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Phytoplankton account for roughly half of global primary pro-
duction; it is vital that we understand the processes that control
their abundance. A key process is cell division. We have, however,
been unable to estimate division rate in natural populations at the
appropriate timescale (hours to days) for extended periods of time
(months to years). For phytoplankton, the diel change in cell size
distribution is related to division rate, which offers an avenue to
obtain estimates from in situ observations. We show that a matrix
population model, fit to hourly cell size distributions, accurately
estimates division rates of both cultured and natural populations of
Synechococcus. Application of the model to Synechococcus at the
Martha’s Vineyard Coastal Observatory provides an unprecedented
view that reveals a distinct seasonality in division rates. This infor-
mation allows us to separate the effects of growth and loss quan-
titatively over an entire seasonal cycle. We find that division and
loss processes are tightly coupled throughout the year. The large
seasonal changes in cell abundance are the result of periods of
time (weeks to months) when there are small systematic differ-
ences that favor either net growth or loss. We also find that
temperature plays a critical role in limiting division rate during
the annual spring bloom. This approach opens a path to quantify
the role of Synechococcus in ecological and biogeochemical pro-
cesses in natural systems.
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Marine phytoplankton contribute ∼50% of global net pri-
mary production (1), mediate global biogeochemical cycles,

and form the base of marine food webs. It is vital that we un-
derstand the factors that govern their abundance, even more so
in light of ongoing climate change. The key to this is an under-
standing of the rate at which phytoplankton cells divide under
different environmental conditions.
Division rate cannot be measured from changes in cell abun-

dance alone, as changes in abundance result from interactions
between cell division and other processes such as predation, ad-
vection, sinking, and mixing. Further, we lack approaches that can
resolve these processes on scales relevant to the cells’ responses to
their environment. To overcome this, estimates of abundance and
division rate are needed on time scales of hours to days and
extending for weeks, months, and ultimately years. Although some
progress has been made with automated sampling (2), a practical
method for estimating division rates across this wide range of scales
has remained elusive. Conventional methods require incubations
(3, 4) or sample manipulation and handling (5–7), neither of which
can be feasibly conducted at daily resolution for extended duration.
For the important class of picophytoplankton (≤2 μm in di-

ameter), estimation of division rates has been attempted from in
situ diel changes in cell size. During daylight, individual cells
photosynthesize and increase in volume. The increase in cell
volume during daylight hours provides a minimum estimate of
the daily division rate (8). This approach has been used to study
Synechococcus, Prochlorococcus, and picoeukaryotes in the open
ocean (8–10). A major limitation of this approach is its implicit
assumption that (at the population level) cell growth and division
are separated in time. Although most cell division occurs around

dusk (10, 11), these processes have been observed to occur simul-
taneously throughout the day in cultures of Synechococcus, espe-
cially when division rate is high (>0.7 d−1) (7, 11, 12). Under such
conditions, this approach underestimates division rate. Sosik
et al. (13) proposed an alternative method based on a matrix
population model that represents changes in cell sizes and allows
for simultaneous growth and division. This model can be fit to
time series of cell size distributions and the fitted model provides
an estimate of the daily division rate. A key advantage both ap-
proaches share is that they do not depend on cell concentration.
This independence is especially important in dynamic coastal
systems where complex interactions between physical and bi-
ological processes can produce patchy plankton distributions (14).
Although the approach of Sosik et al. (13) may be powerful, its

efficacy and accuracy have never been evaluated.Hereweprovide,
to our knowledge, the first direct test of the model-based ap-
proach. We show that, for both cultured and natural Synecho-
coccus, the model-based approach is, on average, in excellent
agreement with methods based on cell counting. We apply the
approach to observations collected by an automated submersible
flow cytometer [FlowCytobot (FCB)] (15) over an annual cycle at
the Martha’s Vineyard Coastal Observatory (MVCO). Our anal-
ysis reveals, with unprecedented resolution, a distinct seasonality
of division rates. It also establishes that division and loss processes
are tightly coupled throughout the year. Despite this coupling,
dramatic seasonal changes in cell abundance occur because small
but systematic differences favor net growth (or loss) for extended
periods (weeks to months).

Significance

Understanding changes in phytoplankton cell abundance re-
quires estimates of division rates. These rates are difficult to
obtain at the necessary time scales (daily) for extended periods
with conventional methods. We show that a matrix population
model combined with observed hourly cell size distributions
accurately estimates division rates of both cultured and natural
populations of the picocyanobacteria Synechococcus. This
approach opens the path for novel insight into population
dynamics. Application of the model to an annual cycle of
Synechococcus observations reveals dramatic seasonality of
division rates linked to temperature and that division and loss
processes are tightly coupled throughout the year. These results
suggest that Synechococcus populations may be especially sen-
sitive to the predicted changes in ocean temperature from global
climate change.
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Model
We estimate the division rate with a matrix population model
based on that of Sosik et al. (13). In this section, we briefly
describe the model and its fitting; details are available in
SI Text and Table S1. We make two assumptions. First,
within a single day, cell growth is determined by incident
radiation, with temperature, nutrient availability, and other
factors operating at longer time scales. Second, the odds of a
cell dividing depend only on its size and are constant for cells
within a discrete size class. With descriptions of how cell
growth depends on light and cell division depends on size,
the model predicts the cell size distributions over the course
of a day.
We begin by dividing the cells into m size classes. The cells in

class i have volumes between νi and νi+1, where the class bound-
aries are equally spaced on a logarithmic scale

log2νi = log2νmin + ði− 1ÞΔν;   for  i= 1; 2;⋯;m: [1]

νmin is the minimum cell volume, and Δν is the class width.
Here we take νmin = 2 × 10−5 μm3, m = 57, and Δν = 0.125.
Let n(t) be the m-by-1 vector whose elements, ni(t), are the
number of cells in class i at time t. The population vector at
time t + dt is given by

nðt+ dtÞ=Aðt; θÞnðtÞ: [2]

The element aij(t; θ) of the m-by-m projection matrix A(t; θ)
is the number of cells in class i at time t + dt per cell in class j
at time t. Each of these elements is a function of time and
depends on parameters collected in θ. Given these parame-
ters and an initial condition n(0), the model projects the
population distribution throughout the day. The daily division
rate is

μ= ln
�
Nð24Þ
Nð0Þ

�
; [3]

where N(0) and N(24) are the total cell numbers from the model
at the beginning and end of the day. As summarized in Fig. S1,
the model allows a cell to undergo only one of two transitions in
a single time step: division or growth. (Cells that neither divide
nor grow survive in the same size class.) The time step dt should
be sufficiently small such that this is a reasonable assumption; we
set dt = 10 min.

Division. We assume that a fraction δ(t, νj; θ) of the cells in size
class j divide in half during one time step, and that the odds of
dividing depend on cell size and time of day. In particular, we set

δ
�
t; νj; θ

�
=

8>><
>>:
0 for t≤ tp; 

νbj

1+ νbj

!
δmax for tp < t< 24;

[4]

with b > 0. Cells do not divide before time tp, an assumption that is
supported by observations of natural and cultured Synechococcus
(7, 11), including the culture used in this study. We take tp = 6 h.
After tp, the division probability δ is an increasing function of
cell size. δmax is the maximum fraction of cells that divide and
the parameter b determines the shape of δ (Fig. S2A).

Growth.Of the cells that do not divide, a fraction γ(t; θ) grow into
the next largest size class. This fraction is independent of cell size,
but depends on incident radiation E(t). We assume that γ(t; θ)
is a piecewise linear function of E(t) (Fig. S2B):

γðt; θÞ=
�
γmax½EðtÞ=Ep� for EðtÞ<Ep;
γmax otherwise:

[5]

When E(t) ≥ Ep, the fraction of cells that grow into the next size
class is γmax. Cells in the largest size class do not grow.

Subpopulations. When the initial distribution is unimodal, the
model preserves this feature over the course of the entire day. In
the majority of our laboratory experiments, however, bimodal size
distributions developed and then disappeared during the day (Fig.
S3B). This phenomenon also occurs in natural assemblages at
MVCO, although more subtly and less frequently. Bimodal size
distributions in the laboratory experiments typically first appeared
during the start of cell concentration increase and disappeared
a few hours before cell concentration stopped increasing for the
day. This timing and the magnitude of increase in volume apparent
for larger cells (Fig. S3B) suggests that the underlying cause was
early rounds of cell division (7) with a portion of these newly
divided cells staying attached for much longer than typical in the
field. Other possibilities include a portion of the culture that
exhibited different cell size dynamics (such as growingmuch faster
or having a different diel timing for cell division). This possibility
can occur even in clonal culture, as phenotypic differences have
been observed after spontaneous mutations over many gen-
erations (16, 17).
We can accommodate bimodal size distributions by including

in our model two subpopulations, n1(t) and n2(t), each governed
by its own projection matrix and parameters. The total number
of cells at time t is given by N(t) = N1(t) + N2(t), where N1(t) and
N2(t) are the totals for the two subpopulations. The modeled
overall daily growth rate is found from Eq. 3.
To complete the model, it is necessary to specify the initial size

distributions of the subpopulations [n1(0), n2(0)]. The observed
initial size distributions are consistent with a mixture of two log
normal components with different mean parameters ν1 and ν2,
common variance parameter σ2, and mixing proportion ψ .
The model outlined above contains 12 parameters. For each

subpopulation, the parameters b, δmax, γmax, and Ep specify the
projection matrices. Four additional parameters describe the
starting populations: ψ , ν1, ν2, and σ2. We assume that all of these
parameters are constant within a day but may change between days.
We use a maximum likelihood approach to estimate these param-
eters (SI Text) from observed cell size distributions. Parameter
estimates do not depend on the concentration of cells but only on
the proportion of cells in each size class. Importantly, we find that
our two-subpopulation model is able to reproduce the range of cell
size distribution patterns that typically occur in the data (Fig. 1).

Results
Culture Experiments. To evaluate the model’s ability to estimate
division rates, we applied it to daily cell size distributions of an
MVCO Synechococcus isolate grown under a range of tempera-
ture and light conditions. For this culture we estimated the division
rate with standard counting methods (Materials and Methods). We
found that across a range of conditions the model-based and
count-based estimates were in good agreement on average (Fig. 2).
The level of overall agreement can be measured by the accuracy
component Cb of the concordance correlation coefficient (18).
Specifically, Cb lies between 0 and 1 and measures how far the best
fit linear relationship between two estimates deviates from the one-
to-one line.WhenCb= 1, the two lines are identical. For the data in
Fig. 2, the estimate of Cb is 0.989, with a 95% CI of (0.949, 0.997).
Such extremely high accuracy demonstrates that, on average, our
model works as well as standard counting methods for estimating
division rates across a range of growth conditions, diel patterns,
and other controlling factors.
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We did encounter days when model and cell count division esti-
mates did not agree, in particular, at higher temperatures (water
temperatures at MVCO do not exceed 22 °C) and low light. The
experiments with these discrepancies tended to occur sequentially
(i.e., days in a particular batch experiment) and had an unusual cell
size distribution pattern (abrupt increase then decrease of cell
volume in the span of a few hours) that the model was not able to
reproduce. Other batch experiments grown under these same light
and temperature conditions showed different cell size distribution
patterns, which the model was able to reproduce well. Notably, for
these days, the model and cell count division rates agreed. These
observations suggest caution in accepting model-based division
rate estimates when model cell size distributions do not represent
observed data well.
The culture division rates exhibited an expected response to

growth conditions, typically increasing with temperature (with
sufficient light) and increasing with light until saturation. For some
temperature and light conditions, however, the division rates of the
culture obtained from cell concentrations showed a fairly wide
spread of values (e.g., light at 80 μmol photons m−2·s−1, tempera-
ture at 19 °C). This spread can partly be explained from the in-
clusion of data where cells were adjusting to a change in condition
(e.g., just diluted or a recent temperature or light change; Fig. S4).
For these days, cells would still be acclimating and the division rate
of the culture would not be at steady state. The ability of the model
to capture much of the observed variation is a further line of
evidence for its ability to estimate division rates when cells are
adjusting to different environments, as cells continuously do
in nature.

Dilution Series Experiments. We used dilution series experiments
with natural Synechococcus populations as a second line of model
evaluation. We used only experiments that demonstrated net
growth rate dynamics consistent with dilution of grazers (3, 19).
The model was applied to cell size distributions measured in un-
diluted samples (full grazing impact). Model division rates agree
well with those obtained from the dilution series technique [Cb =
0.65, with a 95%CI of (0.377, 0.839)] across a range of division and
loss rates (Fig. 3A and Table S2).

Grazing Assumptions. Our model assumes diel changes in size dis-
tributions are only a function of physiological processes. Size se-
lective grazing has the potential to violate this assumption. If
Synechococcus cells are preferentially ingested according to
size, grazing could alter cell size distributions in ways unrelated to
cell growth and division. Classes of grazers known to prey on
Synechococcus, such as nanoflagellates and ciliates, have been

observed to be selective across wide size ranges (20, 21), but it
is unknown whether this extends to the smaller size differences
among cells of a single species growing and dividing.
We found that division rate estimates from the model were not

significantly different between the undiluted bottle (higher grazing
pressure) and the most-diluted bottle (presumably lower grazing
pressure), thus supporting the assumption that size-selective graz-
ing is not important (Fig. 3B). We note that the dilution series
experiments included in this comparison took place mainly in au-
tumn (only one summer day was included), so we cannot rule out
the possibility that grazing effects might occur at other times of year
(e.g., grazer community with different prey selection capabilities).
These experiments show that the approach is robust across

a range of grazing pressures (Table S2). Although a few days had
low grazing pressure (grazing rate ≤ 0.08 d−1), most had rela-
tively higher rates (>0.25 d−1). These higher grazing rates tended
to occur on the second day of incubation, possibly due to grazer
reproduction and/or shifts in prey preferences. The agreement in
model division rates between bottles in experiments with higher
grazing pressure supports our assumption that the model esti-
mates are independent of grazer activity.

Division Rates of a Natural Synechococcus Population. The seasonal
cycle of Synechococcus cell abundance at MVCO is characterized
by wintertime low concentrations of a few hundred cells per mil-
liliter and summertime levels that can exceed 105 cells per milli-
liter. Overlaid on this seasonal pattern are abundance changes that
occur on the timescale of a few weeks; in some cases, cell abun-
dance can change by 10-fold (see late summer months in Fig. 4A).
Application of the model to the time series of cell size dis-

tributions at MVCO in 2008 (Fig. 4B) reveals distinct seasonality
in division rate. Division rate is very low in winter months and
begins to increase almost linearly during spring. Division rate is
highest during the summer months and slowly declines in autumn
back to wintertime low values. The low rates in winter (0–0.2 d−1)
suggest physiological limitation. In summer, however, division
rates are the highest observed throughout the year (0.7–1.0 d−1)
and suggest that the Synechococcus population is not experienc-
ing much resource limitation. The rates produced by the model

Fig. 1. Observed hourly cell size distributions of Synechococcus obtained
from FCB at MVCO on (A) January 3, 2008, (B) September 25, 2008, and (C)
June 16, 2008. The bottom row shows the model-produced cell size dis-
tributions and division rate (μ) from the maximum likelihood estimates of the
parameters for each of the observed days directly above. The blank portion
from hours 1 to 6 in D–F reflect the model application starting 6 h after dawn.

T        E

Fig. 2. Comparison of division rates obtained from the model to division
rates determined from change in cell concentration (Eq. 3) for each day in a
Synechococcus culture grown over a range of light and temperature. Each
point is an individual day. T, temperature (°C); E, light (μmol photons m−2·s−1).
Color of points indicates temperature and marker symbol indicates light level.
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are consistent with known Synechococcus division rates (7, 11,
22), and maximum rates are similar to those observed for the
Synechococcus strain isolated from this location (Fig. 2).

Discussion
Knowledge of division rates is crucial to understanding drivers of
abundance change of phytoplankton populations. A major chal-
lenge is not only to partition changes in abundance into growth
and loss processes but also to have this information at a resolution
that is relevant for the organism under study. For populations that
can be identified and measured at high frequency, the method we
have presented makes it possible to obtain daily division rates. We
conducted, to our knowledge, the first evaluation of the model’s
ability to estimate division rates from cell size distributions and
found it is able to do so accurately for coastal Synechococcus.
With this approach, we obtained an unprecedented record of
daily division rates over an annual cycle at MVCO. These results
provide insight not only into the environmental factors that may
regulate division rate but also the quantitative role of cell division
in producing changes in cell abundance.
Synechococcus division rates show a distinct seasonal cycle (Fig.

4B). Low values in winter are most likely due to temperature or
light limitation. In temperate regions, temperature seems to be
a driving force in shaping Synechococcus abundance (23–25).
Waterbury et al. (11) suggested temperature as a limiting factor
for Synechococcus in this region because initiation of the spring
bloom did not occur until the water temperature reached 12 °C.
Our observations support this hypothesis as weekly averaged di-
vision rates have a strong positive correlation with temperature
during the first half of the year (Fig. 5C) when they are only
weakly related to light (Fig. S5). The increase in division rate
begins around mid-April, when water temperature reaches ∼8 °C
and continues to increase until July, when the highest water
temperatures occur (∼22 °C). During the second half of the year,
division rates are consistently lower than those encountered in
spring for the same temperature. This finding suggests that other
factors limit division rate during this time. Nitrate concentrations
are typically low (undetectable or <1 μM) at MVCO, but higher
values are encountered intermittently in fall and winter, likely
associated with storms or other mixing processes. High division
rates in summer do not indicate extensive physiological limitation,

and given undetectable nitrate concentrations, this suggests rapid
turnover of nutrients.
With net change in abundance and division rates quantified, we

can calculate bulk loss rates as the difference between these quan-
tities (Fig. 4C). These loss rates reflect both mortality (e.g., pre-
dation, viral lysis) and the net balance of immigration and emigration
due to processes such as advection and mixing. Comparison of
weekly averaged division and loss rates (Fig. 5) illustrates how the
combination of division and loss processes produce the observed
changes in cell abundance. During the winter and summermonths,
cell abundance is nearly constant over time scales of several days
to weeks, so new cells produced from division must be balanced by
losses. As a result, loss rates are low in winter and high in summer.
Calculated loss rate tends to be correlated with division rate,
suggesting that losses are mainly biological in nature rather than
associated with advection or mixing of patchy cell distributions. If
advection or mixing was dominant, it is unlikely that losses due
to these processes would match division rate in magnitude. For
Synechococcus, the majority of the biological loss term is most
likely due to heterotrophic grazers rather than viral lysis (26–28).
Grazers of picophytoplankton are capable of responding rapidly to
increases in prey concentration, as their own division rates can
match or exceed that of their prey (29). A tight balance between
division of picophytoplankton and loss by predation has been
demonstrated in both open ocean and coastal systems (24, 29–33).
Our results also demonstrate a tight coupling between division and
loss, suggestive of grazing, and reveal that this balance is present
over time during the winter and summer months.
At MVCO for 2008, Synechococcus population abundance

underwent roughly a 1,000-fold change during its spring bloom.
As required for this bloom to occur, the division rate was higher
than loss rate during this time (Fig. 5). Compared to the overall
magnitude of the division and loss rates themselves, the difference
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between these two rates, however, was small. The mirror situa-
tion occurred in autumn, when cell concentration began to decline.
During this time, loss rate was generally higher than division rate
but by only a small amount. An exception occurred during an
event in late October, when cell abundance increased by roughly
an order of magnitude in the span of a few days. Although we
only have division rate estimates for just before and after this
period of drastic abundance change, these rates were relatively
constant and moderate. We surmise that this large increase in
abundance may have been due to a different water mass with
higher Synechococcus cell concentration moving into the study
area. In contrast to the dramatic multiday event in October, the
large seasonal cell abundance changes appear to result from
small (0.1–0.3 d−1), but systematic deviations from 0 weekly av-
eraged net growth rate (Fig. 4C, solid curve). Spring blooms in
temperate locations are usually attributed to temporary escape
from predation, especially for the larger eukaryotic phytoplankton.
For the Synechococcus population at this site, this does not ap-
pear to be the case; high biological loss appears to be a constant
attribute of the system. The prolonged Synechococcus spring
bloom is a result of increasing division rates (associated with
increasing water temperature) during a 3-mo period that allow
for a small, but persistent, positive difference over the ongoing
losses. These small differences between division and loss pro-
cesses can have an enormous effect on the evolution of coastal
picophytoplankton blooms.
The calculated loss rates presented here also raise interesting

questions surrounding the grazing community. Currently, we do
not know the identities of Synechococcus predators atMVCO. The
same type of grazer may persist over the seasonal cycle or different
grazers could be selected for by changing Synechococcus division
rates and abundance. It is important to understand the mecha-
nisms behind the lags in magnitude between loss rate and division
rate. Time lags could occur from grazer feeding thresholds or
possibly due to differences in temperature responses. Answers to
these questions hold important information on the fate of carbon
fixed by Synechococcus.
Natural Synechococcus assemblages are believed to be com-

posed of multiple ecotypes (34, 35), each of which may respond
differently to its environment. Our model approach provides a
composite division rate for the entire Syenchococcus assemblage.
Although our model incorporates two subpopulations, these may
very well represent composites of even more finely divided types.
Further research is needed to determine if the model can ac-
curately resolve subpopulation division rates of known mixed
ecotypes. This resolution would depend on how well physiolog-
ical differences between ecotypes are manifest in their cell size
distributions. Inferences about the contribution of ecotypes to the
composite division rate would require quantitative investigations
into relative ecotype abundance with molecular approaches and
basic knowledge about the physiology of the ecotypes present
(growth response to light, nutrients, temperature).
This analysis of Synechococcus abundance change demonstrates

how our knowledge of population dynamics hinges not only on
measurement and observational capability, but also on innovations

in modeling and interpretation. The method presented here fills
the gap in our current ability to estimate division rate on relevant
time scales over extended periods of time. Although our model
evaluation and experiments focused on Synechococcus, this method
could be applicable to other phytoplankton (and possibly bacteria)
if high-resolution, taxon-specific, diel changes can be characterized.
This characterization is more feasible for certain groups of phyto-
plankton (i.e., Prochlorococcus and Synechococcus) than others,
but current automated imaging technology may make other taxon-
specific characterization feasible (36). Even if taxon-specific
changes cannot be realized, this model formulation may also
be useful to quantify bulk or average division rate properties.
For instance, a version of this approach has been applied by
Dall’Olmo et al. (37) to estimate carbon biomass of phytoplankton
and division rates from the diel cycle of spectral beam-attenuation
coefficients.
For the Synechococcus assemblage at MVCO, this method

allowed us to estimate daily division rates over an annual cycle and
calculate loss rates at this same resolution. We find that throughout
the year, growth and loss processes are tightly coupled. Very high
cell division rates (up to 1 d−1) can persist for extended periods with
little or no change in cell abundance, and the entire seasonal cycle of
abundance (three orders of magnitude change) results from small
(0.1–0.3 d−1) deviations from 0 net growth. We also document
strong evidence that division rates are temperature limited during
the first half of the year, whereas other environmental factors are
important later. Temperature regulation of seasonal Synechococcus
blooms may be a characteristic feature in temperate waters (23–25),
suggesting this abundant picophytoplankter may be especially
responsive to ongoing impacts of climate change. The knowledge
gained from this approach contributes to our understanding of
Synechococcus dynamics and sets the stage to further examine
the role that these organisms play in ecological and biogeo-
chemical cycles.

Materials and Methods
FlowCytobot. The FCB was deployed at the MVCO (SI Text), sampling 4 m
below mean water level. Details of the design and performance of the FCB
are described elsewhere (15). Data analysis and enumeration of Synecho-
coccus cells were as described in ref. 13. The FCB measures side angle scat-
tering, which is converted to cell volume (15).

Culture Setup and Sampling. The Synechococcus strain used for this study was
isolated from coastal surface waters at MVCO in May 2006. Although this
isolate did not go through any clonal isolation steps (i.e., no dilution to ex-
tinction, sorting, or plating), sequencing of the diversity marker ntcA for this
culture shows only closely related representatives that belong to clade I of
marine Synechococcus (SI Text). The isolate was grown as batch cultures in 1-L
jacketed vessels with SNAX medium (11) with trace metal amount reduced to
20% to minimize precipitation. Cultures were kept in exponential growth at
cell concentrations spanning the range typical at MVCO. A range of division
rates was achieved by varying temperature and light intensity. Temperature
was controlled between 10 °C and 28 °C by pumping water through the vessel
jacket at ∼1 L·min−1 from a water bath. Vessels were illuminated by two 32-W
white fluorescent lamps with controllable light output and a 14:10-h light:
dark cycle. Light intensity was controlled and recorded by a MiniLab USB data
acquisition interface connected to a scalar irradiance meter (QSL 100; Biospherical

A B C

Fig. 5. (A) Weekly averaged division rates, obtained
from the model, and computed loss rates for Syn-
echococcus at MVCO for 2008. Daily loss rates were
calculated by subtracting net growth rate (Fig. 4C)
from model-produced division rate. (B) Comparison
of weekly averaged loss and division rates. (C) Re-
lationship between weekly averaged division rates
and temperature. In B and C, symbol color denotes
time of year.
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Instruments). Incident light followed a sinusoidal pattern with maximum
intensity 80 μmol photons m−2 s−1 inside the vessels. Black plastic screens
were used to decrease light intensity to 65%, 42%, 27%, and 18% (one to
four layers of mesh, respectively) of maximum. To reduce the tendency of
cells to clump and stick to the walls of the vessel, the walls were siliconized,
and cultures were mixed at about 1.34 × g by 6-cm glass paddles.

Cultures were sampled with a laboratory version of the FCB. Data pro-
cessing was the same as for field samples. The model was applied to cell size
distributions from individual days of batch grow outs (Fig. S4). For estimate
comparison, division rates from the culture were calculated with Eq. 3 using
cell concentrations at dawn of one day and dawn of the next day. Culture
observations were included in the final data set for model comparison only if
they exhibited (i) division patterns phased to the diel cycle and (ii) a division
rate consistent with other days under similar conditions (i.e., outlier or
negative division rates were excluded).

Dilution Series Experiments. Synechococcus daily division rate and grazing
rate in water from Woods Hole Harbor were determined during 12 dilution
series experiments (3) (6 d in June 2012 and 6 d in October 2012; Table S2
and SI Text). Incubations were conducted at ambient water temperature in
a flow-through seawater tank where the FCB was also located. For each ex-
periment, two bottles corresponding to the highest dilution and whole sea-
water were sampled by the FCB. Data processing was the same as that for the
FCB deployed at MVCO. Irradiance was measured with the surface portion of
a HyperPro radiometer (Satlantic LP). For a few days, when radiation data

could not be obtained, radiation data from MVCO (located 15 mi south of
Woods Hole Harbor) were used.

Bottles not connected to the FCB were sampled at time 0 (dawn local time)
and 24 and 48 h. Samples were preserved with glutaraldehyde to a final
concentration of 0.1% and incubated 10 min before being stored in liquid
nitrogen until later flow cytometric analysis. Synechococcus in preserved
samples were enumerated with a FACSCaliber (BD Biosciences) flow cytom-
eter. Synechococcus cells were identified on the basis of their characteristic
orange fluorescence from the accessory pigment phycoerythrin (38). Net di-
vision rate was calculated with Eq. 3, which assumes exponential growth and
loss processes. We fit the data (net division against dilution level) with either
a one-phase or two-phase linear regression model as some data suggested
nonlinear dilution response (19) (SI Text). The y intercept of the regression
line was taken as the division rate (net growth rate extrapolated to 0 frac-
tions of whole sea water). Grazing rate was calculated as the difference be-
tween the intercept rate and the whole seawater net growth rate.
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