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Dissipative self-assembly is the emergence of order within a system
due to the continuous input of energy. This form of nonequilibrium
self-organization allows the creation of structures that are in-
accessible in equilibrium self-assembly. However, design strategies
for dissipative self-assembly are limited by a lack of fundamental
understanding of the process. This work proposes a novel route for
dissipative self-assembly via the oscillation of interparticle poten-
tials. It is demonstrated that in the limit of fast potential oscillations
the structure of the system is exactly described by an effective
potential that is the time average of the oscillatory potential. This
effective potential depends on the shape of the oscillations and can
lead to effective interactions that are physically inaccessible in equi-
librium. As a proof of concept, Brownian dynamics simulations
were performed on a binary mixture of particles coated by weak
acids andweak bases under externally controlled oscillations of pH.
Dissipative steady-state structures were formed when the period
of the pH oscillations was smaller than the diffusional timescale of
the particles, whereas disordered oscillating structures were ob-
served for longer oscillation periods. Some of the dissipative struc-
tures (dimers, fibers, and honeycombs) cannot be obtained in
equilibrium (fixed pH) simulations for the same system of particles.
The transition from dissipative self-assembled structures for fast
oscillations to disordered oscillating structures for slow oscillations
is characterized by a maximum in the energy dissipated per oscil-
lation cycle. The generality of the concept is demonstrated in a sec-
ond system with oscillating particle sizes.
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Dissipative or dynamic self-assembly is the formation of order
due to the continuous input of energy into the system and

dissipation of energy by the system into the environment (1). If
the input of energy is stopped, dissipative structures are destroyed
as the system evolves toward equilibrium; therefore, these struc-
tures exist only far from equilibrium. Dissipative self-assembled
structures are unique due to their ability to adapt to environmental
changes. Consider, for example, a school of fish where each in-
dividual dynamically interacts with its neighbors and adjusts its
position and velocity accordingly (2). Due to its dynamical nature,
the school of fish responds as a whole when a predator threatens
one of its individuals. This complex behavior is impossible for a
static assembly. Nature excels in using dissipative structures to
minimize wasted energy. For example, a swarm of bees can change
its size and density to regulate its internal temperature, and a flock
of Canada geese reduces energy dissipation due to aerodynamic
drag by flying in a V-shaped formation (2).
Synthetic dissipative assemblies are restricted to a small num-

ber of examples, such as magnetic spinners at the air–water in-
terface (1), magnetic droplets on surperhydrophobic surfaces (3),
lanes of colloidal particles under the influence of external fields
(4, 5), clusters of active colloids (6), and swarms of self-propelled
particles (7). One reason for the scarcity of examples of synthetic
dissipative self-assembly (in comparison with equilibrium self-
assembly) is the lack of general design strategies. In equilibrium
self-assembly, there is an optimal balance of the physical and
chemical interactions in the system that dictates the formation of

ordered structures from preexisting building blocks (8–10). The
structure of these building blocks can be engineered to control
their interactions and, thus, determine the outcome of equilib-
rium self-assembly. For example, the molecular architecture of
block copolymers, which self-assemble according to the balance
between enthalpic interactions and the conformational entropy
of the chains, controls their equilibrium morphology (11). The
structure of dissipative systems, on the other hand, depends not
only on the relative strength of the physical and chemical inter-
actions among building blocks, but also on dynamical variables,
such as diffusion constants, chemical reaction rates, and time-
dependent changes of external parameters, which make the ef-
fective particle interactions time dependent.
The goal of this work is to demonstrate and analyze a novel

general strategy for dissipative self-assembly via the oscillation of
interparticle forces controlled by an external variable. We derive
the general result that for fast enough oscillations the dissipative
self-assembly follows an equilibrium-like distribution with an ef-
fective interparticle potential. These interactions are the time av-
erage of the oscillating potentials. Namely (as shown in SI Text),
the probability of a given configuration, fr⇀ig, in nonequilib-
rium steady state for a fast oscillating potential is Pneqðfr⇀igÞ∝
exp½−βhUðfr⇀igÞi� with hUðfr⇀igÞi= ð1=τÞ R τ

0 Uðfr⇀ig; tÞdt being the
average interaction potential over the period of the oscillation τ.
Whereas dissipative structures follow a Boltzmann distribution
dictated by the time-averaged potentials, these interparticle poten-
tials can be obtained only far from equilibrium. As a case study, we
performed computer simulations on a model system of positively
and negatively charged particles whose charges depend on the pH
of the solution, which is externally oscillated. In previous work on
light-switchable particles (12, 13) the time between light pulses was
larger than the characteristic equilibration timescale; thus, the
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system relaxed to its equilibrium state between pulses. In con-
trast, we are interested in the regime where the switching time of
the interparticle interactions and the characteristic timescale for
equilibration are commensurate, such that the system is always
out of equilibrium. We show that this condition is achieved in our
system when the period of the oscillation is similar to or shorter
than the diffusional timescale of the particles. In that case, the
particles form dissipative structures that cannot be obtained in a
simulation by equilibrium self-assembly at fixed pH. We charac-
terized the transition between ordered dissipative structures at
high oscillation frequencies and disordered oscillating structures
at low oscillation frequencies and showed that this transition
corresponds to a maximum of the energy dissipated per oscilla-
tion cycle. The generality of our results is also demonstrated for a
different time-dependent potential where the sizes of the particles
oscillate in time (details are shown in SI Text). Dissipative self-
assembly via the oscillation of interparticle interactions has the
potential to deliver self-assembled structures that are unavailable
close to thermodynamic equilibrium and, therefore, to open
previously unidentified routes in bottom–up nanofabrication.
The simulated systems are composed of two types of particles,

a and b, each of which represents a pH-responsive colloid (Fig.
1A). a-type and b-type particles have charges of opposite signs;
the magnitudes of these charges depend on the pH of the system.
We model the dependence of the charge of each particle type, zi
(with i = a or b) on the pH of the system with the well-known
expression for acid–base equilibrium,

zi = ± z0
1

1+ 10± ðpH−pKaÞ: [1]

For simplicity, we assume that a-type and b-type particles have
the same maximum absolute charge (z0) and the same pKa (we
used pKa = 5 in all simulations). We also neglect the effects of
the local environment on the acid–base equilibrium [i.e., charge
regulation (14, 15)], hydrodynamic interactions, the effect of the
substrate, and many-body interactions (16), because these effects
do not influence our general conclusions on dissipative self-assembly
and because implementing them in our simulations would result
in a prohibitive computational cost. Fig. 1B shows the pH depen-
dence of the charge of each particle. Particles of type a have a
negative charge –z0 at pH 7 and are uncharged at pH 3 (particle
a models, for instance, a carboxylate-coated colloid). Particles of
type b have a positive +z0 charge at pH 3 and are uncharged at
pH 7 (particle bmodels, for example, an amino- or pyridine-coated
particle). The particles in our simulations interact via the combi-
nation of a short-range repulsive potential that models excluded
volume interactions between the cores of the particles and a long-

range screened electrostatic potential (Methods). The screened
electrostatic potential is the Yukawa potential (4, 17) given by

uYuk
ij ðrÞ= zi

z0

zj
z0

C
r
e−ðr=λDÞ; [2]

where λD is the solution Debye length and C is a constant that de-
termines the strength of the electrostatic potential in the system
(Methods). We simulated the systems of particles using Brownian
dynamics (BD) in a 2D box with periodic boundary conditions
either at constant pH (i.e., static interparticle potential) or by oscil-
lating the pH between 3 and 7 with a period τ. We use dimension-
less variables: The distances are measured in units of σ (diameter
of the colloid), the energies in kBT, and the time in units of the
characteristic diffusion timescale, td = σ2/D (where D is the dif-
fusion coefficient).

Results
Dissipative Self-Assembled Structures Are Different from Equilibrium
Structures. Fig. 2 A–C shows the simulated structures of the system
after equilibration at fixed pH for pH 3, 4, and 5, respectively. For
pH 3, particles of type a are neutral and particles of type b are
positively charged. The b-type (cyan) particles attempt to form
a 2D hexagonal crystal to reduce their electrostatic repulsions. On
the other hand, neutral a-type (red) particles are distributed more
randomly than b-type particles, as they interact through short-
range repulsions only. For pH 4, particles of type a bear a charge
of −0.25 · z0 and particles of type b a charge of 0.75 · z0. This system
forms a low-order structure where b-type particles are distrib-
uted regularly (with some hexagonal order) to reduce electro-
static repulsions and are bridged by the negatively charged a-type

Fig. 1. Model system for dissipative self-assembly of pH-responsive particles.
(A) The model system is composed of equal numbers of a-type and b-type
particles: a-type particles model pH-responsive negatively charged colloids
with pKa = 5 (e.g., carboxylate-coated colloids), which have a −z0 charge at
pH 7 and zero charge at pH 3; b-type particles model pH-responsive posi-
tively charged colloids with pKa = 5 (e.g., pyridine-coated colloids), which
have a +z0 charge at pH 3 and zero charge at pH 7. (B) Charge of the colloids
as a function of pH (determined with Eq. 1).

Fig. 2. Comparison of equilibrium (fixed pH) and dissipative (oscillating pH)
simulations. (A–C) Snapshots of simulations for three different fixed pH scenar-
ios. (D) Snapshot of a simulation for the oscillatory pH scenario for a linear pH–
time program (Fig. 3 B, i). Simulation conditions: C = 1,000 kBT · σ, ρ = 0.39
particles · σ−2. a-type and b-type particles are shown in red and cyan, respectively.
Only part of the simulation box is shown. The diameter of the colloids is σ.
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particles. For pH 5, particles a and b have a charge of −0.5 and
+0.5, respectively, and, as expected (17, 18), they form square
lattice aggregates. The symmetry of the system ensures that the
pH range 5 < pH < 7 produces the same structures described for
the range 3 < pH < 5, but with the a-type and b-type particles
interchanged.
Fig. 2D shows a snapshot of a simulation where the pH was os-

cillated linearly between 3 and 7 with an oscillation period τ = 0.08
td (program shown in Fig. 3 B, i) for the same density and in-
teraction strength as in the static simulations shown in Fig. 2 A–C.
Under these conditions, the pH oscillations lead to the formation
of long fibers, that is, worm-like structures of alternating a and
b particles. As shown in Fig. 2 A–C, these fiber-like structures
cannot be obtained in equilibrium (fixed pH) simulations. There-
fore, the oscillation of interparticle potentials is a novel strategy for
dissipative self-organization, which can lead to nonequilibrium
dissipative structures that are unavailable in self-assembly through
equilibrium potentials. This strategy is not limited to 2D systems;
in Fig. S1 we show that the pH-responsive particles also form fibers
in a 3D simulation.

Morphology Diagram of Dissipative Structures. Fig. 3A shows the
different morphologies that the pH-oscillating system adopts,
depending on the strength of the screened electrostatic inter-
actions (parameter C in Eq. 2) and the surface density, ρ. These
morphologies are disordered system, dimers, fibers (the same
structure shown in Fig. 2D), honeycomb lattice, and square lat-
tice. The particles in each of these structures have a different
number of nearest neighbors: zero (disordered), one (dimers),
two (fibers), three (honeycomb), and four (square lattice). The
morphology diagrams in Fig. 3B show the stability regions in the
C–ρ plane for the different morphologies and for three different
forms of the pH oscillation and relatively fast oscillations. As
expected, increasing the surface density favors the formation of
the structures with higher number of nearest neighbors (honey-
comb and square). Varying the strength of the electrostatic in-
teractions, C, has a nonmonotonic effect on the morphology:
Increasing C favors structures with high number of neighbors
(i.e., dimers over disordered state) when the density is low, but
increases the stability of structures with a low number of crys-
talline neighbors (i.e., honeycomb morphology over the square)
when density is high. We attribute the dual role played by C to
the competition between the attraction of oppositely charged
particles and the repulsion of equally charged colloids in the
Yukawa potential. Finally, the time dependence of the pH con-
trols the region of the C–ρ plane where each morphology is stable;
for example, the stability region for fibers is much larger for the
functional form shown in Fig. 3 B, iii than for the linear pH–time
program, Fig. 3 B, i. For fixed C and ρ, therefore, the morphology
of the dissipative self-assembled structures can be tuned by simply
changing the form of the pH perturbation.
An important question is whether any of the dissipative struc-

tures shown in Fig. 3 can be obtained in a fixed pH (i.e., a static-
potential simulation). To address this question, we performed
fixed pH simulations in the pH range 3–7 (every 0.25 pH units) for
different values of ρ and C starting from a disordered state. The
square lattice morphology was always obtained when the pH was
close to 5, as is shown in Fig. 2C; however, we did not observe the
formation of dimers, fibers, and honeycomb lattices. This result
suggests that these dissipative structures cannot be produced via
equilibrium self-assembly. This conclusion is supported by pre-
viously measured and predicted phase diagrams of systems of
oppositely charged particles in the absence of external fields,
which do not contain dimers, high-aspect ratio fibers, or hon-
eycomb lattices (4, 19, 20). Note that simulations of oppositely
charged particles interacting through static Yukawa potentials
show the formation of fibers shorter than those in Fig. 2D at
early times (17). The system shown in Fig. 2D, however, is a
nonequilibrium steady state, not a transient structure on the path
to an equilibrium structure, because it was obtained after stabi-
lization of the morphological features under the continuously
oscillating potential.

Ordered Dissipative Structures Require τ < td.We turn our attention
to the effect of the period of the oscillation, τ, on the degree of
order of the dissipative structures. Fig. 4 A–C shows the structure
of the fiber morphology for different values of τ. We observe that
the order of the fibers decreases with increasing τ. To quantify
the order of each of the different dissipative morphologies, we
use the average bond-order parameter of order n (17, 21, 22), which
we define as

ψnðtÞ=
1
N

XN
j=1

ψnð j; tÞ; [3]

where N is the total number of particles in the system and ψn( j, t)
is the 2D bond-order parameter of order n for the particle j at
time t, which we calculate using

Fig. 3. Morphologies and morphology diagrams of the dissipative self-
assembled systems. (A) Snapshots of the morphologies of the system for var-
ious strengths of the Yukawa interaction, C, and the surface density of the
system, ρ, for τ = 0.08td. These snapshots have been obtained for the fol-
lowing values of C (in kBT · σ) and ρ (in particles · σ−2): C = 50, ρ = 0.39 (disor-
dered); C = 1,000, ρ = 1.0 (honeycomb lattice); C = 200, ρ = 1.0 (square lattice);
C = 1,000, ρ = 0.39 (fibers); and C = 1,000, ρ = 0.11 (dimers) and a linear pH–time
program (B, i). Only part of the simulation box is shown. The diameter of the
colloids is σ. (B) Morphology diagrams (Upper) showing the occurrence of
the different morphologies in the C–ρ plane for different forms of the pH
oscillation (Lower).

Tagliazucchi et al. PNAS | July 8, 2014 | vol. 111 | no. 27 | 9753

CH
EM

IS
TR

Y

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1406122111/-/DCSupplemental/pnas.201406122SI.pdf?targetid=nameddest=SF1


ψnð j; tÞ=
�����

1
NNð jÞ

XNNð jÞ

k=1

exp
�
nθjkðtÞi

������ for NNð jÞ≥ n

0 for NNð jÞ< n;

[4]

where i is
ffiffiffiffiffiffi
−1

p
, NN(j) is the number of nearest neighbors of

particle j determined with a cutoff distance of 1.5σ, and θjk is
the angle of the vector formed by the positions of particles j and
k and a fixed (arbitrary) axis. For each morphology, we choose
the value of n according to the particle’s natural number of
crystalline neighbors within that morphology (n = 1, 2, 3, and 4
for the dimers, fibers, honeycomb morphology, and square mor-
phology, respectively). For a given n, the order parameter ψn has
a maximum value of one for a completely ordered structure
where each particle has n equivalent crystalline neighbors and
a minimum value of zero for structures with a number of crys-
talline neighbors different from n (disordered systems produce
small, but nonzero, ψn). In Fig. S2 we show that the morphology
diagram predicted using the average bond-order parameters ψn
is in very good agreement with that obtained by visual structural
characterization of simulation snapshots. Therefore, we use ψn
to characterize the dissipative self-assembled structures in our
system. In Fig. 4E, we show a plot of ψ2ðtÞ vs. t for the formation
of fibers for different values of τ. We observe that ψ2ðtÞ decreases
for increasing τ and that for τ ≥ 0.8 td, ψ2ðtÞ displays clear oscil-
lations that are caused by the reorganization of the system during
one oscillation period.

Average Effective Potentials Describe Dissipative Structures in the
Fast-Oscillation Limit. In Fig. 4, we have shown that ordered dis-
sipative structures form for τ < td. A perturbation analysis of the
Fokker–Planck equation of the system (SI Text) shows that in the

limit of very fast oscillations (τ << td) the states of the system
follow a Boltzmann distribution with an effective interparticle po-
tential that is exactly given by the time average of the oscillating
potential over one cycle. Namely,

�
uijðrÞ

�
τ
=
1
τ

Zτ

0

uijðr; tÞdt: [5]

Fig. 4D shows that, as analytically predicted, the effective po-
tential produces the same fiber morphologies observed for fast
pH oscillations. Moreover, both simulations show overlapping
radial distribution functions (Fig. S3). The green curve in Fig. 4E
shows that the time evolution of ψ2 for a simulation using the
effective potential curve is also very similar to that obtained for
the pH-oscillating system with τ = 0.008 td. These results provide
a numerical confirmation of our proven general result for the
dissipative assemblies following a Boltzmann distribution of the
time-average potential. This effective potential cannot be obtained
as a combination of a short-range repulsion and a Yukawa po-
tential; therefore it is not a possible equilibrium potential for
our system.
Because the effective potential dictates the structure of the sys-

tem in the limit of fast oscillations, we can analyze it to explain the
structures of the dissipative assemblies. Replacing Eq. 2 into Eq. 5
provides an explicit expression for the effective interparticle po-
tential due to screened electrostatic interactions, which is given by

D
uYuk
ij ðrÞ

E
τ
=
�
zi
z0

zj
z0

	
τ

C
r
e−ðr=λDÞ: [6]

This expression shows that the effective interparticle potential
depends on hzi=z0 · zj=z0iτ (the product of the fraction of charge of
particles i and j averaged over one oscillation cycle). For a linear
variation of the pH with time (Fig. 3 B, i), hzi=z0 · zj=z0iτ is equal to
1/3 when i and j are particles of the same type or to −1/6 other-
wise. The effective electrostatic repulsions between particles of the
same kind are stronger than the effective electrostatic attractions
between particles of different type. This property of the effective
potential explains the formation of well-ordered dissipative struc-
tures with coordination numbers smaller than four (dimers, fibers,
and honeycombs). Note, as a comparison, that the fixed-pH sim-
ulation with pH 5 (Fig. 2C) produces a square lattice and has
zi=z0 · zj=z0 equal to 1/4 when i and j are of the same type and
to −1/4 when they are of different type. Moreover, the different
forms of pH oscillations yield different values of hzi=z0 · zj=z0iτ,
which explains why the form of the pH oscillation determines
the relative stability of each morphology, as shown in the mor-
phology diagrams of Fig. 3B.

Effect of the Oscillation Period on Self-Assembled Structure. To un-
derstand the role of the oscillation period on the order of the
self-assembling structures we define hψniτ as the time average of
the bond-order parameter ψnðtÞ during one oscillation period,

hψniτ =
1
τ

Zτ

0

ψnðtÞdt: [7]

Fig. 5 A–D shows hψniτ vs. τ for the different dissipative morphol-
ogies studied. The blue and red dashed lines in Fig. 5 show the
values of hψniτ expected in the limits of very fast and very slow
oscillations, respectively. In the limit of very fast oscillations
ðτ � tdÞ, we obtained hψniτ from simulations using the effective
potential discussed in the previous section. In the limit of very
slow oscillations, the structure of the system can adapt to the pH
at any given time point and, thus, we obtained hψniτ as an average

Fig. 4. Effect of the frequency of the pH oscillations on the order of dissi-
pative structures. (A–C) Snapshots of the fibers morphology for C = 1,000 kBT · σ
and ρ = 0.39 particles · σ−2 and obtained at the middle of a half-oscillation
period (i.e., an instantaneous pH 5) for different values of τ, the oscillation
period. (D) Snapshot of the fibers morphology for a simulation with a static
effective potential that is the time average of the oscillatory potential (Eq. 5)
for the same C and ρ as in A–C. In A–D, only part of the simulation box is
shown and the diameter of the colloids is σ. (E) Average bond-order pa-
rameter of order two as a function of simulation time for the formation of
the fibers morphology for different values of τ (same conditions as in A–D).
The initial state is a disordered system of particles interacting via a short-
range repulsive potential only. A linear pH–time program (Fig. 3 B, i) has been
used in these calculations.
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of the bond-order parameters of the equilibrium structures in the
pH range 3–7, determined by fixed-pH simulations.
The results in Fig. 5 show that the dimers, fibers, and honey-

comb structures display a transition from large hψniτ at small τ to
small hψniτ at large τ. The inflection point in the transition in-
dicates the critical period at which the dissipative structures
disappear, τcrit. Note that the square lattice does not show a
transition in the range of τ under study. We ascribe this behavior
to the combination of the following two factors: (i) The square
lattices are high-density structures and therefore their relaxation
times are very slow, and (ii) the square lattice is a natural equi-
librium structure of the system (Fig. 2C). The value of the critical
period depends on the morphology: τcrit ∼ 10 td for the dimers,
∼0.5 td for the fibers, and ∼td for the honeycomb. The condition
τcrit < td (where the exact limit depends on the details of the
system) is, therefore, a general requirement for the formation of
steady-state dissipative structures in potential-oscillating systems.
This rule is one of the main outcomes of the present paper as it
imposes conditions on the physical/chemical stimuli that can be
used in dissipative self-assembly via oscillatory interactions.
We estimated td as a function of colloid size (detailed calculations

are presented in Table S1): td = 3 μs for σ = 10 nm, 3 ms for σ =
100 nm, 3 s for σ = 1 μm, and 3,000 s for σ = 10 μm. Experimental
observation of dissipative self-assembly via oscillation of inter-
particle potential is limited by the experimentally achievable time-
scale of the potential perturbation (which is slower than ∼1 ms for
chemical or electrical stimuli) and the timescale of image acquisi-
tion (also slower than ∼1 ms). On the other hand, the formation of
order starting from a random system (which requires a few td in our
simulations, Fig. 4E) should be completed in less than a few hours.
Based on these considerations and the dependence of the diffu-
sional timescale on the size of the colloid, we propose that our
strategy for dissipative self-assembly can be used in the laboratory
for particles of sizes between 100 nm and 10 μm.

The Energy Dissipation per Period Has a Maximum at the Period of
the Order–Disorder Transition. We analyze in this section the de-
pendence of the rate of energy dissipation on the period of the
pH oscillation. The rate of energy dissipation is determined from
the work performed on the system, as detailed in SI Text. We
proved mathematically that the energy dissipation per period

should be zero in the asymptotic two limits of fast and slow oscil-
lations (the slow limit is not achieved in the range of oscillation
periods used in our simulations) (SI Text). The fact that the en-
ergy dissipated per period goes to zero for very fast oscillations
can be understood by recalling that the structure of the system in
this limit is equivalent to the equilibrium structure obtained with
a time-averaged effective potential. In this case, the energy ex-
changed between the system and the bath during one half of the
oscillation period (pH 3 → pH 7) cancels that exchanged on the
second half (pH 7 → pH 3) because the structure of the system is
independent of the instantaneous pH.
Fig. 5 shows that the energy dissipation per period, σd, for the

fibers and honeycomb lattices (Fig. 5 F and G) displays a maxi-
mum at a period that is similar to (although not exactly the same
as) the critical period observed for the order parameters hψniτ in
Fig. 5 B and C. This result suggests that the transition between
the ordered dissipative self-assembled state and the disordered
state is characterized by a peak in the energy dissipation per period.
In the case of the dimers, σd shows a small peak at τ ∼ 0.02 td and
a large peak is expected at τ > 100 td (note that σd should go to zero
in the low-frequency limit). The large peak is attributed to the
nonequilibrium order/disorder transition of the dimers as it occurs
in a similar timescale to the inflection point of hψ1iτ in Fig. 5A. We
attribute the small peak at τ ∼ 0.02 td to the nonequilibrium order/
disorder transition of a small population of trimers in the system
(Fig. S4). Finally, in the range of τ under study, the square mor-
phology has relatively small and constant energy dissipation per
period (Fig. 5H; note that the plots in Fig. 5 E–H are all presented
in the same energy scale), which is consistent with the observation
that this morphology is always in its ordered state (Fig. 5D).

Discussion
This work addressed for the first time to our knowledge the dissi-
pative self-assembly of particles via the oscillation of interparticle
potentials. Our two main findings are as follows: (i) Dissipative self-
assembly through the oscillation of interparticle potentials requires
the period of oscillations to be faster than the diffusional timescale
of the particles. This condition is an important design rule for any
experimental implementation of our strategy for dissipative self-
assembly. (ii) In the limit of fast oscillating potentials the dissipative
self-assembly system is equivalent to an equilibrium system with an
effective potential that corresponds to the time-averaged instan-
taneous potential. Therefore, these potentials, in general, have no
equilibrium counterpart.
Oscillation of pH by acid–base titration takes seconds and,

thus, it is restricted to colloids larger than 1 μm. Unfortunately,
electrostatic self-assembly of colloids of this size requires very
small ionic strengths and solvents with low dielectric constants
(4, 18). This condition restricts the use of acid–base titration,
which will increase continuously the salt concentration in the
system. On the other hand, photochemical (23, 24) or electro-
chemical (25) control of pH allows much faster oscillations of pH
than acid–base titration and avoids large changes in ionic strength.
Therefore, an experimental realization of our model system should
be based on one of these pH-control methods. Our strategy for
dissipative self-assembly is general. For instance, in Figs. S5–S7, we
show the existence of dissipative structures in a binary mixture of
size-changing colloids. This example of dissipative self-assembly,
based on interactions that are completely different from the screened
electrostatic interactions discussed so far, demonstrates that the
oscillation of interparticle potentials is a general strategy for dis-
sipative self-assembly. In general, we believe that this strategy is
feasible for binary mixtures of particles whose interactions can be
controlled by an external variable.
An important open question in dissipative self-assembly is

whether a variational principle exists that determines the state of
the system under nonequilibrium steady-state conditions (26).
For example, it has been proposed that nonequilibrium steady

Fig. 5. Characterization of the nonequilibrium order/disorder transition
between dissipative structures for fast oscillations and oscillating structures
for slow oscillations. (A–D) Period-averaged bond-order parameters, 〈ψn〉τ, as
a function of the period of the oscillation, τ, for dimers, fibers, honeycomb
lattice, and square lattice. The blue dashed line shows the value 〈ψn〉τ in the
limit of very fast oscillations, obtained with the effective potential, Eq. 5. The
red dashed line shows the value 〈ψn〉τ in the limit of very slow oscillations
obtained from an average of 〈ψn〉τ determined for fixed-pH simulations in
the pH range 3–7. (E–H) Energy dissipation per oscillation period (units of
kBT) as a function of the oscillation period for the different morphologies.
The values of C and ρ for each morphology are the same used for the
snapshots in Fig. 3. Error bars show 1 SD from the average result of four
independent simulations. A linear pH–time program (Fig. 3 B, i) has been
used in these calculations.
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states occur with a probability that depends on their rate of energy
dissipation (27). In the particular case of self-assembly through
oscillation of interparticle potentials, we found that the structure
of the system in the limit of fast oscillations is ruled by the fol-
lowing variational principles: (i) The dissipative structures in the
high-frequency limit follow a Boltzmann distribution of states as-
sociated with a time-averaged (effective) potential, and (ii) the
energy dissipated per period in the high-frequency limit is zero.
The second principle is derived from the first one (SI Text) and,
therefore, these two principles are probably equivalent. Further
work should be devoted to search for similar variational principles
in the whole range of oscillation frequencies.
We have theoretically proved that, in the limit of fast oscillations,

the distribution of dissipative self-assembling states produced by
oscillatory potentials is exactly equivalent to that created by time-
averaged effective potentials that have no equilibrium counter-
parts. Therefore, our work shows, to our knowledge, the first ex-
ample of a system where the outcome of dissipative self-assembly
can be predicted and analyzed in terms of equilibrium self-assembly.
Simulations showed that the effective potentials describe the
structure of the system only when the oscillation period is smaller
than the diffusional timescale of the particles, which makes our
self-organization strategy well suited to experimentally assemble
micrometer-size colloids. The effective potentials can be engineered
by controlling the temporal evolution of the interparticle forces,
which opens an avenue to dynamically tune the self-assembled
structures and design tailor-made interactions. We believe that
dissipative self-assembly through time-oscillating interactions will
emerge as an important form of self-organization, which may
outcompete equilibrium self-assembly in terms of morphology
control and dynamical responsiveness.

Methods
We study a system of particles interacting through a combination of a purely
repulsive Lennard-Jones potential (Eq. 8) and a screened electrostatic

potential [specifically, the Yukawa potential (4, 17)] (Eq. 2), which are cut off
and shifted according to Eq. 9:

urep
ij ðrÞ=


σ
r

�12
[8]

uijðrÞ= urep
ij ðrÞ+uYuk

ij ðrÞ−
h
urep
ij

�
rcutoff

�
+uYuk

ij

�
rcutoff

�i
for r < rcutoff

0 for r ≥ rcutoff:
[9]

In the Yukawa potential, Eq. 2, the constant C determines the strength of the
electrostatic potential in the system and is given by

C =
4z20e

σ=λD λB

ð2+ σ=λDÞ2
, [10]

where λB is the Bjerrum length of the solvent. We used a Debye length of λD
−1 =

1.5σ in all calculations, based on previous theoretical (17) and experimental (18)
reports that show that crystalline order in a system of particles interacting
through a Yukawa potential requires λD

−1 > 0.5σ and increases with increasing
λD

−1. We used a cutoff radius of the interaction (rcutoff) of 8σ, which ensures
urep
ij ðrcutoffÞ+uYuk

ij ðrcutoffÞ < 0.05 kBT for all conditions studied.
We studied the systemof pH-responsive particles, using BD simulationswith

a home-developed parallel code. In BD, the solvent is considered implicitly by
adding a random force and a drag force to the equation of motion of the
particles. These forces model the random collisions and the friction between
the solventmolecules and the particles, respectively. In the equation ofmotion
the inertial term is neglectedwith respect to the drag and random forces, as the
characteristic inertial timescale is much smaller than the diffusional timescale
(28). We simulated a 2D system of 1,250 a-type particles and 1,250 b-type
particles with a total surface density of ρ in a square simulation box with
periodic boundary conditions, using a simulation time step of 10−6 td.
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