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Personal transcriptomes in which all of an individual’s genetic var-
iants (e.g., single nucleotide variants) and transcript isoforms (tran-
scription start sites, splice sites, and polyA sites) are defined and
quantified for full-length transcripts are expected to be important
for understanding individual biology and disease, but have not
been described previously. To obtain such transcriptomes, we se-
quenced the lymphoblastoid transcriptomes of three family mem-
bers (GM12878 and the parents GM12891 and GM12892) by using
a Pacific Biosciences long-read approach complemented with Illu-
mina 101-bp sequencing and made the following observations.
First, we found that reads representing all splice sites of a transcript
are evident for most sufficiently expressed genes ≤3 kb and often
for genes longer than that. Second, we added and quantified pre-
viously unidentified splicing isoforms to an existing annotation,
thus creating the first personalized annotation to our knowledge.
Third, we determined SNVs in a de novo manner and connected
them to RNA haplotypes, including HLA haplotypes, thereby
assigning single full-length RNA molecules to their transcribed al-
lele, and demonstrated Mendelian inheritance of RNA molecules.
Fourth, we show how RNA molecules can be linked to personal
variants on a one-by-one basis, which allows us to assess differential
allelic expression (DAE) and differential allelic isoforms (DAI) from the
phased full-length isoform reads. The DAI method is largely indepen-
dent of the distance between exon and SNV—in contrast to fragmen-
tation-based methods. Overall, in addition to improving eukaryotic
transcriptome annotation, these results describe, to our knowledge,
the first large-scale and full-length personal transcriptome.
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Short-read RNA sequencing (1–7) is a widely used tool in
modern day biology. In mammalian transcriptomes, multi-

intron genes are common and the detection and quantification of
different transcript isoforms is of high importance. Recent work
has shown that reconstruction and quantification of transcript
isoforms from short-read sequencing is insufficiently accurate (8,
9). Simultaneously, a number of research groups have pursued
long-read sequencing (8, 10–12), and such datasets generally
excel at connecting different exons, up to entire transcripts, with
a compromise of lower sequencing depth. However, these studies
have not investigated allelic variants. Such information is crucial
for understanding personal transcriptomes and their potential
biological consequences.
Here, we use the Pacific Biosciences (13) platform (“PacBio”)

to produce a single-molecule RNA-seq dataset in the GM12878
cell line that is more comprehensive in both length and depth than
a recently described dataset from a human organ panel (HOP)
(11). We additionally sequenced cDNA from the same cell line
by using 101-bp paired-end (PE) sequencing on the Illumina
platform, to show the properties of genes that can be sequenced
by using long-read, single-molecule transcriptome sequencing.
We use previously unidentified isoforms revealed by long-read
sequencing to produce an enhanced and personalized genome
annotation, which we quantify by using 101-bp PE Illumina
reads. Finally, by producing single-molecule transcriptomes

for both parents of GM12878 (GM12891 and GM12892), we
show that despite the higher error rate of the PacBio platform,
single molecules can be attributed to the alleles from which they
were transcribed, thereby generating accurate personal tran-
scriptomes. This technique allows the assessment of biased allelic
expression and isoform expression.

Results
Increased Full-Length Representation of RNA Molecules by Circular
Consensus Reads. We sequenced ∼711,000 circular consensus
reads (CCS) molecules from unamplified, polyA-selected RNA
from the GM12878 cell line (see Fig. S1 for mapping statistics).
We have recently shown that CCS often describe all splice sites
of typical RNA molecules, although the success rate declines as
RNA length increases (11). The CCS we sequenced here were
significantly longer (average 1,188 bp, maximum 6 kb) than those
in the HOP sample (average 999.9 bp; Fig. 1A). Both datasets
showed equal representation of RNA molecules between 0.8 and
1.3 kb, but beginning at 1.3 kb and even more pronounced after
1.7 kb, the GM12878 sample represented longer RNA molecules
more faithfully; RNA molecules of 2.7–4 kb were present in the
GM12878 sample, but are essentially absent in the HOP sample
(Fig. 1B). The distance from the 5′-mapping end to the nearest
annotated transcription start site (TSS) dropped significantly
(one-sided Wilcoxon rank sum test; P < 2.2e−16) in GM12878
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RNA molecules of higher eukaryotes can be thousands of
nucleotides long and are expressed from two distinct alleles,
which can differ by single nucleotide variations (SNVs) in the
mature RNA molecule. The de facto standard in RNA biology is
short (≤101 bp) read sequencing, which, although very useful,
does not cover the entire molecule in a read. We show that
using amplification-free long-read sequencing one can often (i)
cover the entire molecule, (ii) determine the allele it originated
from, and (iii) record its entire exon-intron structure within
a single read, thus producing a full-length, allele-specific view
of an individual’s transcriptome. By enhancing existing gene
annotations using long reads and quantifying this enhanced
annotation using >100 million 101-bp paired-end reads, we
overcome the smaller number of long reads.
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(median: 30 bp) in comparison with HOP (median 47 bp; Fig.
1C). This observation suggests that the difference between the
annotated transcript and the PacBio read is mostly confined to
the first exon. For the branched-chain ketoacid dehydrogenase
kinase (BCKDK) gene, only 4 of 19 CCS clearly represented all
splice sites in the HOP-sample. In GM12878, however, 12 of 16
CCS reads clearly represent all 22 splice sites of the RNA mol-
ecule (Fig. 1D), and molecules M16, M3, and M15 may also
represent full-length isoforms, because their first exonic blocks
overlap an annotated first exon.

Gene Coverage of Long Reads as a Function of Gene Expression as
Defined by 101-bp PE Sequencing. To compare gene detection of
long-read sequencing to that of Illumina sequencing, we se-
quenced 100 million 101-bp PE reads on the Illumina platform.
A highly controlled comparison of sequence quality between
Illumina and PacBio reads can be found in Fig. S2. Illumina
reads were aligned to the hg19 reference genome (and the
Gencode15 annotation; ref. 14) by using STAR (15). Gencode
genes and transcripts were then quantified by using Cufflinks
(16) (version 2.1.1; SI Methods). Approximately 99,000 anno-
tated exon-exon junctions were detected by both technologies,
and each junction detected by PacBio was covered 40 times as
often (median value) by Illumina reads. Illumina reads covered
an additional ∼92,000 annotated junctions, and PacBio reads an
additional 992. We then focused our analysis on ∼22,600 spliced
genes that have been classified either as protein coding or
lincRNA in the Gencode annotation. About 9,200 of these genes
were detected by long-read single-molecule sequencing with at
least one molecule, for which all introns respect the splice site
consensus (“consensus split-mapped molecule”; CSMM) and by
101-bp PE sequencing with a nonzero Cufflinks fragments per
kilobase of transcript per million mapped reads (FPKM). Forty
genes were exclusively identified by long reads, ∼6,400 genes
only by the 101-bp PE Cufflinks approach and ∼7,000 genes by
neither approach (Fig. 2A). Genes without a long read-derived
CSMM showed considerably lower Cufflinks-derived gene FPKMs

than those that had a CSMM (Fig. 2B), showing that deeper se-
quencing of shorter reads detects more lowly expressed RNAs.
Because CCS generation requires read length to exceed cDNA
length by at least a factor of two, we hypothesized that CSMMs
would not represent longer genes. Surprisingly, when calculating
the number of base pairs of the longest mature and annotated
transcript for each gene, we found this hypothesis to be wrong.
Genes with and without a CSMM behaved largely similarly in
terms of length. However, genes with a CSMM only very rarely
represented genes smaller than 1 kb (Fig. 2C), which is likely due
to the use of magnetic beads in the loading procedure, which
disfavor short fragments. To derive an approximate predictive
statement from the above observations, we calculated the frac-
tion of genes that had at least one CSMM, for bins of gene
lengths and 101-bp PE Cufflinks-derived expression. At FPKMs
>10 and gene lengths ≥ 1kb, 98% of genes receive a PacBio-
CSMM when sequencing ∼711,000 CCS (Fig. 2D), whereas with
an FPKM of >1, this percentage drops to 89%. When requiring
at least 10 CSMMs (at FPKMs > 10), which may be useful for
quantitative analyses, this fraction drops further to 68% (Fig.
2E). For genome-annotation purposes, CSMMs representing all
introns of an RNA molecule are useful. Sixty-three percent of
CSMMs appear complete in that their first splice site is an an-
notated first splice site and that their last splice site is an an-
notated last splice site. By relaxing this criterion (SI Methods),
ultimately 71% of CSMMs were classified as “full length.” For
a gene to receive a full-length CSMM, we find both expression
and mature gene length to be important factors. Genes of 1 kb or
longer and expressed at FPKMs ≥10 show a full-length CSMM in
94% of the cases, whereas those that have at least one annotated
mature (that is excluding introns) transcript longer than 4 kb do
so only in 33% of the cases (Fig. 2F). Note that full-length mol-
ecules may not always represent the longest isoform of a gene.
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Fig. 1. Increased length of CCS for the GM12878 sample. (A) Length distribu-
tion of CCS reads in the human organ panel (Hop; blue) (11) and CCS sequenced
here for the GM12878 cell line (red). (B) Relative representation of molecules in
length bins in the two samples. y axis is calculated as log [(number of GM12878-
CCS in bin + 1)/(number of Hop-CCS in bin +1)]. The red horizontal line gives the
expected ratio, which is above 0, because of the increased sequencing depth in
GM12878. (C) Distribution of distances for CSMMs between the 5′ end of the
mapping and the closest annotated TSS of the same gene for both the Hop
(blue) and the GM12878 (red) sample. (D) All CSMMs mapped to the BCKDK
gene in the GM12878 cell line (red) and in the Hop sample (blue) as well as all
Gencode15-annoated transcripts for this gene (black).
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Fig. 2. Comparison of short- and long-read sequencing for gene identifica-
tion. (A) Bar chart depicting the number of genes identified by PacBio-CCS and
by Cufflinks, the number of genes only identified by the former, the number
of genes only identified by the latter, and the number of genes identified by
neither approach. (B) Cufflinks-derived gene expression distribution for genes
that show at least one CSMM and for those that do not have a single CSMM.
(C) Mature gene length distribution for genes that show at least one CSMM
and for those that do not have a single CSMM. (D) Fraction of genes that show
at least one CSMM in bins according to gene length and Cufflinks-derived
gene expression. (E) Fraction of genes that show at least 10 CSMM in the same
bins as in D. (F) Fraction of genes that show at least one full-length CSMM in
the same bins as in (D). Note that a full-length CSMM does not necessarily
correspond to the longest annotated isoform of the gene.
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A Personalized and Long-Read Enhanced Gencode Annotation. Because
PacBio-CCS reads may describe novel exon-intron structures, we
determined RNA molecules representing previously unidentified
isoforms as described (8). We estimated that 2% of all alignments
(corresponding to 1 of 7 of the novel alignments) might represent
mapping artifacts (11) and a similar number has been suggested to
represent biological noise (17). To reduce the number of these
unwanted isoforms, we isolated ∼12,000 full-length novel isoforms,
which could be attributed to a known gene and for which each exon-
exon junction was annotated and/or supported by short-read se-
quencing (SI Methods) and added them to the Gencode (version 15)
annotation. Fifty-five percent of the corresponding novel RNA
molecules exhibited novel combinations (8) of known splice sites
(including skipping of annotated constitutive exons and retention of
known introns). Thirty-four percent showed a single novel donor or
acceptor and 11% had two or more novel splice sites (including
novel internal exons). Approximately 2,700 such isoforms were only
observed in the HOP sample, 8,500 only in the GM12878 sample
and 684 in both (Fig. 3A). These isoforms affected a total of ∼5,500
genes, most (93%) of which are annotated as protein coding,
although “lincRNA,” “antisense,” “processed transcript,” and
“pseudogene” genes could also be observed. At gene level, ∼2,100,
4,300, and 600 genes showed a novel isoform observed in the Hop-
sample only, the GM12878-sample only, and both samples, re-
spectively (Fig. 3B). We then used Cufflinks to quantify this en-
hanced annotation by using the GM12878-Illumina-101-bp PE data.
In addition to the many easily interpretable FPKMs, Cufflinks also
provides very small FPKM values (e.g., between 0 and 10−5). We
therefore monitored the fraction of novel isoforms at different
FPKM thresholds. At thresholds 0.1 and above, novel isoforms that
were observed in both the HOP and GM12878 long-read samples
were most likely to pass the FPKM cutoff derived from GM12878
101-bp PE sequencing. At all FPKM-cutoffs, a higher fraction of
novel isoforms specific to the GM12878 long-read data were ob-
served than those specific in the HOP long-read data. Thus, novel
isoforms originating from the same sample as the Illumina reads are
more easily quantified than novel isoforms from other samples,

supporting the biological relevance of these novel isoforms (Fig.
3C). This result remains true when we do not require all introns of
added isoforms to be annotated or supported by Illumina se-
quencing (Fig. S3). Isoforms added to the annotation were on
average observed 1.5 times in the PacBio data, whereas isoforms
that correspond to entire or truncated annotated isoforms appeared
on average 4.3 times. This observation is consistent with the notion
that many added isoforms have escaped annotation thus far, be-
cause they are lowly expressed.

Joining Distant Single Nucleotide Variations into an RNA Haplotype.
An important goal in transcriptomics is to assign RNA molecules
to the allele from which they were expressed. For genes having
only one single nucleotide variation (SNV), the allele assignment
is a trivial binary decision for long-read data. However, genes can
harbor multiple SNVs, which may be located at a distance that
is not detectable by using short RNA fragments. In principle,
through long-read sequencing, we can determine each SNV af-
fecting each single RNA molecule. For example, for the mito-
chondrial ribosomal protein L10 (MRPL10) gene, we identified
a total of five SNVs (Methods) when using an equal number
(∼574,000 reads) of reads for each GM12878, GM12891, and
GM12892. Formulating the allele assignment problem in a prin-
cipal component analysis (PCA) framework, we determined mis-
matches of CCS from the hg19 reference—a noisy process due to
the relatively high error rate of single-molecule sequencing. For
the MRPL10 gene, we found ∼2.4 mismatches per 100 bp of
alignment (Fig. 4A). To determine heterozygous SNVs, we
retained all single nucleotide substitutions, when they appeared in
at least 15% and at most 85% of the CCS overlapping the position
in question—a de novo method completely independent of pre-
vious SNV annotations. Mismatches overlapped by few reads and
reads overlapping few mismatches were removed from the analysis
(Methods). Note, that some SNV calls are lost (a missing “T” in
molecule M6, a missing “A” in molecule M18, and a missing “T”
on an internal exon in molecule M10; Fig. 4B). Furthermore,
molecule M7 does not overlap the most downstream SNV. Ab-
sence or presence of SNVs in reads was encoded in a read by
mismatch matrix. After normalization of the matrix, we computed
all pairwise correlations between SNVs and determined the cor-
relation-matrix’s eigenvectors (or principal components). Assum-
ing exactly two alleles and a sequencing technique free of errors,
the first eigenvector (or first principal component; PC1) should
explain all of the variation in this dataset, so that the ratio of the
first eigenvalue to the sum of all eigenvalues should be equal to 1.
Despite the SNV miscalls introduced into the read by mismatch
matrix by the PacBio error rate (and a read that did not overlap all
SNVs), the first principal component explains ∼91% of the vari-
ation for this gene (Fig. 4C). Thus, we can attribute single CCS
reads to an allele, despite the error rate. To trace the origin of
both alleles through the family trio, we added PacBio reads se-
quenced for the parents (GM12891 and GM12892) to the ones for
the daughter (GM12878) and monitored the parent reads for the
absence or presence of the daughter-derived SNVs. Repeating the
PCA on the combined data and plotting only the data from
GM12878 in the eigenvector 1/eigenvector 2 space revealed the
two alleles (represented by two points of enrichment) and a few
scattered points (representing sequencing errors on an SNV; Fig.
4D). Separate plotting of the data from mother and father showed
that only one allele is detected in the mother (red enriched area to
the right in Fig. 4 D and E), with the other allele identified in the
father (Fig. 4F). Note, that the base-pair substitutions considered
here occur in at least two molecules. When dropping this criterion,
this approach finds an additional 82 SNVs, which appear to be
false positives, because in contrast to the above 5 SNVs, they do
not correspond to annotated SNVs (SI Methods). For much larger
numbers of reads (such as from the targeted PCR product of
a gene giving >100,000 reads), this cutoff might have to be revised.
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Fig. 3. Construction and quantification of an enhanced annotation. (A) Bar plot
of novel isoforms that originated from the Hop sample only, the GM12878
sample only, and those from both samples. (B) Bar plot of gene numbers that
have at least one isoform originating from the Hop sample only, the GM12878
sample only, and from both samples. (C) Fraction of novel isoforms in the above
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Subsequently, we considered 166 genes for which at least 2
annotated heterozygous SNVs were covered by a large number
(80%) of full-length reads for each gene (SI Methods). The
majority of these genes had exactly two such SNVs, but genes

with three or four SNVs were also observed. Large SNV num-
bers (∼20 or more) were observed for a few HLA genes (Fig.
5A). Application of our SNV search method revealed heterozy-
gous SNVs for most (96%) of these 166 genes. The number of
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and each column gives a gene. Black boxes indicate different classes of genes according to expression patterns of allele I and II in the parents.

9872 | www.pnas.org/cgi/doi/10.1073/pnas.1400447111 Tilgner et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1400447111/-/DCSupplemental/pnas.201400447SI.pdf?targetid=nameddest=STXT
www.pnas.org/cgi/doi/10.1073/pnas.1400447111


SNVs found per gene correlated strongly with the annotated
SNV number (Pearson R of 0.89 and Spearman correlation of
0.75), showing that our method detects more heterozygous poly-
morphisms in regions that are known to be polymorphic (Fig. 5B).
For 6 genes of the 166, no heterozygous mismatches were found; we
speculate that one allele may be very lowly or not at all expressed.
For 2 genes, we found exactly 1 SNV, and for 158 genes, two or
more. Clear enrichment was observed for PC1 contributions be-
tween 0.8 and 1, showing that usually two alleles can be assigned,
although 26 genes showed weaker first principal components (Fig.
5C). Overall 66% of all found SNVs were annotated in the refer-
ence genome and 92% of all known SNVs for the considered genes
were found (Fig. 5D). Considering only non-HLA genes with good
phasing (PC1 ≥ 0.8), these two numbers changed to 95% and 97%,
respectively (Fig. 5E). The missing ∼3% of known SNVs may not
have passed one of the cutoffs used here, so that our analysis does
not disprove their existence. With the exception of HLA-DRB1,
even HLA genes, whose sequence may differ substantially from the
hg19 reference, showed good phasing similar to non-HLA genes
(Fig. 5F). Interestingly, despite the fact that we only considered

genes for which both alleles of the heterozygous SNVs can be
clearly seen in the RNA, four genes showed differential allelic ex-
pression (DAE; two-sided binomial test, FDR = 0.05).
We then assigned each CCS from the parental cell lines

(GM12891 and GM12892) to one of the two daughter-derived
alleles I and II or to another “unassigned allele.” Excluding CCS
assigned to the “unassigned allele” class, we monitored for each
gene the relative frequency of alleles I and II in both parents. For
each gene, each parent can take four states—“expresses I only,”
“expresses II only,” “expresses I and II,” and “expresses none”—
and the combination of both parents can therefore take 4 × 4 =
16 states. Because each allele must come from one of the parents,
only seven states should be observed: genes in which both alleles
are expressed in all three individuals (Fig. 5G, class “A”), all four
logically possible states, in which one parent expresses only one of
the alleles and the other parent expresses both (Fig. 5G, class
“B1–B4”), and both logically possible states in which one parent
expresses only one allele and the other parent only the other
allele (Fig. 5G, class “C1” and “C2”). These seven classes are

B SNV at position 161,683,136 

A 161,678,000 161,680,000 161,682,000 161,684,000

Allele 1 for FCRLA

Allele 2 for  FCRLA

Gencode annotation for FCRLA

SNV at position 161,681,780 

skipping 

inclusion 

ENST00000367959.2 

C C C C C C C C A A T G A A A A R G G G G 

C C C C C C C C A A T G A A A A G G G G G 

skipping 

inclusion 

ENST00000367959.2 

T C C A A G C G C GT G T G C C R G A C G 

T C C A A G C G C GT G T G C C G G A C G 

Fig. 6. Differential allelic isoform use for the FCRLA gene. (A) From the previously defined alleles 1 and 2 for this gene, we deduced all full-length reads in all
three cell lines (GM12878, GM12891, and GM12892) that could be attributed to these alleles. Reads for allele 1 (red), allele 2 (blue), and the annotation (black)
are plotted in transcription direction. A black box highlights an alternatively included exon. Vertical orange lines indicate genomic positions at which reads
differ from the reference genome through a heterozygous SNV. (B) Sanger sequencing traces for the two SNVs, which are located at genomic positions
161681780 (Left, position 867 in the Sanger trace) and 161683136 (Right, position 1357 in the Sanger trace) on chromosome 1, separated by RNA molecules
skipping exon 2 (Upper, as given by a PCR from a primer spanning the exon 1-exon 3 junction, “skipping”) and including exon 2 (Lower, as given by a PCR
from a primer spanning the exon 1-exon 2 junction, “inclusion”). The nucleotide descriptor “R” stands for a purine residue (A or G).
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exactly the ones we observe (Fig. 5G), and a P value can be cal-

culated by using the binomial coefficient as 1
�� 16

7

�
≤ 1e-4.

Thus, long-read sequencing of unfragmented RNA can reveal
the entire transcript structure and all SNVs in each single RNA
molecule. A proof of principle showing differential exon inclusion
between the two alleles (pooled from GM12878, GM12891, and
GM12892, a technique to be avoided if sufficient read depth is
available) is the Fc receptor-like A (FCRLA) gene, for which an
alternative exon on allele 1 is included in 2% of the molecules but in
21% of the molecules on allele 2 (P < 0.01, two-sided Fisher test
with Bonferroni correction for all internal exons of the phased
genes; Fig. 6A, see also ref. 8). To validate this event of differential
allelic isoform use (DAI), we amplified cDNA molecules that
include exon 2 and separately cDNA molecules that skip exon 2.
Sanger sequencing of both amplicons confirmed that exon 2-
inclusion amplicons show the SNV pattern of allele 2, whereas exon
2-exclusion amplicons show a mixture of the SNV patterns of both
alleles, thus confirming our long-read analysis (Fig. 6B).

Discussion
Short-read RNA sequencing has become the de facto standard in
transcriptome analysis, so that currently, sequencing 100 million
101-bp PE reads has become common. Because of the complexity
of higher-eukaryotic transcriptomes, short-read approaches suffer
when it comes to precise reconstruction of transcript structures.
Here, we generate the deepest and longest single-molecule long-
read dataset to date, to our knwoeldge, for a trio of human cell
lines (GM12878, GM12891, and GM12892). Illumina-RNAseq
data for GM12878 analyzed by Cufflinks showed that the single-
molecule approach sequences one or more spliced reads for 59%
of the expressed spliced genes. For highly expressed genes with
mature RNA lengths of 1 kb and longer, obtaining a long read is
almost certain (98%), but for lowly expressed genes, this is much
less likely. Notably, for obtaining a spliced PacBio read for a gene,
gene length (apart from genes <<1 kb) appears not to be a major
factor, because shorter isoforms or truncated molecules yield CCS.
Obtaining full-length molecules, however, is increasingly difficult
for longer genes.
One may also use long reads to complement an existing an-

notation or create an annotation and then use short reads to
quantify that annotation. This approach is supported by the
observation that GM12878-derived PacBio isoforms receive high
Cufflinks FPKMs in a GM12878 Illumina sample more often
than PacBio isoforms derived from a different sample.
PacBio reads exhibit a higher error rate than Illumina se-

quencing (18). Using CCS reads greatly alleviates this problem,

although not to the same extent as methods of hybrid error
correction (10, 12). In contrast to the latter, CCS have the ad-
vantage that all of the information leading to the sequence of
a read originates from a single RNA molecule, which is a sig-
nificant step toward connecting multiple variables along the
RNA molecule, such as SNVs, RNA editing and splice sites,
TSSes, and polyA sites. Here, we show that we can determine
SNVs de novo and that using a PCA approach, molecules from
genes with multiple heterozygous SNVs can be attributed to the
two alleles. Even for complicated genes (e.g., HLA genes, whose
sequences may differ considerably from the reference sequence)
the two alleles are usually clearly distinguishable. Deeper se-
quencing is needed, however, to determine with statistical signifi-
cance if one allele behaves differently from another for many genes.
In summary, we show advantages and disadvantages of single-

molecule sequencing and provide guidelines so that researchers
can assess whether it can be of use for their research. Further-
more, we show how an allele-specific full-length transcriptome
can be described, which will be increasingly useful for basic re-
search and personalized medicine as sequencing depth increases.

Methods
Definition of Heterozygous Mismatches and PCA. For a given gene, we con-
sidered all CSMMs mapped to the gene. We remapped all full-length CSMMs
against the genomic region of the gene, discarding all that showed differ-
ences to the first mapping and recorded all mismatches from hg19. Mis-
matches that occurred in only one read, and insertions and deletions (which
are more common in PacBio CCS), were discarded. For the remaining mis-
matches, a read by mismatch matrix was constructed, in which “1” denotes
the presence of a mismatch, “−1” the absence of a mismatch (which may
include cases in which the mismatch existed but was hit by one of the rel-
atively frequent insertions or deletions). When a read did not overlap
a mismatch (because of an alternative isoform or only partial representation
of a UTR) and, therefore, could not inform about the status of the mismatch,
we encoded it as a “0.” Based on this matrix, we retained clearly hetero-
zygous positions, for which most reads were informative at the position,
meaning we removed mismatches that (i) were covered by less than 80% of
the CCS, (ii) affected less than 15% of the reads that covered them, or (iii)
affected more than 85% of the reads that covered them. Each column
(representing the values for one mismatch in all reads) was normalized. We
then computed the correlation matrix, its eigenvectors, and corresponding
eigenvalues and rotated the normalized matrix into the space defined by
the eigenvectors. Statistical analysis was carried out by using R (19).

ACKNOWLEDGMENTS. We thank Nicole Rapicavoli and Nick Seniseros at
Pacific Biosciences for help with data production and thank Carlos Araya,
Morten Rasmussen, and Suyash Shringarpure for valuable comments on
the manuscript.

1. Nagalakshmi U, et al. (2008) The transcriptional landscape of the yeast genome de-
fined by RNA sequencing. Science 320(5881):1344–1349.

2. Wang ET, et al. (2008) Alternative isoform regulation in human tissue transcriptomes.
Nature 456(7221):470–476.

3. Sultan M, et al. (2008) A global view of gene activity and alternative splicing by deep
sequencing of the human transcriptome. Science 321(5891):956–960.

4. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quan-
tifying mammalian transcriptomes by RNA-Seq. Nat Methods 5(7):621–628.

5. Wilhelm BT, et al. (2008) Dynamic repertoire of a eukaryotic transcriptome surveyed
at single-nucleotide resolution. Nature 453(7199):1239–1243.

6. Djebali S, et al. (2012) Landscape of transcription in human cells. Nature 489(7414):
101–108.

7. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: A revolutionary tool for tran-
scriptomics. Nat Rev Genet 10(1):57–63.

8. Tilgner H, et al. (2013) Accurate identification and analysis of human mRNA isoforms
using deep long read sequencing. G3 (Bethesda) 3(3):387–397.

9. Steijger T, et al.; RGASP Consortium (2013) Assessment of transcript reconstruction
methods for RNA-seq. Nat Methods 10(12):1177–1184.

10. Koren S, et al.; AdamM Phillippy (2012) Hybrid error correction and de novo assembly
of single-molecule sequencing reads. Nat Biotechnol 30(7):693–700.

11. Sharon D, Tilgner H, Grubert F, Snyder M (2013) A single-molecule long-read survey of

the human transcriptome. Nat Biotechnol 31(11):1009–1014.
12. Au KF, et al. (2013) Characterization of the human ESC transcriptome by hybrid se-

quencing. Proc Natl Acad Sci USA 110(50):E4821–E4830.
13. Eid J, et al. (2009) Real-time DNA sequencing from single polymerase molecules.

Science 323(5910):133–138.
14. Harrow J, et al. (2012) GENCODE: The reference human genome annotation for The

ENCODE Project. Genome Res 22(9):1760–1774.
15. Dobin A, et al. (2013) STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29(1):

15–21.
16. Trapnell C, et al. (2010) Transcript assembly and quantification by RNA-Seq reveals

unannotated transcripts and isoform switching during cell differentiation. Nat Bio-

technol 28(5):511–515.
17. Pickrell JK, Pai AA, Gilad Y, Pritchard JK (2010) Noisy splicing drives mRNA isoform

diversity in human cells. PLoS Genet 6(12):e1001236.
18. Quail MA, et al. (2012) A tale of three next generation sequencing platforms: Com-

parison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Ge-

nomics 13:341.
19. R-Core-Team (2012) R: A Language and Environment for Statistical Computing.

9874 | www.pnas.org/cgi/doi/10.1073/pnas.1400447111 Tilgner et al.

www.pnas.org/cgi/doi/10.1073/pnas.1400447111

