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Concentrated suspensions of swimming microorganisms and other
forms of activematter are known to display complex, self-organized
spatiotemporal patterns on scales that are large compared with
those of the individual motile units. Despite intensive experimental
and theoretical study, it has remained unclear the extent to which
the hydrodynamic flows generated by swimming cells, rather than
purely steric interactions between them, drive the self-organiza-
tion. Here we use the recent discovery of a spiral-vortex state in
confined suspensions of Bacillus subtilis to study this issue in de-
tail. Those experiments showed that if the radius of confinement
in a thin cylindrical chamber is below a critical value, the suspen-
sion will spontaneously form a steady single-vortex state encircled
by a counter-rotating cell boundary layer, with spiral cell orienta-
tion within the vortex. Left unclear, however, was the flagellar
orientation, and hence the cell swimming direction, within the
spiral vortex. Here, using a fast simulation method that captures
oriented cell–cell and cell–fluid interactions in a minimal model of
discrete particle systems, we predict the striking, counterintuitive
result that in the presence of collectively generated fluid motion,
the cells within the spiral vortex actually swim upstream against
those flows. This prediction is then confirmed by the experiments
reported here, which include measurements of flagella bundle ori-
entation and cell tracking in the self-organized state. These results
highlight the complex interplay between cell orientation and hy-
drodynamic flows in concentrated suspensions of microorganisms.

In the wide variety of systems termed “active matter” (1, 2), one
finds the spontaneous appearance of coherent dynamic struc-

tures on scales that are large compared with the individual
motile units. Examples range from polar gels (3, 4), bacterial
suspensions (5–10), and microtubule bundles (11) to cytoplasmic
streaming (12, 13). At high concentrations, suspensions of rod-
like bacteria are known to arrange at the cellular scale with
parallel alignment as in nematic liquid crystals (5, 14), but with
local order that is polar, driven by motility (15, 16). At meso- and
macroscopic scales, coherent structures such as swirls, jets, and
vortices at scales 10 μm to 1 mm have been experimentally ob-
served (5–10). Many studies have focused on how complex cell
interactions can give rise to macroscopic organization and or-
dering, and the role of self-generated fluid flows in the dynamics
of dense suspensions is still under debate (8, 10, 17–21). This
controversy is due in part to the inherent complexity of the sys-
tems under investigation and the difficulty in making faithful
mathematical models.
Microswimmers such as Escherichia coli, Bacillus subtilis, and

Chlamydomonas rheinhardtii produce dipolar fluid flows through
the combined action of their flagella and cell body on the fluid.
In the far field, they are well described as “pusher” or “puller”
stresslets (22–24), corresponding to the case of flagella behind or
in front of the cell body. These fluid flows affect passive tracers
(25, 26), as well as swimmers: their motion is subject to convec-
tion and shear reorientation induced by neighboring organisms,
which can lead to complex collective organization. Macroscopic
fluid flows emerge from the collective motion of a colony of motile
bacteria, and the suspension can exhibit a quasi-turbulent dynamics
(5). Microorganisms like B. subtilis live in porous environments,

such as soil, where contact with surfaces is inevitable as mesoscale
obstacles and confinement are the norm. Recent experiments give
insight into the interactions of single microorganisms with surfaces
(24, 27–29), yet suspension dynamics in confinement has only
begun to be investigated (30), and the role of the collectively
generated fluid flows in the macroscopic organization has yet
to be fully understood.
Recently, Wioland et al. (30) showed that a dense suspension of

B. subtilis, confined into a flattened drop, can self-organize into
a spiral vortex, in which a boundary layer of cells at the drop edge
moves in the opposite direction to the bulk circulation. This spa-
tiotemporal organization is driven by the presence of the circular
boundary and the interactions of bacteria with it. At the interface,
the packed cells move at an angle to the tangential that is dictated
by the drop curvature, swimmer size, and shape. This macroscopic
nonequilibrium pattern and double circulation were not antici-
pated by theory and have not been seen in any simulations of
discrete particle systems due to the computational difficulty of
capturing both confinement and complex interactions between
elongated swimmers. Although previous simulations have demon-
strated the importance of hydrodynamics in populations of spher-
ical squirmers (31) and rod-shaped swimmers (32), they do not
consider boundary effects and the elongated shape of the swim-
mers in the steric interactions. On the other hand, continuum
models of motile suspensions that include fluid dynamics and have
been successful in explaining large-scale patterns (32, 33), have
either ignored confinement or interactions with surfaces, or, if
addressing confinement (34), have imposed boundary conditions
that generally do not resolve the orientations of the bacteria at
the interface. Thus, the conditions at boundaries and microscopic
interactions between cells warrant careful consideration in the
modeling of these suspensions so that the macroscopic dynamics
and organization are correctly captured.

Significance

The collective dynamics of swimming microorganisms exhibits
a complex interplay with the surrounding fluid: the motile cells
stir the fluid, which in turn can reorient and advect them. This
feedback loop can result in long-range interactions between
the cells, an effect whose significance remains controversial. We
present a computational model that takes into account these
cell–fluid interactions and cell–cell forces and that predicts
counterintuitive cellular order driven by long-range flows. This
prediction is confirmed with experimental studies that track the
orientation of cells in a confined, dense bacterial suspension.
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Here, we elucidate the origin and nature of the spontaneous
emergence of the spiral vortex and cellular organization in a con-
fined motile suspension. A computational model is described for
bacterial suspensions in which the direct and hydrodynamic inter-
actions between the swimmers and the confining circular interface
can be tuned. The cells are represented as oriented circles or el-
lipses subject to cell–cell and cell–fluid interaction, whereas the fluid
flow is the total of the pusher dipolar fluid flows produced by each
swimmer’s locomotion. It is shown that, although some circulation
under conditions of confinement may arise with direct interactions
only, hydrodynamics are necessary and crucial to reproduce and
explain the double circulation that is observed experimentally.
Simulations (Fig. 1 A–C) are able to reproduce the emergence of
the spiral vortex from an isotropic state (Fig. 1 D–F) and give in-
sights into the origin of the microscopic organization of the bacteria
in the drop. The computational results show the remarkable feature
that cells in the bulk of the drop swim against the stronger colony-
generated fluid flow and thus have a net backward motion. We
confirm this observation by measuring the orientation of the cells and
of their flagella through suitable fluorescent labeling methods.

Model and Simulations
Because no vertical motion of the swimmers was observed ex-
perimentally (30), we assume the dynamics is confined to a plane
and the simulations are therefore implemented in 2D domains to
increase the computational speed. We consider M pusher swim-
mers immersed in a fluid contained inside a circle. Each swimmer
is modeled as a slender ellipse with length ℓ = 1 and width w = ℓ/6
(or w = ℓ for disks) that propels itself along its main axis. The
dynamics of each is expressed in terms of its center of mass po-
sition Xi and orientation Pi (35)

∂tXi =VPi +u+Ξ−1
i

X
j≠i

Fe
ij; [1]

∂tPi =
�
I−PiPT

i

�ðγE+WÞPi + k
X
j≠i

Te
ij ×Pi: [2]

Eq. 1 describes self-propulsion with constant speed (chosen as V = 1
without loss of generality) along the cell direction Pi, advection by

the fluid velocity u, and pairwise repulsion with force Fe
ij between

swimmers. Here, Ξ= mkPiPT
i +m⊥ðI−PiPT

i Þ with m⊥ = 2mk = 2
for elongated ellipses andm⊥ =mk = 1 for disks (36). The first term
of Eq. 2 describes rotation of the particle by the fluid flow u with
2E = ∇u + ∇uT, 2W = ∇u − ∇uT; γ ∼ 0.95 for ellipses with aspect
ratio 6 and γ = 0 for disks. The last term of Eq. 2 describes swimmer
rotations due to torques from direct interactions with neighbors: k =
6 for elongated ellipses and k = 0 for disks. The purely repulsive
steric forces Fe

ij and torques T
e
ij are obtained using methods described

elsewhere (37). Each swimmer is discretized into nb beads (nb = 6 for
ellipses, nb = 1 for disks). Beads from different swimmers interact by
with a soft capped Lennard-Jones potential; this allows some over-
laps. Noise terms are not included.
The swimmer-driven fluid velocity u is governed by the (non-

dimensional) 2D Stokes equations with an extra stress

−∇2u+∇q=∇ ·
X
i

Sa
i δðx−XiÞ; ∇ · u= 0: [3]

Here q is the fluid pressure to account for the fluid incompres-
sibility and Sa

i = αPPT
i denotes the active stress tensor resulting

from the swimmer locomotion in 2D with nondimensional stress-
let strength α ∼ −1 for a pusher swimmer with length ℓ = 1 and
speed V = 1. Eqs. 1 and 2 are integrated in time, and the in-
stantaneous fluid flow that swimmers collectively generate is ob-
tained by solving Eq. 3 on an underlying uniform Eulerian grid
(35). The interpolation of the fluid velocity u to the swimmers’
positions Xi, and the extrapolation of the active stresses Sa

i onto
the Eulerian grid x are done using an Immersed Boundary method
framework (38) with a discretized delta function δ(x − Xi).
Essentially, the fluid velocity u is the superposition of the pusher-
like dipolar flows generated by each swimmer.
We use the method of images for swimmers at the drop

boundary (39), which in experiments is an oil–water interface.
In a circle of radius R, at each time step, if a swimmer i is
within 3ℓ of the surface, then an approximate mirror swimmer is
placed outside the circle at R2/kXi − Xcenterk, with mirror ori-
entation Pi − 2(Xi − Xcenter)/kXi − Xcenterk. The steric forces,
torques, and fluid velocity u are calculated for the swimmers
and their images, whereas Eqs. 1 and 2 are integrated in time only

Fig. 1. Snapshots of the bacterial suspension self-organization from simulations (A–C) and experiments (D–F). (A–C) An initially isotropic suspension of
microswimmers inside a circle with diameter 12ℓ (ℓ = individual swimmer length). Black dots indicate the swimming direction. The swimmer-generated fluid
flow is shown superimposed in each plot (blue arrows). (D–F) A dense suspension of B. subtilis in a drop, 70 μm in diameter. (Upper) Bright field. (Lower)
Images processed by edge-detection filtering. Initial disordered state is obtained by shining a blue laser that causes cells to tumble. In both simulations and
experiments, the suspension organization initiates at the boundary, as seen in B and E. See also Movie S1.
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for the actual swimmers. This approach approximates simulta-
neously and at low computational cost an effective confinement
and a no-stress condition at the drop boundary. This boundary
condition is appropriate, as we observed that the surrounding
oil in experiments was set in motion by the drops of bacterial
suspension.

Simulation Results
We first describe computational results in an unconfined peri-
odic domain. With neglect of hydrodynamics (α = 0 = u), the
suspension exhibits swarming at low concentration (Fig. 2A and
Movie S2) or a stable “bionematic” state (5) at higher concen-
tration, as classified by ref. 16 and seen in swarming colonies on
surfaces (40). Introducing hydrodynamics (Fig. 2B and Movie
S2) destabilizes these two states to generate a turbulent dynamics
qualitatively similar to experimental observation (5, 8). Re-
markably, hydrodynamics disrupts bacterial clusters, as also
suggested by a squirmer model (18). This disruption of long-
range polar order is a consequence of an instability that has been
previously analyzed (17, 32, 33).
Next, consider the case of confined suspensions. Without fluid

interactions (α = 0 = u), Fig. 2C (Movie S3) shows cells con-
centrating or jamming at the drop boundary with small unidi-
rectional circulation. With more realistic conditions (ellipses,
direct, and hydrodynamic interactions), we observe in Fig. 2D
(Movie S4) a spiral vortex similar in form and dynamics to that of
experiments (Fig. 2H). For disk-shaped pusher swimmers (γ = 0,
α = −1, Te

ij = 0) subject to reorientation and advection by the
fluid flows they create, Fig. 2E (Movie S5) shows that, although
the alignment between neighboring cells is lost, swimmers form
unstable layers with very small transient circulation. These three
configurations show that, although steric interactions force local
alignment of ellipsoidal swimmers, it is the collectively generated
fluid flow that produces the large-scale organization and double
circulation. In fact, in simulations where alignment with the flow
but not through steric interaction was considered (i.e., setting γ ∼ 1
but k = 0, Te

ij = 0), the spiral organization and double circulation
are still obtained (Fig. 2F and Movie S6, cells are spaced further
apart due to isotropic steric repulsions with a larger radius). These
model parameters would be appropriate to the description of
spherical bacteria, whose collective behavior has recently been
studied in the absence of confinement (41). In Fig. 2G (Movie S7),
we show that a dilute suspension of ellipse-shaped swimmers also
orders into a spiral vortex and self-generates bidirectional fluid
flows. As an aside, we note that circulation has been observed in
confined systems of self-propelling disks with prescribed alignment
interactions and possibly noise terms (42) but that circulation is
unidirectional, as in Fig. 2C.

Emergence of Organization
Bacteria move by swimming and through advection by the local
fluid flow; the balance between the two yields the observed
direction of motion. In drops of bacterial suspension, particle
image velocimetry (PIV) measurements reported previously (30)
showed that a boundary layer circulates in a direction opposite
to that of the bulk, but it was not possible to resolve whether
swimming or advection dominates the overall motion and, in
particular, in which direction cells point.
To understand how the spiral order and double circulation

arise, we consider suspensions of increasing density. When a few
cells are trapped in a drop, they swim to the oil interface and
slide along it at a small angle, as in Fig. 2G. With more cells
added, they form clusters sliding along the boundary [akin to
those seen with self-propelling rods in channels (43)]. The clus-
ters finally merge to form the circulating outer boundary layer,
as seen in Fig. 2G. (In the images of Fig. 1 B and E, we note that
this layer is the first to form.) Bacteria point outward with an
angle characteristic of the spiral pattern. As pusher swimmers,

they push fluid backward, and the added effect produces the
drop bulk fluid flow that is in the opposite direction to the
swimmer circulation.

Fig. 2. Suspension organization in periodic domains and inside circular
confinement. (A) Self-propelled ellipses interacting without hydrodynamics
achieve a swarming or bionematic state when in a periodic domain. (B)
Pusher swimmers in a periodic domain exhibit a turbulent dynamics and are
less clustered. (C) Self-propelled ellipses interacting sterically without any
hydrodynamics. (D) Self-propelled ellipses interacting sterically with hydro-
dynamics. (E) Circular pusher swimmers. (F) Pusher swimmers with isotropic
steric repulsions but alignment with fluid flow (γ ∼ 1, k = 0, T = 0). (G) Dilute
suspension of ellipsoid pusher swimmers. (H) Bacterial flow measured in
experiments by PIV (30). The Upper Right Insets in C–G indicate the swimmer
net circulation direction and plot the mean swimmer motion with arrows
magnified by 4, 1, 13, 1, and 2, respectively. Lower Left Insets in D–G show
the fluid flow velocity arrows magnified by 1, 5, 1, and 2, respectively. See
Movies S1–S7.
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On increasing the concentration to the dense regime, addi-
tional cells arrange into more layers with an angle dictated by
steric interactions, thus reproducing the spiral arrangement.
Although bulk cells were first proposed to be pointing inward
(30), simulations show instead that almost all cells point outward
and swim in the same direction (clockwise in Fig. 2D). Moreover,
the fluid flow is in the opposite direction to the bulk swimmers’
orientation and, in the inner part of the drop, is strong enough to
counterbalance the swimming speed. This phenomenon is illus-
trated in Fig. 1, where central cells point clockwise but overall
move counterclockwise. Although the macroscopic suspension dy-
namics is in agreement with experiments (Fig. 2H), new experi-
ments are required to determine the actual cell orientation and
to test the predicted arrangement.

Experiments
To determine precisely the cell configuration and orientation in
the spiral vortex state, we used a mutant of B. subtilis [DS1919
3610, a generous gift of H. C. Berg (Harvard University, Cam-
bridge, MA) (44)], labeled with Alexa Fluor 488 C5 maleimide
on the flagella and FM4-64 on the cell membrane, following the
protocol of Guttenplan et al. (45). From these two-colored
bacteria, mixed with a large amount of WT cells (strain 168), we
form numerous drops 10–100 μm in diameter and ∼ 25 μm in
height in an emulsion, the background liquid of which is mineral
oil (30). A sequence of four images was taken: (i) in bright field
to determine the spatial organization (gray scale in Fig. 3 A and
B), (ii) of the membrane (FM4-64, false colored red), (iii) of the
flagella (Alexa-488, false colored green), and (iv) again of the
membrane (FM4-64, false colored blue). From these we deter-
mine the cell position, overall motion, and swimming direction.
Fig. 3A highlights a cell at the oil interface. Both the cell

motion and swimming direction are toward the upper-left cor-
ner. Fig. 3B highlights a bacterium in the bulk. The two images of
the membrane indicate that the cell is moving toward the lower
right corner. However, the relation between the flagella position
and the mean membrane position and the flagella bundling at
the rear of the bacteria reveal that the cell is pointing to the
upper-left corner, in a direction opposite to its motion. These
results, consistently found by sampling over 20 cells, confirm the

prediction from simulations: although all of the bacteria point
in the same direction (outward), the bulk microswimmers
move overall in a backward fashion, opposite to the boundary
layer motion.

Quantification of Spatial Order
As shown in previous sections, experiments and simulations with
both steric and hydrodynamical interactions are in qualitative
agreement on both micro- and macroscopic scales. In this sec-
tion, we consider quantitative measures of the spatial order
in the numerical studies and compare them to the experimental
results reported previously (30). In experiments, drops show
stable circulation when the confining chamber is 30–70 μm in
diameter. To quantify the order in simulations, we introduce the
vortex order parameter

Φ=
1

1− 2=π

 P
ijvi · tijP
j

��vj�� −
2
π

!
; [4]

where vi is the bacterial overall motion and ti is the azimuthal
unit vector. Φ = 1 for purely azimuthal flows, Φ = 0 for disor-
dered chaotic flows, and Φ < 0 for mostly radial flows. Φ is
computed for drops with diameters between 4ℓ ∼ 20 μm and
25ℓ ∼ 125 μm for dense (area fraction ∼25%) and semidilute
suspensions (area fraction ∼ 10%).
Fig. 4 shows a first transition from random to vortex state

around d = 7ℓ. For dense suspensions, the plot reveals that
a highly ordered single-vortex state with Φ > 0.7 is achieved
in drops with diameter d = 7 − 16ℓ (vs. 30–70 μm, ∼ 6–14ℓ in
experiments). In experiments and simulations, we observe that
turbulence arises in the center of the largest drops. In the case of
dilute or semidilute suspensions (Fig. 2G), this center is depleted
in cells, thus leading to ordered states even for d > 14ℓ.
As seen in Fig. 1, in both simulations and experiments, the cell

orientation is not parallel to the direction of the fluid circulation.
We examine the azimuthally averaged swimmer orientation an-
gle θm for the layer of cells at the boundary. Not surprisingly,
the effect of the surface curvature makes this angle higher for
smaller drops and smaller for larger drops. In experiments, it

Fig. 3. Drop overview in gray scale: bright field image. Positions of the membrane (false colored red at time t = 0, blue at t = 0.2 s) and flagella (false colored
green at t = 0.1 s) dyes help determine the cell orientation. (A) Forward motion: cell at the oil interface both point and move to the top left corner. (B)
Backward motion: the cell is pointing to the top left corner while moving overall in the opposite direction. (Scale bars: at the drop images, 10 μm; at the
individual bacterium images, 5 μm.)
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ranges from θm ’ 35° for drop diameters d = 30 μm to θm ’ 10°
for d = 70 μm (30). In simulations, it ranges from θm ’ 42° for
circle drops with diameter d = 7ℓ to θm ’ 36° for d = 16ℓ. Al-
though the boundary behavior and swimmer angles are qualita-
tively similar to the experiments, they do not match quantitatively
due to simplifications in the model. Including short-range
hydrodynamics between the cells would likely remedy this
discrepancy.

Discussion
We presented a minimal model and simulation method for
microswimmer suspensions that includes direct cell–cell, cell–
fluid interactions, and swimmer-generated flows. The method,
although minimal and in two dimensions, captures the dynamics
seen in experiments on confined bacterial suspensions. In agree-
ment with previous simulations, we show here that the long-
range hydrodynamic interactions are crucial to reproduce the
organization and circulation that are observed in experiments. In
periodic domains, the swarming states predicted by active matter
theories are disrupted by hydrodynamics, resulting in a more
turbulent suspension behavior. Under circular confinement, al-
though direct cell interactions lead to local cell alignment, large-
scale order appears only when the swimmer motion is coupled to
the fluid dynamics. Simulation results not only agree qualitatively
with the experiments but they also highlight the microscopic bac-
terial organization. In particular, the cells in the bulk are shown to
swim against the collectively generated fluid flow, a result that was
not foreseen in previous publications. We confirmed that pre-
diction by experimentally recording both motion and swimming
directions, which to our knowledge has never been done in dense
bacterial suspensions. To do so, we tagged and tracked the relative
positions of the cells body and flagella.
These results emphasize the necessity to include more realistic

hydrodynamic interactions in active fluid particle simulations
and also continuum theories (17, 33). Ultimately, a closer com-
parison with experiments requires 3D particle simulations, more
accurate descriptions of the fluid flows generated by the swim-
mers in the bulk and near boundaries, and possibly an accounting
of the swimmers’ geometry and flagella. This model could be
adapted to a 3D domain, changing the packing of the cells but
also the fluid flow they generate: in 2D domains, a swimmer di-
polar flow decays with distance from the cell as 1/r instead of the
1/r2 decay in 3D, which is more appropriate for the experimental
situation. The present model does not account for close-range and
lubrication hydrodynamics or Brownian noise effects. Recent sim-
ulations of spherical squirmers at high packing fractions (18, 21)
show that including close-range hydrodynamics significantly affects

the suspension behavior. Although simplified, the model de-
scribed here has been shown to give good insights into the dy-
namics of microswimmer suspensions and could be applied to
more complex geometries to study microscopic interactions and
ordering that are difficult to visualize experimentally.

Materials and Methods
Experimental Protocol. We use two B. subtilis strains: the WT 168 strain and
the mutant amyE::hag(T204C) DS1919 3610 [generous gift of H. C. Berg
(Harvard University, Cambridge, MA)], both grown in standard Terrific Broth
(TB; Sigma) at 35 °C on a shaker. An overnight culture was diluted 200× and
grown for 5 h until the end of exponential growth when the proportion of
motile cells is maximal (46).

To label mutant bacteria, we followed the protocol of Guttenplan et al.
(45). One milliliter of the suspension was centrifuged (1,000 × g, 2 min)
and resuspended in 50 μL of PBS containing 5 μg/mL Alexa Fluor 488 C5
Maleimide (Molecular Probes) and incubated at room temperature for
5 min to stain the flagella. Bacteria were then washed in 1 mL PBS and
resuspended in PBS containing 5 μg/mL FM4-64 (Molecular Probes) for
membrane staining. The suspension was washed one final time and
resuspended in 50 μL PBS.

A dense suspension of bacteria was prepared by centrifuging 10 mL of
WT B. subtilis (1,500 × g for 10 min). If necessary, a small volume of stained
bacteria was added to the pellet, which was then mixed into four volumes of
mineral oil containing 10 mg/mL diphytanoyl phosphatidylcholine (DiPhyPC;
Avanti) to prevent drops from coalescing. The emulsion was then created
by gently pipetting the suspension and placing it between two silane-coated
coverslips, creating numerous flattened drops, ∼25 μm in height and 10–100 μm
in diameter.

Bright field movies were acquired at 125 fps with a high-speed camera
(Fastcam; Photron) on an inverted microscope (Cell Observer; Zeiss), using
a 100× oil immersion objective and analyzed with Matlab mPIV algorithm
(47). To observe the emergence of order (Fig. 1 and Movies S1 and S2), we
shined blue light on the drop for a few seconds. Bacteria naturally react by
tumbling (48), thus disorganizing the drop.

To measure the swimming and motion directions of the cells, we imaged
stained mutant B. subtilis on a confocal spinning disk microscope. To increase
the resolution, images were taken at the bottom of the drop. We excited
both fluorophores with a 488-nm laser and filtered the emission with
a GFP filter cube (barrier filter 500–550 nm; Zeiss) for Alexa Fluor 488 C5
Maleimide and DsRed filter cube (barrier filter 570–640 nm; Zeiss) for
FM4-64. Images were taken every 0.1 s (limited by the acquisition rate),
filtering first for the membrane (false colored red), flagella (false colored
green), and again membrane (false colored blue; Fig. 3). The direction of
bacterial motion was determined from the membrane displacement and
the swimming direction from the relative position of the flagella to the
average membrane position.

Simulations. To calculate the repulsive forces and torques between neigh-
boring swimmers, we use the method of Constanzo et. al. (37) and discretize
each swimmer into nb beads of diameter ℓ/nb. Beads of different swimmers
interact with each other via a capped Lennard-Jones potential

Ψα
LJðrÞ=

8><
>:

8e

"
2r12c�

r2 + α2
�6 − r6c�

r2 + α2
�3
#

if r ≤ rc

0 if r > rc

, [5]

where r is the distance between the bead centers, rc = 2rb is the cutoff
distance, rb is the bead radius, and α = rc[(1/2)

1/3 − 1]1/2 is the capping or
smoothing factor. The smoothing of the potential allows for larger time
steps when integrating Eqs. 1 and 2, but it comes at the expense of the
swimmers overlapping or possibly escaping the confinement. The effective
bead radius is then ∼ rc/2, giving the swimmer an effective thickness of rc and
effective aspect ratio of ℓ/rc.
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Fig. 4. A stable vortex forms for a range of drop diameters. The vortex
order parameter Φ for dense (solid color) or dilute (faded color) suspensions
in drops with various diameters for both simulations (triangles) and experi-
ments (circles).
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