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Clustered, regularly interspaced, short palindromic repeats (CRISPR)/
CRISPR-associated (Cas) systems protect bacteria and archaea from
infection by viruses and plasmids. Central to this defense is a ribonu-
cleoprotein complex that produces RNA-guided cleavage of foreign
nucleic acids. In DNA-targeting CRISPR-Cas systems, the RNA compo-
nent of the complex encodes target recognition by forming a site-
specific hybrid (R-loop) with its complement (protospacer) on an
invading DNA while displacing the noncomplementary strand. Sub-
sequently, the R-loop structure triggers DNA degradation. Although
these reactions have been reconstituted, the exact mechanism of R-
loop formation has not been fully resolved. Here, we use single-
molecule DNA supercoiling to directly observe and quantify the
dynamics of torque-dependent R-loop formation and dissociation
for both Cascade- and Cas9-based CRISPR-Cas systems. We find
that the protospacer adjacent motif (PAM) affects primarily the R-
loop association rates, whereas protospacer elements distal to the
PAM affect primarily R-loop stability. Furthermore, Cascade has
higher torque stability than Cas9 by using a conformational lock-
ing step. Our data provide direct evidence for directional R-loop
formation, starting from PAM recognition and expanding toward
the distal protospacer end. Moreover, we introduce DNA super-
coiling as a quantitative tool to explore the sequence require-
ments and promiscuities of orthogonal CRISPR-Cas systems in
rapidly emerging gene-targeting applications.
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Clustered, regularly interspaced, short palindromic repeats
(CRISPR)/CRISPR-associated (Cas) systems constitute an

adaptable immune system that protects bacteria and archaea
against foreign nucleic acids. The defense is initiated by a ribo-
nucleoprotein (RNP) complex that mediates cleavage of dsDNA
(1) or RNA (2, 3). The RNA component (crRNA) of the com-
plex is derived by transcription and posttranscriptional process-
ing from a locus containing CRISPRs (2, 4, 5) in which short
spacer fragments were integrated from foreign nucleic acids (6–
8). Each transcribed crRNA spacer sequence encodes the rec-
ognition of the targets. In DNA-targeting CRISPR-Cas systems,
the crRNAs form a hybrid with a matching complement (pro-
tospacer) on an invading DNA, which leads to the displacement
of the noncomplementary strand. The resulting structure is
called an R-loop and constitutes the signal for subsequent DNA
degradation. R-loop formation is additionally dependent on
a short protospacer adjacent motif (PAM) (Fig. 1A), which
provides discrimination between self and nonself DNA in
CRISPR systems; it is absolutely required for recognition of the
invading DNA but is absent from the host CRISPR array (9).
On the basis of sequence homology, different CRISPR-Cas

families have been identified (10). We investigate here a type
IE and a type II system from Streptococcus thermophilus St-
CRISPR4 and St-CRISPR3, respectively. The Cas proteins of type
IE systems (4, 11, 12) associate with a crRNA into a multisubunit
∼400-kDa RNP (CasA1B2C6D1E1) called “Cascade” (4, 12). The
crRNA is anchored at its 5′-hydroxyl and 2′,3′-cyclic phosphate
termini, respectively, by CasA and CasE, which are bridged by

a helical CasC6 nucleoprotein filament (13). In the type IE St-
CRISPR4 system, complementary binding of the crRNA to the
protospacer should generate an R-loop of 33 nt (Fig. 1A). Target
DNA degradation is accomplished by the helicase–nuclease Cas3
recruited to the R-loop (12, 14, 15). The PAM in St-CRISPR4
is relatively promiscuous: a dinucleotide AA supports optimal
cleavage, whereas CC suppresses activity. For type II systems, the
RNP complex comprises only a single-subunit ∼180-kDa Cas9
protein bound to a dual crRNA-tracrRNA (16–18). The Cas9 RNP
executes both R-loop formation and DNA cleavage. In the type II
St-CRISPR3 system, the PAM sequence is GGNG (16), and com-
plementary binding with only part of the protospacer sequence
results in a putative 20-nt R-loop (Fig. 1A).
R-loop formation and full DNA degradation reactions

by CRISPR-Cas systems have been previously reconstituted (12,
14, 16, 17). For the R-loop formation process, in which the
DNA duplex is unwound without external energy, a unidirectional
model has been proposed (19, 20). After PAM recognition by the
RNP, priming of the R-loop adjacent to the PAM would lead to
unidirectional expansion toward the distal protospacer end. The
model was supported by observations that a mutated PAM or
mismatches between crRNA and protospacer adjacent to the
PAM have more severe effects on DNA cleavage than distal
mismatches (19, 20) and, as recently reported, on the time Cas9
spends on the target (21). This assumes that mutations within or
adjacent to the PAM impede R-loop formation. An alternative
explanation would be that R-loops still form with significant
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efficiency but display a reduced lifetime, the magnitude of which
depends on the position of the mutation. These alternatives rep-
resent target/PAM verification by either kinetic inhibition or
altered equilibrium.
To clearly distinguish between the two models, we use here

single-molecule DNA supercoiling to directly reveal the kinetics
and the extent of R-loop formation and dissociation (22–24).
Moreover, our assay provides quantitative insight into the de-
pendence of these processes on DNA supercoiling. For both
CRISPR-Cas systems investigated, the PAM is found to affect
exclusively the R-loop association rates. Nonetheless, R-loops
with unaltered stability can even form for PAM mutants that do
not support cleavage. Conversely, protospacer elements distal to
the PAM affect primarily R-loop stability but not R-loop for-
mation rates. This provides direct evidence for the unidirectional
R-loop formation model and a target/PAM verification by ki-
netic inhibition. Additionally, our data reveal important dif-
ferences between the Cascade and the Cas9 based CRISPR-
Cas systems.

Results and Discussion
Direct Observation of R-Loop Formation in Real Time. To observe
R-loops in single DNAmolecule supercoiling experiments, we used
magnetic tweezers (23, 25) (Fig. 1B). A 2.1-kbp DNA containing
a single protospacer and PAM was attached at one end to
a magnetic bead and at the other end to the bottom of a fluidic
cell. A pair of magnets above the cell was used to stretch the
DNA and to supercoil it by rotating the magnets. Simultaneously
the DNA length was measured (26). Upon supercoiling DNA at
constant force, its length stays initially constant. Once a critical

torque in the molecule is reached, its length starts to decrease
because of formation of a plectonemic superhelix resulting in
a characteristic rotation curve and an associated torque profile
(Fig. 1B and SI Appendix, Fig. S1) (25, 27–29). Enzyme-de-
pendent local DNA unwinding (e.g., attributable to R-loop for-
mation) changes the DNA twist and can be seen as a shift of the
whole rotation curve or as a DNA length change (22) (Fig. 1B
and SI Appendix, Fig. S1). To detect R-loop formation, we car-
ried out “R-loop cycles” with Cascade or Cas9 on DNA with
matching protospacer and canonical PAM sequences (Fig. 1A).
First, we slightly untwisted the DNA (producing negative su-
percoiling) at low force to help R-loop formation (blue curves
in Fig. 1 C–F). Subsequently, we probed R-loop dissociation by
rewinding the DNA to produce positive supercoiling (green
curves in Fig. 1 C–F). For both enzymes, we observed efficient
R-loop formation (100% of all cases; n = 89 and 50, respectively),
which was seen as a shift of the left side of the probe curve to-
ward negative turns compared with the curve in absence of the
proteins (Fig. 1 D and F). Whereas Cascade formed an R-loop
instantaneously at low negative supercoiling (−1 to −2 turns),
Cas9 required longer times and more negative supercoiling. For
Cascade, the R-loop was stable at positive turns and low force,
seen as a stable shift of the right side of the probe curve (Fig.
1D). R-loop dissociation could be observed at elevated force
(corresponding to elevated positive torque) as an abrupt length
jump (Fig. 1 C and D). In contrast, Cas9-induced R-loops dis-
sociated readily at low positive force (Fig. 1 E and F). The ob-
served shifts in the rotation curves were dependent on the
presence of a protein complex, a matching protospacer, and a
corresponding crRNA (SI Appendix, Fig. S2). For Cascade, the
right part of the supercoiling curve shifted by −2.62 ± 0.04 turns
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Fig. 1. R-loop formation and dissociation by Cascade and Cas9 observed in single-molecule twisting experiments. (A) Schematics of the anticipated R-loops
formed by Cascade (33 bp) and Cas9 (20 bp). (B) Magnetic tweezers-based twisting assay. R-loop formation on supercoiled DNA molecules at fixed rotation
causes local DNA untwisting. Compensatory overtwisting of the DNA changes the supercoiling, resulting in a DNA length change (see also SI Appendix, Fig.
S1A). (C and D) R-loop cycle experiment in the presence of 10 nM Cascade. DNA with matching protospacer/PAM (A) is negatively supercoiled at 0.31 pN to
induce R-loop formation (blue area of trace), followed by positive supercoiling to probe: the presence of the R-loop (green area of trace); and R-loop dis-
sociation at an increased force of 3.0 pN (red area of trace). Blue and red arrows indicate the positions of R-loop formation and dissociation, respectively. In D,
the lower and upper gray supercoiling curves were taken on the same DNA molecule at 0.31 and 3.0 pN, respectively, before Cascade addition. (E and F)
R-loop cycle experiment in the presence of 1 nM Cas9 on DNA containing a matching protospacer/PAM (A) at a constant force of 0.31 pN. R-loop dissociation
occurs readily at low positive torque. (G) Cas9-induced shift of the supercoiling curve (orange bars). For Cascade, shifts of the right part of the supercoiling
curve after R-loop formation (gray bars; −Nloop in D) and after full R-loop dissociation (bars with solid black outline; +Nloop in D; also see SI Appendix, SI
Methods) are shown. Bars with dashed black outline show the shift of the first R-loop dissociation substep for Cascade (Fig. 2A).
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(formation) and +2.67 ± 0.03 (dissociation), whereas the center
of the curve moved by 2.81 ± 0.07 turns (Fig. 1G and SI Ap-
pendix, Fig. S3). For Cas9, 1.45 ± 0.05 turns were obtained from
the center shift (Fig. 1G). These values are slightly smaller than
anticipated (3.1 and 1.9 turns considering a DNA helical pitch of
10.5 bp), possibly because of compensatory writhe from DNA
bending induced by effector binding (14).

Torque Dependence of R-Loop Formation and Dissociation. To obtain
insight into the previously proposed regulation of R-loop for-
mation by supercoiling (14) and into the energetics of the R-loop
structure, we quantified the R-loop formation and dissociation
kinetics as a function of the applied torque (see SI Appendix, SI
Theory for torque determination) from repeated R-loop cycles
(Fig. 2 A and D). For Cascade, both R-loop formation and dis-
sociation were torque-dependent (Fig. 2B and SI Appendix, Fig.
S4). R-loop dissociation required an ∼fourfold higher absolute
torque value than formation. Most dissociation events (76%; n =
482) displayed a short-lived and torque-dependent intermediate
state corresponding to 0.9 ± 0.1 turns (Figs. 1G and 2 A and B).
By fitting the torque dependence of the kinetics to an Arrhenius-
like model (Fig. 2B; also see SI Appendix, SI Theory), we could
calculate the transition state distances (ΔNin = 1.5 ± 0.2 turns for
R-loop formation; ΔNout

1 = 0.31 ± 0.5 and ΔNout
2 = 0.15 ± 0.06

turns for the two dissociation intermediates). From the mean
transition times in the absence of torque, a free energy gain for
R-loop formation of 2.1–6.3 kBT was determined (SI Appendix,
SI Theory). A simplified energy landscape for R-loop formation
by Cascade is suggested (Fig. 2C), using the transition state
distances combined with the rotational shifts for full and

intermediate R-loop states. For Cas9, R-loop dissociation
occurred in a single measurable and torque-dependent step at
∼fivefold lower torque compared with Cascade, with ΔNout = 0.5 ±
0.1 (Fig. 2 D and E and SI Appendix, Fig. S4). Whereas R-loop
dissociation was independent of Cas9 concentration as expected,
R-loop formation was limited by Cas9 binding to the target site
(see Cas9 concentration dependence in Fig. 2E), such that any
torque dependence was masked. Therefore, an energy landscape
for Cas9 cannot yet be determined.

PAM Mutations Hinder R-Loop Formation but Not Its Stability in Both
Systems. To clarify whether the PAM regulates R-loop formation
by kinetic inhibition or altered R-loop stability, we measured the
dynamics of R-loop formation and dissociation on substrates
with matching protospacers but mutated PAMs. For Cascade, we
compared four PAMs with affinities following the order AA >
TT > AG >> CC (12). The TT and AG PAMs still support Cas3-
dependent DNA degradation, which is completely abolished for
the CC dinucleotide (12). Although we observed efficient R-loop
formation for the TT and AG PAMs, higher negative turns/
torque were required compared with the AA PAM (Fig. 3 A and
B). In contrast, the torque-dependent mean dissociation times
of both substeps were unchanged within error, suggesting that
the R-loops are equally stable once formed. Following the same
protocol using the CC PAM, we were unable to observe any
R-loops. However, R-loops could be induced with moderate
efficiencies at elevated forces and high negative twist [35% of all
attempts for −200 turns (n = 51); 19% for −100 turns (n = 27);
0% at −10 turns (n = 78)], conditions that mechanically cause
extensive DNA denaturation. R-loops for the CC PAM were also
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stable. While the torque-dependent mean time for the first dis-
sociation step of the CC DNA was indistinguishable from the
other PAMs, the mean time for the second step was significantly
reduced (Fig. 3B). Compared with Cascade, PAM recognition
for Cas9 appeared to be more stringent. R-loops could still
be formed using a G4C mutant, albeit at a much lower rate (Fig.
3C). Once formed, R-loop stability was not compromised
(Fig. 3D). R-loop formation using G1C and G2C was even
slower, whereas PAM deletion did not support R-loop formation
at all, even under induced denaturation conditions (SI Appendix,
Fig. S5). In support of the tweezer data, DNA cleavage assays
suggest that R-loop formation is hindered by PAM mutation
(with the order G2C > G1C > G4C >>WT) but that subsequent
R-loop cleavage is much less affected (SI Appendix, Fig. S6).
Thus, for both systems, the PAM regulates R-loop formation and
subsequent cleavage by kinetic inhibition.

DNA-Helix Destabilization by Cascade. To further explore the role
of the PAM during target site search and priming of the R-loop,
we carried out supercoiling experiments on DNA without a
matching protospacer (but with multiple orphan PAMs; SI Ap-
pendix, Fig. S7). Interaction with PAMs may result in changes in
DNA structure as the CRISPR enzymes probe the adjacent
protospacer for complementarity. In line with this, Cascade
globally destabilized the DNA helical structure, an effect that
required the bound CasA subunit (SI Appendix, Fig. S8). The
observed behavior agrees only with DNA destabilization (i.e.,
lowering of the melting temperature) but not with active DNA
helix distortion, as seen for DNA intercalators, where stable
supercoiling changes are observed (30, 31). Insertion of aromatic
amino acid residues of the CasA subunit into the DNA helix (32)
may be responsible for the helix destabilization but will be a
transient rather than a stably bound state. The destabilization
may also cause the PAM dependence of the second dissociation

step for Cascade (Fig. 3B). Helix-destabilization activity was not
found using Cas9.

Protospacer End Truncations Alter R-Loop Stability and Reveal a
Conformational Lock for Cascade. For both proteins, the PAM
seems to exclusively control R-loop formation, while not af-
fecting R-loop stability once formed. To further test a unidirec-
tional R-loop formation mechanism, we determined the effect of
protospacer truncations at the end opposite from the PAM on
the dynamics of R-loop formation (Fig. 4 A and C). For Cascade,
R-loops formed efficiently at low negative twist on all substrates
truncated by up to 10 bp (as seen by the shift of the left side of
the supercoiling curve; Fig. 4A). The size of the shifts decreased
with increasing truncation, in line with a decrease in R-loop size
correlated with complementarity (Fig. 4A). For truncations of
6 bp and above, R-loops were formed but were unstable and dis-
sociated as soon as low positive turns at low force were reached;
thus, dissociation rates could not be measured (Fig. 4A and SI
Appendix, Fig. S9A). For truncations of 2 and 4 bp, both stable
and unstable R-loops were observed (Fig. 4A). By increasing the
experimental waiting time at negative twist during R-loop in-
duction for the 4-bp truncation, the proportion of stable R-loops
increased when subsequently probed (SI Appendix, Fig. S9B),
suggesting that stable R-loops originate from an unstable R-loop
intermediate. The transition from the unstable to stable R-loop
thus locks the R-loop, so that it resists higher torsion compared
with Cas9. For the stable R-loops, the stability relative to the full
protospacer was only minimally reduced for the 2-bp truncation
but was more significantly reduced for the 4-bp truncation, in
particular for the first dissociation step (Fig. 4B). DNA degra-
dation experiments furthermore revealed that a locked-and-
stable R-loop is the prerequisite for Cas3 recruitment and sub-
sequent DNA degradation (SI Appendix, Fig. S9C).
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Protospacer End Truncations Destabilize R-Loops for Cas9. For Cas9,
R-loops were detected for truncations up to 7 bp with little
change in the association rate (Fig. 4C) but were not detected for
a 9-bp truncation (SI Appendix, Fig. S10). As above, the size of
the rotational shifts correlated with changes in R-loop size (Fig.
4C). For 1- or 5-bp truncations, R-loop stability and DNA cleavage
rates were slightly reduced (Fig. 4 and SI Appendix, Figs. S6 and
S10). For the 7-bp truncation, however, although an R-loop pop-
ulation with reduced stability was also detected (Fig. 4D), many R-
loops exhibited slower, torque-independent dissociation kinetics (SI
Appendix, Fig. S10). This suggests that mismatches between the
crRNA and protospacer can cause rearrangement of the Cas9 RNP
into an inhibited, off-pathway intermediate; the protospacer trun-
cation correlated with changes in DNA cleavage rate but also with
an accumulation of nicked intermediates (SI Appendix, Fig. S6;
nicking was even detectable for the 9 bp truncation).

Unified Model for R-Loop Formation and Dissociation by Cascade and
Cas9. Our data presented above show that for two distinct
CRISPR systems, Cascade and Cas9, the PAM controls tightly
the R-loop formation kinetics but leaves the R-loop stability
practically unchanged. Thus, the PAM provides a kinetic rather
than a thermodynamic control of R-loop formation. Distal pro-
tospacer mutations affected the R-loop stability but hardly
altered the formation kinetics. This reveals for both systems
a unidirectionality in the R-loop formation and dissociation
cycle, which is additionally supported by the differential de-
pendence of the first and second dissociation steps of Cascade on
protospacer truncations and PAM mutations, respectively. We
summarize our findings in a unified scheme for R-loop formation
and dissociation by type I and II systems (Fig. 5 and SI Appendix,

Fig. S11) that extends previous unidirectional R-loop formation
models. Firstly, the RNP uses DNA distortion, guided by PAM
binding, to accomplish homology search. Because R-loop for-
mation times (down to ∼1 s for Cas9) are dependent on RNP
concentration, 3D diffusion must be an integral part of the target
search pathway. Matching hydrogen bonding between the
crRNA and the protospacer then leads to propagation of R-loop
formation over the adjacent base pairs. Under unfavorable en-
ergetic conditions (high positive torque or mismatches between
the protospacer and crRNA), R-loop dissociation occurs in
a PAM-independent manner. While the torque that disso-
ciates Cas9 is about half the maximum torque an RNA poly-
merase can generate (33), Cascade exceeds the RNA polymerase
torque about twofold, representing a major difference between
the two RNP classes. The high torsional stability of Cascade is
not attributable to a large energetic bias (Fig. 2C) but rather to
a ratchet-like asymmetry in the energy landscape (SI Appendix,
SI Theory). This increased stability seems to be achieved by an
extra “locking” step after most of the R-loop has been formed
(SI Appendix, Fig. S11), which was revealed by the bistability of
R-loops for a 4-bp truncated protospacer (Fig. 4A) and the two-
step process for R-loop dissociation (Fig. 2A). We suggest that
the locking is attributable to domain reorganization within
Cascade, such as movement of CasB2 stabilizing the free, non-
target DNA strand (13). The locking step represents an addi-
tional proofreading that ensures that complementarity between
the crRNA and protospacer leads to complete R-loop expansion.
A similar locking was not observed for Cas9. Consequently, Cas9
can efficiently cut a protospacer with a 7-bp truncations, albeit at
a reduced rate (SI Appendix, Fig. S6). Nonetheless, Cas9 effi-
ciently discriminates targets over 11 bp adjacent to the PAM
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similarly to Cas9 from Streptococcus pyogenes (21). Despite com-
plementarity, R-loops of 11 bp or shorter were not formed, re-
vealing that Cas9 can sense further into the protospacer to identify
the correct target. Structurally, this likely originates from the more
extensive amino acid contacts with the heteroduplex in this particular
region (34) (SI Appendix, SI Theory). Such a length threshold-de-
pendent, all-or-none R-loop formation mechanism goes beyond
a simple unidirectional model and deserves further attention. Re-
cently, Cas9 has attracted enormous interest in genetic engineering
applications (35). Based on our findings, off-target effects should
mostly depend on ∼11-bp proximal to (but not distal from) the PAM.
In summary, our methodology can clearly resolve the R-loop

formation processes at target DNA in real time and was used to
substantiate a unidirectional R-loop formation model. Further
probing of R-loop progression [e.g., through mutations in the
PAM-adjacent seed sequence or through noncomplementary

bubbles (21)] will help produce a high-resolution picture of
target site recognition by different CRISPR-Cas systems.

Materials and Methods
DNA and Proteins. Cascade with crRNA matching spacer 1 of the St-CRISPR4
system and Cas9 with crRNA matching spacer 1 of the St-CRISPR3 system was
purified and reconstituted as described in the additional methods (12, 16,
18). If not stated otherwise, DNA substrates for the Cascade experiments
contained protospacer S1 and an AA PAM and for the Cas9 experiments
contained protospacer S2 and a tGGtG PAM (see Fig. 1A and SI Appendix,
Tables S2 and S3 for sequences), both being fully complementary to their
respective crRNA.

Single-Molecule Experiments. Single-molecule assays with Cascade were per-
formed in 20 mM Tris·HCl (pH 8.0), 150 mM NaCl, and 0.1 mg/mL BSA; assays
with Cas9 were performed in 10 mM Tris·HCl (pH 7.5), 100 mM NaCl, 1 mM
EDTA, 0.1 mM DTT, and 5 μg/mL BSA. Measurements were performed using
10 nM Cascade or 1 nM Cas9 unless otherwise noted. An in-house-built (26)
(Cascade) or a commercial PicoTwist (Cas9) magnetic tweezers microscope
was used. DNA molecules were bound to 1-μm magnetic beads (MyOne;
Invitrogen) and anchored in the flow cells (36, 37). After DNA stretching and
initial characterization of the DNA, proteins were added, and changes in
DNA length were observed as a function of applied force and DNA turns.
Torque values were calculated based on previous theoretical work (24, 38)
(SI Appendix). In-house-written software used for these calculations is available
for download at theWeb site of R.S. (www.uni-muenster.de/Biologie.AllgmZoo/
Gruppen/Seidel/Download).
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Fig. 5. Unified model for the differential control of R-loop formation and
dissociation by PAM and protospacer sequences. The locking step is only ob-
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indicate where supercoiling of the respective sign can accelerate the step.
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