellular redox levels as well as deregulated UVB-induced DNA damage in the

epidermis at linear growth age after wean22. However, in a different study, the same

keratinocyte-specific Bmal1−/− mouse model was reported to display aging phenotypes in

the skin starting from 10 months of age, an age most Bmal1-null mice could not survive

to125. The decreased regeneration of keratinocyte-specific Bmal1−/− hair germ cells reported

in this study cannot be rescued by overexpressing oncogenic Sos, a Ras activator167,

suggesting an early onset of replicative or cellular senescence (explained later in this

review). Together with the findings that Bmal1-null mice display normal skin regeneration

and aggressive hyperplastic growth in bone at a young age as well as increased lymphoma

development after γ-radiation, and that targeted silencing of Bmal1 in tumors induces

immune suppression and accelerated tumor growth in mice29,125,149,168, the studies

described above suggest that cellular senescence resulted from hyperplastic growth,

oncogenic activation and accumulated free radical-induced DNA damage is intrinsic to

Bmal1−/− somatic cells. However, in tumors and somatic tissues that can overcome the

barriers of cellular senescence and ROS-induced apoptosis, loss of Bmal1 only accelerates

tumor initiation and growth22,29,166,168. Bmal1−/− mice are specially distinct from other

circadian gene-mutant mouse models in that they lack circadian homeostasis even when kept

in 24 hour LD conditions169. This severe disruption of endogenous homeostasis at the

organismal level may also contribute to increased senescence at the organismal level.

However, if Bmal1-null mice can overcome aggressive aging, they are likely cancer prone.

Cellular based studies using mouse primary cells lacking core circadian genes

The role of core circadian genes in controlling cell proliferation and DNA damage response

has also been studied using various types of primary cells isolated from different circadian

gene mouse models in vitro19,29,124,128,129,149,170. The results obtained from these studies

should be explained with caution. For example, primary MEFs cultured in vitro behave very

differently from somatic cells in tissues prone to tumor development. MEFs are known to be

resistant to sublethal doses of γ-radiation induced apoptosis regardless of genotypes, and

therefore should not display a high rate of apoptotic death after a sublethal dose of γ-

radiation in the absence of aberrant oncogenic activation128,171,172. In addition, the cell

cycle clock is different from the molecular clock in that it does not free-run (Figure

1)173,174. Therefore, the serum shock protocol for setting free-running status of the

molecular clock in cultured MEFs is not suitable for studying the role of a core circadian

gene in cell cycle control because this protocol requires confluent cell culture condition and

only provides growth factor-containing serum for a few hours at the initial serum shocking

stage, which leads to uncoupling of the cell cycle clock from the molecular clock due to

growth arrest induced by contact inhibition and lack of proper extracellular signals to induce
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immediate early genes essential for G1 cell cycle progression after the first day of the

experiment19,175,176.

The choice of cell types and in vitro cell culture conditions used in a study may lead to

different conclusions on the role of a gene in cell cycle control. For example, under

confluent culture condition, serum-shocked differentiated skeletal muscle cells and

hepatocytes from Bmal1−/− mice show high level expression of p21WAF1/CIP1, leading to

the conclusion that loss of Bmal1 decreases the rate of cell proliferation177. However, when

a human RNAi library targeting 8,000 human genes was studied to identify modulators of

p53 function using the BJ-TERT-tsLT cells under subconfluent condition, which were

originally isolated from normal human diploid foreskin fibroblasts, Bmal1 was identified as

a novel positive regulator of the tumor suppressor p53. Inhibition of Bmal1 expression in

this system led to loss of p53-mediated G1 cell cycle arrest at least in part due to an inability

to activate the p53 target p21WAF1/CIP1 100.

In summary, genetic studies using various circadian gene-mutant mouse models strongly

suggest that as found in human studies, both positive and negative loops of the molecular

clock function in tumor suppression in rodents (Table 2).

The role of the mammalian circadian clock in tumor suppression

Cancer is a multifactorial disease in vivo. Its initiation and progression need various

manifestations of abnormal physiological conditions in vivo. As the master regulator of

mammalian physiology, the circadian clock acts at the molecular, cellular, tissue/organ and

organismal levels to suppress tumor development by maintaining homeostasis of

physiology.

The role of peripheral clock in tumor suppression

In cells of peripheral tissues, the clock orchestrates diverse cellular functions in a diurnal

oscillating pattern via generation of a network of gene expression at the transcriptional and

post-transcriptional levels9,178–180. Disruption of the circadian profiles of this gene

expression network leads to loss of homeostasis in cell/tissue function, a key mechanism in

circadian dysfunction-induced diseases. Recent studies have revealed that in both human

and experimental animal models, circadian disruption specially increases the risk of cancers

in the immune, digestive and reproductive systems that need daily cell proliferation to

support their functions. These findings highlight the importance of circadian control of cell

cycle progression in both homeostasis of tissue function and tumor suppression in vivo. In

peripheral tissues, the molecular clock suppresses neoplastic growth by controlling cell

proliferation, metabolism, senescence and DNA damage response.

Control of cell proliferation by the molecular clock—Both cell cycle and molecular

clocks are operated by interlocked feedback loops of genes that display periodic and

sequential phases of activation and repression at the transcription, post-transcription and

post-translational levels181. However, although both are considered as “intracellular clocks”,

a cell cycle clock is fundamentally different from the molecular clock. First, unlike the

molecular clock, the cell cycle clock does not free-run in normal somatic cells. Therefore,
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the activities of the peripheral clock and cell cycle clock can be separated in peripheral

tissues in the absence of proper extracellular mitogenic signals174,182–184. Second, the

period of a cell cycle clock is not always fixed as 24 hours throughout one’s lifespan. It can

vary from only a few hours in early embryogenesis to 24 hours in rapid renewing somatic

tissues in adult life or indefinitely long due to cellular senescence185–188. Since tumor cells

often display the properties of de-differentiation and rapid self-renewal with a cell cycle

period shorter than 24 hours, loss of circadian coupling of cell cycle progression in adult life

may play a key role in the initiation of neoplastic growth in vivo.

Circadian variation of mitotic activity in normal human tissues has been described since

1938189. The uncoupling of mitotic rhythm between normal host tissue and metastasizing

cancer was first reported in 1940190. It is now well-known that cell proliferation in all

rapidly renewing mammalian tissues studied follow a diurnal oscillating rhythm under

normal physiological conditions but is altered in tumors78,101,191–197. The coupling of cell

proliferation rhythm between host and tumor has been observed in slow-growing tumors that

show considerably higher levels of DNA synthesis and mitotic indices than host tissues

throughout a 24 hour period197–199. Whereas an ultradian rhythm less than 24 hour in cell

proliferation is often found in metastasizing cancers199–202.

Genome-wide studies have identified a number of genes controlling the key steps of

initiation, progression and checkpoint functions of the cell cycle clock as clock-controlled

genes7,11–14. These genes encode proto-oncogenes, tumor suppressors, caspases, cyclins,

transcription factors and ubiquitin-associated factors essential for regulating cell

proliferation and death16–23. Clock-controlled cell cycle regulators are also expressed in all

circadian gene-mutant mouse models studied except that they display significant changes in

expression profiles and amplitudes over a 24 hour period, which is coupled with loss of cell

cycle control in adult tissues of mutant mice22,124,126,149,166,167. Thus, cell cycle clock can

function independent of the molecular clock. However, the control of the expression of key

cell cycle genes by an intact molecular clock is indispensable for coupling the rate of cell

proliferation to diurnal changes in mammalian physiology in vivo.

Both positive and negative loops of the molecular clock are involved in circadian control of

cell cycle gene expression in peripheral tissues. The best studied clock-controlled cell cycle

regulators include oncogenes c-Myc, Mdm2 and β-catenin, Cyclins D1, B and A, and tumor

suppressors p53, Wee1 and p21WAF1/CIP198,124,126,149,166,177. c-Myc is an immediate early

responsive gene to diverse cell proliferation stimuli. It plays a key role in G1 cell cycle

initiation as well as cell growth and death (Figure 1)203. The expression of c-Myc is tightly

controlled in somatic cells in response to diverse stimuli at the transcriptional level via

multiple cis-acting sequences in its proximal promoter region204. Deregulation of c-Myc in

cooperation with loss of function in p53 promotes neoplastic transformation, tumor

initiation, maintenance and metastasis205. In addition to clock-controlled chromatin

remodeling, BMAL1/CLOCK and BMAL1/NPAS2 directly regulate c-Myc transcription via

the two E-boxes in the P1 promoter of c-Myc124,149,206. Disruption of circadian rhythm

leads to deregulation of c-Myc which is coupled with increased neoplastic growth in mice,

suggesting that the control of G1 cell cycle initiation is one of the key mechanisms for

circadian control of tumor suppression29,124,149. Many key cell cycle regulators, such as
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Cdk4, Itga6, Wnt3, LHx2, Tcf4, Sox 9, Smad7 and Wee1 are also directly regulated at the

transcriptional level by BMAL1/CLOCK heterodimer via E-box-mediated interaction in the

gene promoters126,167,206. p53 and MDM2 are controlled indirectly by the Per genes via the

tumor suppressor ataxia-telangiectasia mutated (ATM) at the post-transcriptional level29,98.

Bmal1 has also been reported to regulate p53-p21WAF1/CIP1 signaling, although the

molecular mechanism of this regulation is still not clear83,100,177. The rhythmic expression

of cell cycle genes and tumor suppressor p53 is synchronized with the oscillation patterns of

the core circadian genes in normal somatic tissues in both humans and mouse

models29,124,126,207–209.

The core circadian regulators also regulate the activity of β-Catenin via directly controlling

intracellular signaling pathways. Constitutive activation of the core circadian regulator CKIε

mimics the effect of WNT signaling, resulting in cytoplasmic accumulation of β-Catenin and

its subsequent nuclear localization210,211. In the nucleus, β-Catenin interacts with

transcription factors of the T-cell-specific transcription factor/lymphoid enhancer factor-1

(TCF/LEF) family to regulate transcription and promote tumorigenesis212,213. Genes

activated by β-Catenin/TCF/LEF include members of the AP1 transcription family, c-Myc

and Cyclin D1214–219. Interestingly, the molecular clock itself also responds to β-Catenin

nuclear localization to regulate the expression of genes via BMAL1/CLOCK-mediated

transcriptional regulation167. Aberrant activation of β-Catenin also disrupts the molecular

clock to promote neoplastic transformation by inducing β-transducin repeat-containing

protein (β-TrCP)-mediated PER2 degradation151.

In the absence of WNT signaling, β-Catenin is destabilized by glycogen synthase kinase-3β

(GSK3β), a functional homologue of the core circadian gene Shaggy in the fruit fly, which

functions in regulating the period length of circadian cycles by indirectly controlling PER

stability and nuclear entry220,221. Recent studies have revealed that deregulation of GSK3β

promotes tumor cell survival, proliferation, invasion and resistance to chemo- and radiation

therapy in humans by inhibiting p53 and RB tumor suppressors, inducing intracellular NF-

κB signaling, Cyclin D1 over-expression and local chronic inflammation222,223. The activity

of GSK3β exhibits robust circadian rhythm in both SCN and peripheral tissues, suggesting

that GSK3β may also indirectly target PER2 in the mammalian molecular clock224.

Together, the evidence discussed above suggests that the molecular clock couples cell

proliferation with mammalian daily physiology by rhythmically pacing the key cell

proliferation and tumor suppression pathways at the cellular level. Since the molecular

clockworks operate as interlocked feedback loops, disruption of either a positive or negative

loop would disrupt the stability of the molecular clock leading to loss of control in the

circadian homeostasis of cell cycle progression29,135,156,225,226. Indeed, deregulation of both

positive and negative loops of molecular clock frequently occurs in the same type of tumor

in humans76,78–81,83,84,86,88,94,227,228.

Control of DNA-damage response by the molecular clock—An average human

being contains about 1014 cells, each receives tens of thousands DNA lesions every day. If

not repaired, these lesions induce harmful mutations that could affect the survival of cells or

even an organism229. DNA damage activates genes encoding key enzymes in DNA repair

machinery and cell cycle checkpoints that pause cell cycle progression to give the cell time
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to repair damaged DNA before continuing to divide230. When DNA damage exceeds the

capacity of the cell to repair, efficient elimination of damaged cells by apoptosis or necrosis

plays a key role in suppressing tumor development231.

DNA damage response in mammals is mainly controlled by two master kinases, ATM and

ataxia telangiectasia and Rad3-related (ATR)232,233. ATM/ATR targets the protein kinases

CHK1 and CHK2, which together with ATM and ATR suppress cyclin-dependent kinase

(CDK) activity and activate CKIs such as p21WAF1/CIP1 in a p53-dependent manner205,234.

Inhibition of CDKs and activation of CKIs lead to arrest of cell cycle progression at the

G1/S, intra-S or G2/M checkpoints to allow DNA damage repair235,236. ATM/ATR

signaling also enhances DNA repair by transcriptionally and post-transcriptionally activating

DNA-repair genes and by recruiting repair factors to the sites of damage. Activation of p53

by ATM/ATR signaling in response to genomic DNA damage often leads to p53-mediated

apoptosis (Figure 1)237.

A large number of key players in DNA replication, recombination and repair has been

identified as clock-controlled genes in mice7,11–14. Some of these genes, such as Xeroderma

pigmentosum A (XPA) that plays an essential role in nucleotide excision repair, are

deregulated in Cry1−/−;Cry2−/− mice, which correlates with a dampened circadian rhythm

in nucleotide excision repair after UVB irradiation in Cry1−/−;Cry2−/− epidermis238,239.

The evidence of direct involvement of Cryptochromes in DNA damage repair in mammals is

still missing, although Cryptochromes are structurally related to evolutionarily conserved

DNA photolyases that catalyze light-dependent DNA repair in plants240. However,

mammalian CLOCK may play a direct role in DNA damage repair because it directly

locates to the sites of γ-radiation-induced DNA double-strand breaks158. PER1 was found

directly interacting with ATM and CHK2 in response to γ-radiation-induced DNA damage.

Overexpression of PER1 in human cancer cells sensitizes cells to radiation-induced

apoptosis by activation of Myc-mediated pro-apoptotic pathways98. The human CRY2 has

been reported to interact with ATR and CHK1 to regulate intra-S checkpoint function in

UV-induced DNA damage response via Timeless (TIM), a natural partner of PER in

Drosophila and is necessary for maintaining the robustness of the mammalian central

clock241,242. The role for BMAL1 in DNA damage response is shown by a recent study in

which knock-down Bmal1 expression abolishes γ-radiation-induced p53 activation as well

as p53-dependent p21WAF1/CIP1 induction in human colorectal carcinoma cells100. All core

circadian genes studied are activated by exogenous DNA damage agents such as γ-radiation

in peripheral tissues following a time-dependent profile over a 24 hour period in mice. Wild-

type mouse thymocytes display a time-dependent response to γ-radiation-induced apoptosis

in vivo, while loss of function in Per2 leads to resistance to radiation-induced apoptosis in

thymocytes throughout a 24 hour period and increased risk of radiation-induced lymphoma

in Per2m/m and Per2−/− mice29,124,243,244. Thus, the potentiation of the molecular clock to

respond to DNA damage agents varies at different times during a day and plays a key role in

determining the outcomes of DNA damage response.

Control of cell metabolism by the molecular clock—Cancer is classically

considered as a disease originated from genetic and epigenetic abnormalities that lead to

uncontrolled cell growth and division, and formation of metastasizing tumors. The
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prevalence of metabolic syndromes worldwide and its coherence to cancer has led to a

renewed interest in the Warburg effect, which describes an essential role of deregulation of

cell metabolism in cancer initiation. In 1956, Otto Warburg observed that normal quiescent

somatic cells metabolize glucose to CO2 and H2O via a low rate of glycolysis followed by

oxidation of pyruvate in TCA cycle in mitochondria. However, cancer cells predominantly

use glucose to produce energy through a high rate of glycolysis followed by lactic acid

fermentation in the cytosol even in the presence of abundance oxygen. Warburg predicted

that this metabolic reprogram is a fundamental cause of cancer245. Studies in the past decade

have revealed that cancer cells display an array of metabolic abnormalities and that both

oncoproteins and tumor suppressors can influence the switch between aerobic glycolysis and

the use of TCA cycle to generate ATP246–251. The predominant use of the aerobic glycolysis

pathway in cancer cells not only leads to a high level of intracellular reactive oxygen species

(ROS), a major source of endogenous DNA damage agents promoting cancer and aging, but

also the accumulation of intermediate products including purines, pyrimidines, nonessential

amino acids and free fatty acids that can be used for anabolic synthesis, cell growth and

division249,252–254.

The mammalian circadian clock is a master regulator of metabolic homeostasis both at the

organismal and peripheral tissue levels6,255–258. In peripheral tissues, the molecular clock

regulates nutrient uptake, metabolism, energy storage, mitochondria biosynthesis and

intracellular redox levels by targeting key metabolic genes including those controlling the

Warburg effect, such as glucose-6-phosphatase, pyruvate kinase and glucose transporter 2

(GLUT)17,20,179,259,260. It also responds to food cues and nutrient sensors to shift metabolic

balance independent of SCN clock function12,261–266. The peripheral clock also indirectly

controls Warburg switch by regulating the expression of oncoproteins and tumor

suppressors. For example, p53 inhibits aerobic glycolysis and decreases intracellular ROS

levels by suppressing GLUT1–4 and fructose-2,6-bisphosphate, a critical substrate of

aerobic glycolysis, via the tumor suppressor p53-induced glycolysis and apoptosis regulator

(TIGAR)267,268, and promotes the use of TCA cycle by inhibiting glycolic enzyme

phosphoglycerol mutatase269. Whereas c-MYC stimulates biosynthesis to support cell

growth and proliferation via upregulating lipogenetic, glycolytic and mitochondrial

genes270–273, and increases glutamine uptake to compensate for the progressive loss of

glucose as a mitochondrial substrate in cancers cells due to Warburg effect274. Myc also

upregulates mitochondrial biosynthesis by regulating genes including nuclear respiratory

factor 1 (NRF1) and the transcription factor A, mitochondrial (TFAM) as well as

cytochrome C to stimulate the production of ROS275–279. Although elevated ROS leads to

Myc-mediated apoptosis in normal somatic cells280, loss of function or deregulation of p53

in combination of Myc oncogenic activation results in the metabolic switch to support cell

proliferation, apoptotic resistance and neoplastic transformation254,281–285.

The molecular clock not only controls metabolic homeostasis by regulating nuclear

receptors and their co-activators and suppressors as well as chromatin remodeling in

metabolically active peripheral tissues6,255–258,286, but is also regulated by nuclear receptors

REV-ERBα/β, RORα and PPARγ coactivator PGC-1α that play an active role in energy

metabolism, adipogenesis and lipid storage in peripheral tissues, and by nutrient sensors
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such as adenosine monophosphate-activated protein kinase (AMPK)8–10,265,287. Therefore,

disruption of the molecular clockworks would inevitably shift the homeostasis of

metabolism and energy balance in peripheral tissues to provide an intracellular environment

that favors tumor initiation and progression.

Control of cell senescence by the molecular clock—Aging is frequently associated

with disruption of circadian rhythmicity in humans and animal models288–290. Premature

aging is commonly observed among circadian gene-mutant mouse models. Among them,

Bmal1−/− mice display the most aggressive aging phenotypes leading to a significantly

reduced lifespan125. Other circadian gene-mutant mouse models including mice carrying a

mutated Clock (Clockm/m) or lacking Per or Cry genes (Cry1−/−;Cry2−/−, Per1−/−;Per2−/−,

Per2m/m or Per2−/−) also display premature aging phenotypes which become more evident

in response to DNA damage agents such as γ-radiation29,124,128,129. These premature aging

phenotypes of circadian gene-mutant mouse models are closely related to deregulation of

cell proliferation and DNA damage response in vivo.

Aging is an universal process for all multi-cell organisms on earth, which is measured

chronologically by biological changes over time and is accompanied with a dramatic

increase in the risk of various diseases at the mid-point of the life span291. Although aging is

marked by progressive degeneration of tissue and cell function in vivo, it is also coupled

with increased risk of neoplastic growth in renewable tissues in mammals, leading to the

conclusion that aging is a primary risk factor of cancer292,293. The mechanisms linking

aging to cancer including immunosenescence and age-related endocrine dysfunction at the

organismal level as well as telomere shortening, reproductive cell cycle and accumulation of

DNA damage over a lifetime294–299. These adverse age-related pathological changes have

led to the conclusions that if humans live long enough, they would all eventually develop

cancer300,301.

Throughout the life span, mammals need continuous cell proliferation to support their daily

physiology. However, the inherent limitations in DNA repair mechanisms inevitably lead to

accumulation of errors in genomic DNA, which often results in replicative or cellular

senescence, a direct cause of aging302–306. Senescence refers to a state of permanent and

irreversible withdrawal from cell cycle resulted from accumulation of cellular damages

including DNA lesions, oncogenic activation, and/or over-expression of tumor

suppressors157. Since cancer cells do not have a limited replicative life span, cellular

senescence is often used to enforce the idea that it suppresses cancer development307.

However, mounting evidence suggests that cellular senescence also promotes cancer

initiation and progression. Senescent cells are still metabolically active and often show

changes in chromatin organization and gene expression, leading to secretion of

proinflammatory cytokines, proteases and growth factors. The paracrine activities of

senescent cells have been found to stimulate proliferation and migration of neighboring cells

and promote the development of metastatic tumors308–311. The activation of Myc, Ras/

MAPK oncogenic signaling and/or p53/p21WAF1/CIP1 and pRB/p16INK4a tumor suppressing

pathways are established molecular mechanisms for cellular senescence312–315. Under

certain conditions, suppression or even a subtle change in the expression of these tumor

suppressors could lead to senescent cells to rapidly regain the ability to proliferate316.
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Increased oxidative stress in circadian gene mutant mice may lead to a higher level

accumulation of DNA damage which induces early cellular senescence to promote

aging125,289,317. The modulators of the molecular clock, such as NAD-dependent

deacetylase sirtuin-1 (SIRT1) may play a role in bridging aging and cancer-prone

phenotypes found in circadian gene-mutant mice6. SIRT1 is a class III histone deacetylase

that promotes cell survival by inhibiting apoptosis and cellular senescence in mammals318.

SIRT1 expression follows a robust circadian expression in vivo. It directly interacts with

CLOCK and deacetylates BMAL1 to regulate the activity of the molecular clock12,13, and

also plays a role in regulating cell proliferation and apoptosis by deacetylating key tumor

suppressors and oncoproteins including p53, β-Catenin and DNA repair protein

KU70319–321. Both Bmal1 and Per2 are found to inhibit cellular senescence in vivo possibly

by distinct mechanisms. Per2-mutation leads to AKT-dependent vascular senescence that

impairs endothelial progenitor cell function, while loss of Bmal1 promotes senescence in

vivo via a p53-independent mechanism23,322. The increased cellular senescence found in

circadian gene-mutant mice may be explained by their inherent high risk of deregulation of

oncogenic and tumor suppression pathways, high intracellular levels of redox and its

associated accumulation of genomic DNA damage, and abnormal internal physiological

environments that promote oncogenic extracellular signaling. These abnormalities together

with lack of proper control of gene expression could increase paracrine activities and loss of

senescence surveillance, which not only leads to increased local tissue damage and

inflammation that stimulate cell regeneration but also the possibility of re-entering cell cycle

of senescent cells. Since cancer is a clonogenic disease in vivo, one or a few premalignant

cells that successfully escape senescence surveillance would be sufficient enough to promote

cancer development in vivo205,323.

Tumor suppression in vivo is a clock-controlled physiological function

Although an intact molecular clock can provide self-sustained circadian oscillations in

peripheral tissues, peripheral organs rely on daily entrainment signals from the central

pacemaker to maintain the synchrony of the internal physiology. Disruption of central clock

function leads to phase desynchrony among peripheral tissues182. Such desynchronization of

the internal circadian homeostasis is closely related to increased risk of tumor development

and accelerates tumor progression in both humans and experimental animal

models34–49,54–59,117–122. The key entrainment signals from the central clock include

extracellular signaling controlled by the autonomic nervous and neuroendocrine systems

(ANS and NES)24. Loss of homeostasis of ANS and NES disrupts circadian homeostasis of

cancer immune surveillance and energy balance as well as G1 cell cycle progression in

renewable peripheral tissues, which synergistically promote tumor development.

The mechanisms of SCN control of peripheral tissues have been discussed in detail in

several recent reviews24,30–33,258,324. Briefly, via direct and indirect targeting, the SCN

clock controls brain centers especially those in the hypothalamus including the

paraventricular nucleus (PVN), arcuate nucleus (ARC), dorsomedial hypothalamus (DMH),

lateral hypothalamus (LHA) and endocrine neurons producing corticotropin-releasing

hormone (CRH), thyrotropin-releasing hormone (TRH) and gonadotropin-releasing

hormone (GnRH). The CRH, TRH and GnRH control the activity of NES via the

Fu and Kettner Page 15

Prog Mol Biol Transl Sci. Author manuscript; available in PMC 2014 July 18.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-gonadal (HPG) axes,

while ARC, DMH, LHA and PVN control energy expenditure and food-intake in response

to both central and peripheral signals. The autonomic paraventricular neurons (aPVN)

directly project to the preganglionic parasympathatic and sympathetic neurons in the

brainstem nuclei, dorsal motor nucleus of the vagus (DMV), and intermediolateral cell

columns (IML) of the spinal cord to control parasympathatic and sympathetic nervous

systems. The SCN control of aPVN neurons leads to a robust circadian oscillation in the

function of the autonomic nervous system (ANS) in vivo. The example of SCN control of

NES is demonstrated by the rhythmic activity of HPA axis. The SCN pacemaker indirectly

generates circadian oscillation of Adrenocorticotropic hormone (ACTH)-controlled

corticosterone production from the adrenal gland into the blood via controlling hypothalamic

CRH endocrine neurons324. In vivo, the ANS innervates all peripheral tissues except skeletal

muscle through G-protein-coupled transmembrane-receptor (GPCR) in a tissue and/or cell

type-specific manner325–327. Hormones produced by the pineal gland, HPA and HPG axes,

such as melatonin, glucocorticoids, and oestrogen target a wide range of peripheral tissues

especially the immune, metabolically active and reproductive organs328–335. The rhythmic

intracellular signaling generated by neurotransmitters and hormones plays an essential role

in maintaining homeostasis of tissue microenvironment (Figure 2).

Control of G1 cell cycle progression in peripheral tissues by the central
pacemaker—In the central pacemaker, light stimuli activates a cascade of intracellular

signal transduction pathways in the SCN neurons to phase-shift the center pacemaker

including the MAPK, ERK, Protein Kinase C alpha (PKCα), Calcium/Calmodulin-

dependent Protein Kinases II (CaM kinases II), c-Jun N-terminal kinase (JNK), c-AMP-

Protein Kinase A (PKA) and Nitric Oxide (NO)/c-GMP pathways that differentially regulate

the expression of the immediate early genes c-Fos and JunB and the core circadian genes

Per1 and Per2 in a time-dependent manner336–345. The peripheral clocks do not directly

respond to light stimuli, but are instead synchronized by cyclic changes in the levels of

neurotransmitters, growth factors, cytokines and hormones in tissue

microenvironment324,346,347. Despite the sensitivity of the peripheral clock to non-SCN cues

such as food cues, metabolites, or fluctuation in body temperature, the central pacemaker

plays a dominant role in peripheral clock control to maintain the integrity of the internal

physiology24.

The best understood intracellular signaling pathways for entraining the peripheral clock by

ANS and NES include glucocorticoid and beta-adrenergic receptor (ADRβ)-mediated

activation of the molecular clock. The interaction of glucocorticoid with glucocorticoid

receptor (GR) in the cytoplasm stimulates GR nuclear localization and activation of GR-

mediated transcription via Glucocorticoid-Responsive Elements (GREs) in gene

promoters348,349. GREs are found in the regulatory regions of Per1, Per2, Bmal1 and Cry1

genes350–352, and both CRY1 and 2 directly interact with GR in a ligand-dependent fashion

to modulate the transcriptional activity of GR353. Administration of dexamethasone, a

glucocorticoid analog, phase-shifts the molecular clock in cultured rat-1 fibroblasts as well

as in mouse livers. Although unable to phase-shift the SCN clock, dexamethasone can

resynchronize about 60% of the circadian transcriptome in the livers of SCN-lesioned mice
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via at least in part directly phase-shifting the molecular clock31,350. Adrenalectomy results

in deregulation of the core clock genes, desynchronization and dampening of the molecular

clock in multiple peripheral tissues354.

The SNS directly innervates all peripheral tissues by releasing norepinephrine (NE) to target

adrenergic receptors (ADRs) on cell membranes. It also controls the production and

secretion of epinephrine (EPI) from the adrenal medulla, which then target all cells

expressing ADRs in the body via blood circulation355. ADRβ2 is the best studied ADR that

responds to ligand binding by activating cAMP Response Element-Binding Protein (CREB)

which then interacts with the cAMP Response Element (CRE) in promoters to regulate gene

transcription. Per1 and Per2 both contain CREs in the promoters and are among the

immediate early genes activated by CREB in cultured primary osteoblasts, NIH3T3 cells

and mouse liver slides in response to administration of isoproterenol, a synthetic agonist of

ADRβ2, EPI or NE in vitro and in mouse livers after intraperitoneal injection of adrenalines

in vivo29,149,356. Loss of function in Per1 and Per2 or sympathectomy abolishes SNS-

induced peripheral clock activation in affected tissues in rodents29,149,357–360.

The activation of ADRβ is followed by β-arrestin-mediated receptor desensitization. As

multifunctional scaffold proteins, the interaction of β-arrestins with ADRβ leads to

activation of other signal transduction pathways including the MAPK, Ras/ERK, JNK,

nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), β-Catenin, CaM

kinases II, Phosphatidylinositide 3-Kinases/Protein Kinase B/Mammalian Target of

Rapamycin (PI3K/AKT/mTOR), Janus kinase 3/Signal Transducer and Activator of

Transcription (JAK3/STAT), insulin-like growth factor 1 (IGF-1) and MDM2-p53

pathways134,361–365. Glucocorticoid signaling also crosstalks with pathways controlled by

NF-κB, β-Catenin, PI3K and epidermal growth factor receptor (EGFR)366–370. The

pathways stimulated by glucocorticoid and ADRβ signaling not only modulate the molecular

clock at transcriptional and post-translational levels but also cell proliferation, apoptosis and

metabolism in a tissue and cell type-specific manner, leading to coupling of peripheral clock

activity with tissue-specific functions in vivo (Figure 3)246,252,254,316,371–374.

The initiation of G1 cell cycle progression in vivo is strictly controlled by extracellular

signals that activate proto-oncogenes c-Myc and/or E2f via intracellular signaling include c-

AMP-PKA, MAPK, Ras/ERK, JNK, β-Catenin, and/or PI3K pathways in a cell type-specific

manner174. Loss of homeostasis in HPA axis and ANS signaling is frequently associated

with increased risk of cancer375,376. The role of central clock in controlling cell cycle

progression in peripheral tissues can be explained by a model obtained from studying

circadian control of Myc transcriptional activation. In cultured primary osteoblasts,

isoproterenol-mediated ADRβ signaling stimulates cell cycle progression via a coupled

activation of peripheral clock, cell cycle clock and p53 controlled by immediate early genes

including Per1 and Per2, Ap1 and Myc, and ATM, respectively. Activation of Myc leads to

cell cycle progression, while activation of peripheral clock prevents Myc overexpression and

also stimulates ATM-mediated p53 induction. Loss of function in the Per genes, or elevated

concentration of isoproterenol, prevents the activation of peripheral clock and ATM but not

AP1-controlled Myc activation, leading to suppression of p53 induction and uncontrolled

osteoblast proliferation due to Myc overexpression. The PER proteins may be directly
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involved in SNS-stimulated ATM activation since PER1 has been found to interact with

ATM in response to γ-radiation98, whereas CRY proteins may prevent uncontrolled c-AMP-

PKA-CREB-AP1-c-Myc signaling in response to ADRβ activation by directly inhibiting the

Gs alpha subunit (Gsα) essential for activating adenylate cyclase377. In vivo, Per- and Cry-

mutant mice both show uncontrolled SNS signaling and display a phenotype of neoplastic

growth of osteoblasts in bone29,149,150,377,378. Disruption of homeostasis of SNS signaling

by chronic jetlag is associated with the disruption of peripheral clock function, suppression

of p53 and Myc oncogenic activation, which is coupled with increased tumor development

in all mouse models studied29. Together with previous reports on increased tumor

development and progression in rodent models treated with constant light exposure,

pinealectomy, chronic jet-lag, or SCN-lesion, these findings provide an explanation on how

circadian dysfunction induces tumor development in the absence of gene mutations117–122,

which is especially relevant for developing novel strategies for cancer prevention in the

modern world in which frequent disruption of endogenous circadian homeostasis due to

lifestyle change is associated with a dramatic increase in the risk of sporadic cancers (Figure

4)379.

Circadian control of cancer immune surveillance—The current concept of cancer

immunoediting is based on the evidence of sequential steps of elimination of transformed

cells in vivo by the immune system380. When transformed cells accumulated above a

threshold, they are recognized by lymphocytes including Nature Killing T (NKT), Nature

Killing (NK) and gamma deltaT (γδT) cells that are stimulated by transformed cells to

produce interferon γ (IFN-γ). This triggers a cascade of innate immunity including the

induction of chemokines CXCL9, 10 and 11 to block neovascularization in the tumor and

the recruitment of NK cells, dendritic cells, macrophages and other immune effector cells to

the tumor site. The anti-proliferative effects of IFN-γ on transformed cells and the cytocidal

activities of macrophages and NK cells result in the death of tumor cells which are ingested

by dendritic cells and trafficked to the draining lymph node, where the tumor specific CD4+

and CD8+ T-lymphocytes are developed. These tumor-specific T-lymphocytes are then

directed to the tumor site along a chemokine gradient, where they act together with NK cells

and activated macrophages to recognize and destroy tumor cells380,381. Mice deficient in

cancer immunoediting display a significantly higher risk of spontaneous tumor development

in the immune, digestive, respiration and reproductive organs382–386. Cancer immunoediting

is usually abolished by cancer-induced immunosuppression in human cancer patients380,381.

The mechanisms of cancer immunosuppression include deregulation or loss of expression of

cancer cell surface markers leading to lack of recognition of transformed cells by cytotoxic

T lymphocytes, resistance to cell death induced by cytotoxic T lymphocytes due to

deregulation of apoptotic factors and death receptors, production of immunosuppressive

factors including free radicals, cytokines and growth factors that negatively affect cancer

immunoediting by impeding the proliferation and/or function of CD4+ and CD8+ T cells.

The immunosuppressive microenvironment in tumors also stimulates the generation and/or

promotion of immunosuppressive cells such as type 2 macrophages, myeloid-derived

suppressor cells, immature dendritic cells and regulatory T lymphocytes380,381,387,388.
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Both primary and secondary lymphoid organs including thymus, spleen and lymph nodes are

intensively innervated by ANS and NES389–394. Under normal physiological conditions, the

production of cytokines and cytolytic factors, proliferation of leukocytes, activities of NK

cells, and redistribution of T and B lymphocytes, dendritic cells, leukocytes and

macrophages to lymphoid organs all follow a robust circadian rhythm in vivo395–403.

Disruption of circadian homeostasis is closely related to immune suppression404. Ablation or

deregulation of the core circadian genes Per1, Per2, Bmal1, Rev-erbα, or Clock in mice

induces an array of abnormalities in the immune system, including deregulation of

proinflammatory cytokines, cytotoxic receptors, immunoregulatory genes and NK and mast

cell activities, and inhibition of B lymphocyte differentiation164,397,405–411. Mice lacking

both Cry1 and Cry2 display constitutive elevation of proinflammatory cytokines and are

prone to chronic inflammation, a common underlying mechanism for cancer93. Importantly,

the immune function is not controlled at the cell autonomous level in vivo. Consecutive

phase advance shifts of environmental light cues disrupt the molecular clock and circadian

homeostasis of NK cell function in rats412. Ablation of sympathetic innervation abolishes

the circadian oscillation of cytokines and cytolytic factors in splenocytes and NK cells359,

haematopoietic stem cell trafficking and the expression of chemokine CXCL12360. Adoptive

transfer of Bmal1−/− bone marrow deficient in B lymphocyte differentiation to lethally

irradiated BALB/cRag2−/− recipients that are unable to generate mature B lymphocytes due

to lack of V(D)J recombination activating gene 2 (Rag2) resulted in normal T and B

lymphocyte differentiation from Bmal1−/− bone marrow. However, reciprocal transfer of

BALB/c Rag2−/− bone marrow to lethally irradiated Bmal1−/− mice did not lead to normal

B lymphocyte development, suggesting that the SCN control of tissue microenvironment in

bone marrow plays a dominant role in lymphocyte precursor proliferation and differentiation

in vivo410.

The central pacemaker not only controls the function of immune system but can also be

modulated by immune products such as proinflammatory cytokines Interleukin 1 and 6 (IL-1

and IL-6), Tumor Necrosis Factor-α (TNF-α) and anti-inflammatory drugs, which alter

intracellular expression of Bmal1, Npas2, Cry1 and/or Per2413–415 and the activity of the

SCN clock and HPA axis at the organismal level416,417. Such modulation provides a

circadian-paced immune-regulatory feedback loop that acts as an internal cue to the central

clock to control the homeostasis of internal physiology.

Circadian homeostasis of energy balance suppresses tumor development—
Human nightshift workers show a coupled increase in the risk of metabolic syndromes and

cancers29,46,418–422. Disruption of circadian rhythm in mouse models also induces metabolic

syndromes and whole body, local and/or organ-specific adiposity6,255–258,423–425, which is

coupled with a significantly higher risk of tumor development in the digestive system29. As

discovered from cancer epidemiological studies, deregulation, epigenetic silencing and/or

polymorphisms of core circadian genes including Per2, Bmal1, Cry2 and Clock are

frequently associated with increased risk of obesity and metabolic syndromes in

humans426–431. Together, these findings strongly argue that disruption of circadian

homeostasis of energy balance is an important cancer risk factor.
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Energy homeostasis in vivo is maintained by the reciprocal interaction of peripheral

adiposity signals and the central nervous system432,433, which are both under close

surveillance of the circadian clock258,434. Although beyond the scope of this review, the

evidence of direct and indirect interactions between the SCN pacemaker and the brain

energy homeostasis center ARC, feeding and satiety center LHA and catabolic center PVN

suggest that although the central circadian clock does not directly respond to food cues435, it

plays an active role in the brain circuits of energy balance436–441. Together with its role in

modulating daily activity of NES and ANS that controls the production and circulating

levels of most if not all peripheral adiposity signals as well as metabolic balance in

peripheral tissues33,442–448, the central pacemaker acts as a master regulator of energy

homeostasis in vivo (Figure 2).

Although the biological mechanisms linking obesity and cancer are still not well-

understood, obesity-induced deregulation of extracellular signaling, angiogenesis and

chronic inflammation are considered as the major pathways promoting cancer

development449–451. Obesity leads to increased production of metabolic hormones from the

fat and livers of obese subjects, such as Leptin and bioavailable IGF-1, which stimulate

biosynthesis, cell growth, proliferation and survival via activation of intracellular signaling

pathways including the PI3K/AKT/mTOR, MAPK and JAK3/STAT pathways that are often

abrrantly activated in tumors452–454. Obesity also promotes chronic inflammation by

increasing circulating free fatty acids, proinflammatory cytokines IL-1β, IL-6, TNF-α and

monocyte chemoattractant protein (MCP)-1, stimulating type 2 macrophages polarization,

and activating NF-κB-mediated proinflammatory and pro-proliferation pathways450,455–457.

Such changes in tissue microenvironment lead to tissue damage due to increased cell

necrosis induced by constant stress of increasing in biosynthesis, oxidative stress and DNA

damage, which in turn stimulates tissue regeneration that needs active cell proliferation to

support. However, the deregulation of multiple oncogenic and tumor suppression pathways

as well as immunosuppression due to circadian disruption would result in increased risk of

neoplastic growth that accelerate cancer development in obese subjects458–460.

Anticancer chronotherapy

Chemotherapy using one or more cytotoxic drugs in conjunction with radiation therapy or

surgery is one of the most common procedures for anticancer therapy. Since

chemotherapeutic drugs indiscriminately target both cancerous cells and normal host cells in

renewable tissues, these drugs often generate intolerable side effects that impair the

treatment461. The “targeted” anticancer therapy developed in recent years is aimed at

blocking the growth of cancer cells via monoclonal antibodies recognizing tumor-specific

antigens on tumor cell surface or small molecules that block intracellular tyrosine-kinase

signaling including MARK/ERK, JAK, PI3K, CDKs, estrogen receptor (ER), epithelial

growth factor receptor (EGFR) and vascular endothelial growth factor receptor (VEGFR)

controlled pathways462. However, since these signaling pathways are also important for

mediating neuroendocrine functions in host tissues, these small inhibitors also potentially

increase the risk of fatal side effects among cancer patients463. Thus, to maximally increase

tumor targeting efficiency and protect normal host tissues are the biggest challenges for

successful anticancer treatments.
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Tumors are derived from host tissues after regaining the properties of rapid self-renewing

and de-differentiation phenotypes. Most biological processes supporting tumor growth are

also essential for normal physiological functions of the host except that the biological

processes in normal host tissues are properly controlled and integrated with the daily

physiology. Thus, anticancer treatments would inevitably have adverse effect on patients.

Biological processes determining the efficiency of anticancer drugs including drug

absorption, distribution, intracellular metabolism and elimination all follow circadian

rhythms in the host464. In addition, once inside the tumor cells, the function of a cytotoxic

drug is largely determined by the circadian phase of cell proliferation in the tumors, which

even in the advanced stage tumors is not temporally disorganized192,197–201,465. Therefore,

to apply anticancer treatment at a selected time during the day based on circadian variation

in host internal physiology and the asynchronies in cell proliferation and drug metabolic

rhythms between normal and malignant tissues could maximize drug toxicity to tumors and

increase the efficiency of anti-cancer treatment466.

Studies using mouse models have revealed that both host tolerability and drug efficacy are

affected by circadian timing, and that the best therapeutic index is achieved by coupling the

time for drug delivery with host endogenous circadian rhythms467. These results have been

extrapolated to randomized clinic trials of patients undergoing treatment for advanced-stage

cancers including metastatic ovarian, lung, colorectal, and breast cancers using conventional

chemotherapeutic drugs58,468,469. The results of these studies have revealed that current

procedures of anticancer chronotherapy indeed leads to better therapeutic outcomes and is

especially more beneficial to patients who still maintain the endogenous circadian

rhythmicity. The improved therapeutic index is shown by reduced drug toxicity, improved

tumor response rate and the duration of the response, and decreased frequency of tumor

metastasis. However, although chronotherapy has been shown to significantly increase the

survival time for children with ALL470, it does not increase the long-term survival of

patients with metastasizing cancers471, suggesting that anti-cancer chronotherapy is still at

its initial stage of practice and needs further improvement. The facts that the molecular clock

directly responds to genotoxic insults and that mice deficient in the Clock, Bmal1 and Cry

genes all respond differently to anti-cancer drugs compared to wild-type controls suggest

that the response to anticancer treatment is a complicated clock-controlled physiological

function in vivo124,243,244,472. Further investigation of the mechanisms of cancer

chronotherapy, especially the mechanisms controlling the response of the circadian clock to

anticancer treatment, the consequence of such response to host physiology and tumor

biology, the effect of tumor development on host circadian homeostasis and the ability of the

clock to respond to anticancer treatment would contribute greatly to improve the current

anticancer chronotherapy.

Conclusions

The rate of cancer continues to rise as more people live to an old age and changes in lifestyle

affect more developing countries473. Cancer is usually not detected at the early stage due to

lack of obvious symptoms474,475. However, the fact that only 5–10% of all cancers

diagnosed are caused by inheritated genetic mutations suggests that an unhealthy lifestyle is

the major risk factor for cancer. Therefore, cancer is preventable379. Mounting evidence
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obtained from recent studies suggests that disruption of endogenous circadian homeostasis is

a novel and independent risk factor for cancer. In addition, as a master regulator of

mammalian physiology, disruption of the clock likely manifests cancer development and

progression induced by previously identified exogenous and endogenous cancer risk factors

including diet choices, tobacoo and alcohol usage, viral infection, air polutions, aging,

endocrine dysfunction, metabolic syndormes and immnue deficiencies476,477. Although still

at the initial stage, recent advancements strongly suggest that both tumor suppression and

response to anticancer treatments are clock-controlled physiological functions in vivo.

Therefore, the mammalian circadian clock provides an invaluable and exciting system to

study the mechanism of cancer and anticancer chronotherapy at the molecular, cellular,

tissue organ and organismal levels in vivo. Such studies will have a significant impact on

human health in the future by improving both cancer prevention and treament.
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Figure 1. Control of cell proliferation by the molecular clock
Unlike the molecular clock, the cell cycle does not free run before passing the G1/S phase

transition. The initiation of cell cycle progression is strictly controlled by extracellular

mitogenic signals that transiently activate immediate early genes such as c-Myc, which then

induces Cyclin D leading to activation of CyclinD/CDK4/6 complex that in turn activates

E2F-dependent Cyclin E expression by suppressing tumor suppressor RB (not shown). The

interaction of Cyclin E with CDK2 allows G1 to S phase transition. G1 is the longest phase

in the cell cycle during which most biosynthesis essential for supporting cell cycle

progression occurs. c-MYC or E2F oncogenic activation induced elevation of G1 Cyclin

expression or genomic DNA damage leads to activation of G1 checkpoint mediated by

p16Ink4A and p21WAF1/CIP1, controlled by RB and p53 respectively. P16Ink4A disrupts

Cyclin D/CDK4/6 complex (not shown), whereas p21WAF1/CIP1 disrupts Cyclin E/CDK2

interaction. The activation G1 checkpoint leads cells to pause before entering S-phase to

repair damaged DNA or exit cell cycle to enter G0 phase (non-dividing status). Under

certain conditions, excessive DNA damage or uncontrolled oncogenic signaling can both

activate RB and/or p53 tumor suppression pathways leading to cellular senescence. DNA

damage induced by UV radiation leads to activation of ATR/CHK1-mediated intra-S

checkpoint that couples DNA damage repair with replication. Whereas double-stranded

DNA damage induced by γ-radiation activates ATM/CHK2-mediated G1/S and G2/M
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checkpoints to prevent damaged cells to enter S or mitotic (M) phase. Prolonged G2/M

checkpoint arrest is also often associated with p53-mediated apoptosis. G2/M transition is

also regulated by WEE1, a kinase that phosphorylates and inactivates the Cyclin B1/Cell

Division Cycle 2 (CDC2) complex essential for G2/M transition. Upon the completion of

mitosis, cells either enter the next cell cycle stimulated by extracellular mitogen, or

withdraw from cell cycle to enter the G0 phase in the absence of mitogenic signals174,234.

The molecular clock functions in all phases of the cell cycle to prevent neoplastic growth. At

the early G1 phase, the BMAL1/CLOCK heterodimer down regulates Myc transcription to

prevent its overexpression29,124,149. PER1 directly interacts with ATM and CHK2 to control

G1 checkpoint in response to double-strand DNA damage98. In the S phase, CRY2/TIM

complex directly interacts with ATR/CHK1 to control intra-S checkpoint242. In the G2

phase, PER-mediated ATM/CHK2/p53 signaling in response to DNA double-strand breaks

and BMAL1/CLOCK activated Wee1 expression both lead to activation of G2/M checkpoint

to prevent inappropriate M phase entry98,126.
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Figure 2. Peripheral control by the SCN pacemaker
The SCN clock targets a variety of brain centers within the hypothalamus to control

homeostasis of endogenous physiology. It controls nutrient intake and energy expenditure

by targeting the brain energy homeostasis center arcuate nucleus (ARC) and catabolic center

paraventricular nucleus (PVN) directly, and feeding and satiety center LHA indirectly via

ARC and dorsomedial hypothalamus (DMH). It also controls the neuroendocrine system

(NES) by directly targeting the corticotropin-releasing hormone (CRH), thyrotropin-

releasing hormone (TRH) and gonadotropin-releasing hormone (GnRH) neurons that control

the adrenal and gonadal glands via pituitary glands. The SCN pacemaker directly targets the

autonomic paraventricular (aPVN) neurons that project to the preganglionic parasympathatic

and sympathetic neurons in the dorsal motor nucleus of the vagus (DMV) and

intermediolateral cell columns (IML) of the spinal cord to control parasympathatic and

sympathetic nervous systems (PSNS and SNS). Both PSNS and SNS also crosstalk with the

HPA and HPG axes by directly innervating the adrenal and gonadal glands. The NES and

ANS innervate all peripheral tissues in vivo to generate circadian rhythm of internal

physiology by controlling extracellular signaling and peripheral clock

activity24,30–33,258,324.
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Figure 3. Circadian control of intracellular signaling
The central pacemaker controlled autonomic nervous and neuroendocrine systems (ANS and

NES) rhythmically signal to all of their target tissues. The resulting circadian rhythm in

peripheral tissue function also generates local and/or circulating signaling molecules that

rhythmically act on their targets. Together, these extracellular signals including

neurotransmitters, steroid hormones, peptide hormones, chemokines, growth factors and

cytokines activate intracellular signaling mediated by G-protein coupled receptors (GPCRs),

tyrosine kinase receptors, integrins (not shown), and nuclear receptors in a tissue and cell-
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type specific manner. These same intracellular signaling pathways also activate the

peripheral clock. The coordinated activities of the central and peripheral clocks orchestrate

the complicated extracellular and intracellular signaling to maintain tissue homeostasis by

controlling a network of gene expression. Disruption of the central clock-controlled

extracellular signaling or mutations in core circadian genes both abolish peripheral clock

activity leading to loss of circadian homeostasis in peripheral tissues. The representative

intracellular signaling pathways directly or indirectly controlled by the central clock shown

in the figure include the c-AMP/PKA/CREB/AP1, Ras/MARK/JNK/ERK and PI3K/AKT/β-

Catenin/TCF/LEF pathways essential for c-Myc activation and cell cycle progression478–480,

the PI3K/AKT/mTOR signaling controlling biosynthesis and drug resistance451,481, the

GPCR/ATM signaling for p53 activation29, the GPCR/PKC/NF-κB pathway that regulates

stress and immune response482, the JAK/STAT pathway controlling apoptotic response483,

and the GR and ERα signaling pathways cross-talking with the AP1 signaling484,485. These

signaling pathways also control the expression and function of circadian genes leading to a

coupled activation of the molecular clock with tissue-specific function in vivo including cell

proliferation, metabolism, apoptosis, DNA repair, biosynthesis, secretion and

senescence371–374.
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Figure 4. Control of G1 cell cycle progression by the peripheral clock and the SNS
The activation of the β-adrenergic receptor 2 (ADRβ2) by SNS signaling leads a coupled

induction of Ap1 and Period genes via CREB-mediated transcriptional regulation, which in

turn activates AP1-controlled Myc induction and Myc-dependent G1 cell cycle progression

as well as peripheral clock that prevents Myc overexpression via BMAL1/CLOCK-mediated

transcriptional regulation. The activation of ADRβ2 intracellular signaling and the

peripheral clock also synergistically activate ATM, which induces p53 by blocking p53-

MDM2 interaction to provide an additional mechanism for preventing MYC oncogenic
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activation. Disruption of the central clock-SNS-peripheral clock axis in mice by chronic jet-

lag or ablation of Per genes suppresses peripheral clock activation in response to ADRβ2

activation and abolishes ATM-mediated p53 induction but had no effect on Ap1-Myc

signaling. Together these events lead to uncontrolled G1 cell cycle progression and

neoplastic growth of osteoblasts both in vitro and in vivo29,149.
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Table 1

Deregulation of the Core Clock Genes in Human Cancers

Cancer Type Circadian genes Deregulated Deregulated Targets Cellular Functions Affected References

Breast cancer Bmal1, Clock, Cry1, Cry2,
Per1, Per2, Per3, and Npas2

BCCIP, BCL2,
BRAC1, ERα,
Estrogen, EXO1,
cAMP, CDKN1A,
Cortisol, CyclinD1, c-
ERBB2, GADD45A,
HERC5, Melatonin,
MCM5, MSH2, p21,
p38, p53, PARP,
PKA, PPP1R15A,
SIRT1, SUMO1,
TERT, TIP60, and
UBA1

Apoptosis, cell cycle control,
chromatin remodeling, DNA
damage repair, and teleomere
length

38, 39, 42,
44,45, 48–
50, 53, 55,
63, 66, 74,
80, 92, 96,
99, 100,
102, 104–
107

Acute Lymphocytic Leukemia
(ALL)

Bmal1 and Clock Catalase, c-MYC, and
p300

Cell cycle control and
chromatin remodeling

78

Acute Myeloid Leukemia (AML) Bmal1, Per1, Per2, and Per3 Catalase, c-MYC, and
p300

Cell cycle control and
chromatin remodeling

78

Chronic Lymphocytic Leukemia
(CLL)

Cry1 and Per2 ZAP70 Cell cycle control, chromatin
remodeling, and DNA
damage repair

86, 91

Chronic Myeloid Leukemia
(CML)

Bmal1, Cry1, Cry2, Per1,
Per2, and Per3

c-MYC, CyclinB1,
and p53

Apoptosis, cell cycle control,
and chromatin remodeling

75,94

Colorectal cancer Clock, Per1, Per2, and Per3 Cortisol, ATM,
EGFR, ER-β, EXO1,
IL-6, MSH2, p53,
PARP, TGFα, and
TNFα

Chromatin remodeling and
DNA damage repair

34, 43, 54,
58, 62, 82,
98, 101,
102

Endometrial cancer Cry1, Per1, Per2, and Per3 Melatonin Chromatin remodeling 36, 42, 76

Glioma Cry1,Cry2, Per1, Per2, and
Per3

N/A Apoptosis and cell cycle
control

64, 65, 90

Head and neck squamous cell
carcinoma

Bmal1, CKIε, Cry1, Cry2,
Per1, Per2, Per3, and Tim

TIP60 N/A 52, 70, 85,
104

Hepatocellular carcinoma Cry2, Per1, Per2, Per3, and
Tim

CDC2, CyclinB1,
EZH2, GR, IGF-1,
and WEE1

Cell cycle control, chromatin
remodeling

47, 71

Lung cancer Clock, Per1, Per2, and Per3 Cortisol and TIP60 Cell cycle control, chromatin
remodeling, DNA damage
repair

43, 56, 57,
72, 98, 104

Malignant pleural mesothelioma Bmal1, Cry2, Per1, Per3,
Npas2, Rev-erbα, Rev-erbβ
and Tim

CASP3, CyclinB,
CyclinE,
p21WAF1/CIP1, and
WEE1

Apoptosis, cell cycle control,
chromatin remodeling, and
deregulated chemotherapy
drug response

83, 87

Non-Hodgkin's Lymphoma (NHL) Npas2 DMC1, EXO1, and
MSH2

Cell cycle control, DNA
damage repair, and immune
deficiency

37, 79, 102

Diffuse large B-cell Lymphoma Bmal1 and Clock Catalase, c-MYC, and
p300

Chromatin remodeling 78

Osteosarcoma CK1ε and Per2 CASP3, CyclinB, and
CyclinA2

Apoptosis and cell cycle
control

40, 88

Ovarian cancer Bmal1, CK1ε, Clock, Cry1,
Cry2, Per1, Per2, and Per3

Cortisol Apoptosis, cell cycle control
and deregulated
chemotherapy drug response

39, 84, 103
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Cancer Type Circadian genes Deregulated Deregulated Targets Cellular Functions Affected References

Pancreatic cancer Bmal1, CK1ε, Clock, Cry1,
Cry2, DEC1, Per1, Per2,
Per3, Tim, and Tipin

BCL-XL, CDC2,
CyclinB1, TNF-α,
and USP30

Apoptosis, cell cycle control
and chromatin remodeling

68, 69, 77,
89

Prostate cancer Bmal1, CK1ε, Clock, Cry1,
Cry2, Npas2, Per1, Per2, and
Per3

Melatonin, SIRT1,
and TIP60

Apoptosis, cell cycle control,
DNA damage repair and
transactivation of AR

35, 43, 45,
67, 73, 81,
97, 104
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