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Abstract

We examined developmental and individual differences in 6th and 8th graders’ fraction arithmetic

and overall mathematics achievement and related them to differences in understanding of fraction

magnitudes, whole number division, executive functioning, and metacognitive judgments within a

cross sectional design. Results indicated that the difference between low achieving and higher

achieving children’s fraction arithmetic knowledge, already substantial in 6th grade, was much

greater in 8th grade. The fraction arithmetic knowledge of low achieving children was similar in

the two grades, whereas higher achieving children showed much greater knowledge in 8th than 6th

grade, despite both groups having been in the same classrooms, using the same textbooks, and

having the same teachers and classmates. Individual differences in both fraction arithmetic and

mathematics achievement test scores were predicted by differences in fraction magnitude

knowledge and whole number division, even after the contributions of reading achievement and

executive functioning were statistically controlled. Instructional implications of the findings are

discussed.
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Research on numerical development has focused on the development of whole numbers.

This knowledge is obviously important, but numerical development also involves

understanding of other types of numbers, such as fractions. Fractions are crucial not only

because they express values that cannot be expressed with whole numbers but also because

they provide most children’s first opportunity to learn that many properties of whole

numbers are not properties of numbers in general. All whole numbers can be represented by

a single numeral, have unique successors, never decrease with multiplication, never increase

with division, and so on. None of these properties, however, is true of fractions or of

numbers in general. Instead, the only property that all real numbers have in common is that

they have magnitudes that can be located and ordered on number lines.
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Current Understanding of the Development of Fraction Knowledge

Many children have great difficulty acquiring fraction knowledge. Although children receive

substantial fraction instruction beginning in 3rd or 4th grade (National Council of Teachers

of Mathematics (NCTM), 2006), a recent National Assessment of Educational Progress

revealed that 50% of 8th graders could not correctly order three fractions (2/7, 1/12, and 5/9)

from least to greatest. The difficulty continues in high school and college; for example, on

another NAEP item, fewer than 30% of 11th graders translated .029 into the correct fraction

(Kloosterman, 2010). The pattern is longitudinally stable; children who have early

difficulties with fractions tend to have later difficulties as well (Hecht & Vagi, 2010;

Mazzocco & Devlin, 2008).

Failure to master fractions has large consequences. It impedes acquisition of more advanced

mathematics and precludes participation in many occupations (McCloskey, 2007; National

Mathematics Advisory Panel (NMAP), 2008). A nationally representative sample of 1,000

U.S. Algebra 1 teachers rated fractions as one of the two largest weaknesses in students’

preparation for their course (National Opinion Research Center (NORC), 2007). Consistent

with these informed opinions, analyses of two large, longitudinal data sets, one from the

U.S. and one from the UK, indicated that fifth graders’ knowledge of fractions uniquely

predicted those students’ knowledge of algebra and overall mathematics achievement in

high school 5–6 years later, even after statistically controlling for other types of

mathematical knowledge, verbal and non-verbal IQ, reading comprehension, working

memory, and family income and education (Siegler et al., 2012).

Understanding fractions requires not only knowledge of procedures for solving fraction

arithmetic problems but considerable conceptual knowledge as well. Conceptual knowledge

of fractions involves knowing what fractions are: that they are numbers that stretch from

negative to positive infinity; that between any two fractions are an infinite number of other

fractions; that the numerator-denominator relation, rather than either number alone,

determines fraction magnitudes; that fraction magnitudes increase with numerator size and

decrease with denominator size; that fractions can be represented as points on number lines;

and so on.

Understanding magnitudes appears to be a particularly important aspect of conceptual

understanding of fractions. Several measures of fraction magnitude representations,

including number line estimation, magnitude comparison, and ordering of multiple fractions,

correlate highly with knowledge of fraction arithmetic and overall mathematics achievement

from 5th to 8th grade (Bailey, Hoard, Nugent, & Geary, 2012; Mazzocco & Devlin, 2008;

Siegler, Thompson, & Schneider, 2011). This relation between fraction magnitude

knowledge and overall math achievement remains strongly present even when fraction

arithmetic competence is statistically controlled.

Acquiring conceptual and procedural knowledge of fractions poses several serious

challenges. One challenge in acquiring conceptual knowledge is that children’s massive

prior experience with integers leads to a whole number bias, in which properties of positive

integers are assumed to extend to fractions (Ni & Zhou, 2005). For example, even high
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school students often claim that there are no numbers between fractions such as 5/7 and 6/7

(as there are no integers between 5 and 6), and that multiplication cannot yield products

smaller than both multiplicands (Vamvakoussi & Vosniadou, 2004).

Acquiring procedural knowledge of fraction arithmetic poses different difficulties.

Components of different fraction arithmetic procedures are complexly related. Addition and

subtraction of fractions require common denominators, but multiplication and division of

fractions do not. Fraction multiplication problems can be solved by applying the arithmetic

operation independently to the numerators and to the denominators, but fraction addition and

subtraction problems cannot be solved in this way. In fraction division, but in no other

operation, answers can be obtained through the invert and multiply procedure.

This analysis suggests that conceptual and procedural knowledge of fractions should be

related, because without conceptual understanding, the procedures are highly confusable and

difficult to remember. Consistent with this reasoning, conceptual and procedural knowledge

of fractions correlate substantially over a wide age range (Hecht, 1998; Hecht, Close, &

Santisi, 2003; Hecht & Vagi, 2010; Siegler, et al., 2011).

Goals of the Present Study

Describing Fraction Development among Lower and Higher Achieving Children

The present study was designed to provide a more nuanced description of developmental

and individual differences in fraction arithmetic knowledge than currently available. To

pursue this goal, we investigated differences between 6th and 8th graders in conceptual and

procedural knowledge of fractions among low achieving (LA) and higher achieving (HA)

children. We examined three tasks to assess conceptual knowledge of fractions (magnitude

comparison and 0–1 and 0–5 number line estimation), five aspects of fraction arithmetic

(accuracy, strategy use, strategy variability, confidence, and calculation errors), and two

types of processes that seemed likely to underlie fraction proficiency (whole number

division and executive functioning).

This design allowed comparison of HA and LA children on all of the measures, as well as

comparing the types of errors made by the two groups, which have been found to vary in

previous studies (Mazzocco & Devlin, 2008). Of special interest was whether increases in

fraction knowledge between 6th and 8th grade would differ for HA and LA children.

One plausible position was that low achieving children generally benefit less from

instruction than typically achieving children (Fuchs et al., 2005); they might be expected to

make less progress in this domain too. Consistent with this argument, Hecht and Vagi

(2010) and Mazzocco and Devlin (2008) found poorer fraction learning among LA than HA

children between4th and 5th grade, and 7th and 8th grade, respectively. The LA and HA

children in our sample were drawn from the same classrooms; thus, they were exposed to

the same teachers, classmates, and textbooks and to very similar instruction. However, this

does not imply that their learning was similar.

Another logic yielded the opposite prediction. Having learned less from initial instruction in

fractions, LA children would have more to learn later. Such patterns of change have been
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observed at times with whole number procedures (Chong & Siegel, 2008). Instruction

during middle school might help LA children catch up to classmates whose fraction

understanding was already relatively good.

A third possibility was that patterns for conceptual and procedural knowledge would differ

in ways partially consistent with both of the other hypotheses. Conceptual knowledge of

fractions is usually taught before fraction arithmetic (National Council of Teachers of

Mathematics (NCTM), 2006). If HA children leave elementary school with greater

conceptual understanding of fractions, they might make greater strides in learning fraction

arithmetic during middle school. In contrast, LA children might make as great or greater

progress in conceptual understanding during middle school, due to their having more to

learn in that area, but their arithmetic learning might be poorer, due to their not initially

possessing adequate conceptual understanding to understand the arithmetic procedures. The

present design allowed us to determine which of these scenarios most accurately described

changes in fraction knowledge during middle school

Identifying Sources of Individual Differences in Fraction Knowledge

A second goal of the study was to examine the contributions of four potential sources of

individual differences in fraction knowledge: weak executive functioning, inadequate

understanding of whole number division, limited knowledge of fraction magnitudes, and

inaccurate metacognitive assessments of one’s fraction arithmetic knowledge.

Contributions of executive functioning—Executive functioning, which involves

control of working memory and attention, was one likely contributor to individual

differences in fraction arithmetic and mathematics achievement. Inhibition and updating,

two processes identified as central to executive functioning by Miyake et al. (2000), have

been found to be related to whole number arithmetic; moreover, children with LA tend to

exhibit executive functioning deficits relative to typically achieving peers (Bull & Scerif,

2001; Mazzocco & Kover, 2007; Passolunghi & Pazzaglia, 2004, 2005; Swanson & Beebe-

Frankenberger, 2004).

Although most research relating executive functioning to math knowledge has been done

with whole numbers, executive functioning might be at least as strongly related to fraction

knowledge. Conceptual knowledge of fractions requires inhibiting the tendency to view

fractions as two independent whole numbers and instead focusing on the relation between

numerator and denominator. Procedural knowledge of fractions requires frequent updating

of working memory to keep track of completed and yet to-be-completed sub-goals and

procedures (mentally add 2/3 + 4/5 to get a sense of the demands of fractions arithmetic on

updating).

Contributions of fraction magnitude knowledge—Logically, fraction magnitude

knowledge could be unrelated to fraction arithmetic. Children could learn such procedures

through rote memorization, without reference to the numerical magnitudes that the fractions

represent. However, consistent relations have emerged, probably for several reasons.

Fraction magnitude knowledge allows children to check the plausibility of their answers and

to reject procedures that generate implausible answers (Hiebert & LeFevre, 1986).
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Magnitude knowledge also might inhibit use of flawed arithmetic procedures that treat

numerators and denominators as independent whole numbers, rather than as parts of a single

magnitude that can be combined with another magnitude. A third reason involves

motivation. Without knowledge of fraction magnitudes, fraction arithmetic, pre-algebra

equation solving, and other aspects of middle school mathematics become arbitrary

procedures that generate meaningless outcomes. When material is meaningless, people have

little motivation to learn it (Reyna, Chapman, Dougherty, & Confrey, 2011). For example,

without understanding what 1/3 means, there is no particular reason why on 1/3X = Y, X

must be larger than Y. As this example illustrates, fraction knowledge is necessary for

subsequent mathematics, including pre-algebra and algebra, to make sense. Thus, fraction

magnitude knowledge was expected to be related to overall math achievement as well as to

fraction arithmetic, even after other aspects of intellectual functioning and mathematical

knowledge were statistically controlled.

Contributions of whole number division—From one perspective, the relation of

whole number division to fractions is obvious. Any fraction can be viewed as a division

problem (N/M); in this sense, fractions are division. However, this logical relation does not

imply that the two are closely related psychologically. Indeed, knowledge of whole number

division and of fractions in 5th grade independently predicted the children’s mathematics

achievement in 10th grade; neither predictive relation explained the other (Siegler, et al.,

2012).

Whole number division might be important for understanding fractions for several reasons.

Alone among whole number operations, division often yields fractional answers (e.g., 14 ÷ 3

= 4 2/3). Experience with whole number division also could provide knowledge of the

magnitude of some fractions (e.g., 8/2) and a rough sense of the magnitudes of others (e.g.,

10/3 is between 3 and 4). In contrast, whole number addition, subtraction, and multiplication

never yield fraction answers and thus do not present opportunities to learn about them.

Contributions of metacognition—A fourth potential source of individual differences

involves assessments of one’s own knowledge. Inadequate metacognitive knowledge might

produce either overconfidence in arithmetic answers across the board or lack of differences

in confidence in correct and incorrect answers. If children are confident that incorrect

procedures and the answers they yield are correct, they might not check their work or

consider whether the answers are plausible (Mazzocco, 2007).

Previous findings indicate that children who are more accurate on a given math task tend to

be more confident in the correctness of their answers, and that typically achieving children

are more confident in their answers than children with math difficulties (Desoete, Roeyers,

& Buysse, 2001; Garrett, Mazzocco, & Baker, 2006; Luncangeli & Cornoldi, 1997).

However, the children in the current study were considerably older than those in most

previous studies (middle school vs. early elementary school). At these older ages, both high

and low achieving children might accurately evaluate the correctness of their answers.

Thus, the main purposes of the present study were to describe the development of fraction

knowledge during middle school among low achieving and higher achieving children and to
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test four potential sources of individual differences in fraction arithmetic and overall math

achievement: knowledge of fraction magnitudes, knowledge of whole number division,

executive functioning, and metacognitive awareness of one’s own fraction competence.

Method

Participants

Participants were 60 6th graders (M CA = 12.04 years, SD = 0.61; 50% girls; 68%

Caucasian, 25% African American, 2% Asian, 5% Biracial) and 60 8th graders (M CA =

14.08 years, SD = 0.49; 53% girls; 67% Caucasian, 30% African American, 2% Asian, 1%

Biracial) recruited from three low-income public school districts near Pittsburgh, PA. All

students who returned consent forms were included in the study. Testing was done by two

female research associates and the second author (one Asian, two Caucasians).

The math section of the previous year’s Pennsylvania System of School Assessments

(PSSA), the standardized achievement test used in Pennsylvania, provided a measure of

overall mathematics knowledge. Children whose scores were in the bottom 35% were

classified as low achieving (LA,) and those in the top 65% were classified as high achieving

(HA). This threshold has been used to good effect in previous studies (Hanich, Jordan,

Kaplan, & Dick, 2001; Jordan, Hanich, & Kaplan, 2003). PSSA results for 8 children were

unavailable because they had transferred from another state or because their parents did not

release their scores. Among children whose scores were known, 33% (15 6th graders, and 22

8th graders) were LA. Test scores of 6th and 8th graders were comparable: for HA students,

means = 66th and 67th percentiles, p =.916; for LA students, means = 18th and 17th

percentiles, p =.894.

Tasks

Number line estimation—On the 0–1 task, children were presented number lines on a

computer screen, each with 0 at the left end, 1 at the right, and the fraction to be estimated

above the line. Children responded by moving the cursor to the position on the line that they

thought corresponded to the number being estimated and clicking the track pad. Then, a new

number line with a different fraction appeared, and the process repeated. To acquaint

children with the track pad, the experimenter asked them to first locate the practice fraction

1/4.

After the practice trial, children estimated the positions of the 10 fractions that provided the

experimental data: from smallest to largest, 1/19, 2/13, 1/5, 1/3, 3/7, 7/12, 5/8, 3/4, 7/8, and

13/14. Two of these fractions were drawn from each fifth of the number line. Here as on all

experimental tasks, presentation order of items was random, and no feedback was provided.

The 0–5 number line task was identical, except that the right endpoint was labeled “5,” the

practice fraction was 7/2, and the 10 fractions to be estimated were 1/5, 7/8, 11/7, 9/5, 13/6,

7/3, 13/4, 10/3, 9/2, and 19/4.

Magnitude comparison—Children were asked to compare 3/5 to a series of other

fractions shown one at a time in random order on a computer screen: 2/7, 1/3, 5/11, 4/7, 2/3,
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3/4, 7/9, and 5/6. The task was to press the “a” key if the fraction was smaller than 3/5 and

to press the “l” key if the fraction was larger than 3/5.

Fraction arithmetic—Children were presented 16 problems, 4 for each of the 4 arithmetic

operations, one at a time on a computer screen. For each operation, the four problems

combined the operand 3/5 with 1/5, 1/4, 2/3, and 4/5. Thus, half of the problems for each

operation had operands with equal denominators (e.g., 3/5 + 1/5; 4/5 + 3/5) and half had

operands with unequal denominators (e.g., 3/5 + 1/4; 3/5 + 2/3). For subtraction and division

problems, the larger operand was always listed first. On each item, children received a sheet

of paper that stated the problem at the top and afforded ample space for paper-and-pencil

calculations. After generating an answer, children were asked to rate their confidence in it

on a 5-point scale (1=not confident at all, 5=extremely confident) and then to describe how

they solved the problem. These explanations were audio recorded for later coding.

Whole number division—Children were presented three whole number division

problems: 56 ÷ 8, 306 ÷ 9, and 91÷ 4. Pencil and paper for calculations were provided. For

the two problems with whole number quotients, children received 1 point for being correct;

for the problem whose quotient included a fraction, children received 1 point for a

completely correct answer (e.g., 22.75 or 22 ¾), 0.75 point for an answer with a correct

remainder (e.g., 22, R 3), and 0.5 point for answers where only the whole number was

correct (e.g., 22 or 22.3).

Standardized math and reading achievement tests—We obtained children’s scores

from the PSSA mathematics and reading sections given toward the end of 5th and 7th grades,

about half a year before the study began. The PSSA math section examined a range of skills,

including knowledge of whole number and fraction arithmetic; probability and statistics;

interpretation of tables, graphs, and figures; pre-algebra; geometry; and series extrapolation.

The PSSA reading section examined vocabulary, general comprehension, and inferential

reasoning skills. For example, children read about a baker who argued that a man enjoying

smells from his shop should have to pay for the pleasure; the children then were asked if the

baker lacks: A. talent, B. popularity, C. success, or D. generosity.

Executive function—Children were presented two EF tasks adapted from Miyake, et al.

(2000), one measuring updating of working memory and one measuring inhibition.

Working memory updating—Letters were presented one at a time on a computer screen

for 2750 ms each. The task was to recall, in order, the three most recently presented letters

when “???” appeared on the screen. For example, after seeing “Q, D, X, R, M, ???”, the

child was to respond “XRM.” Children were encouraged to rehearse aloud the three most

recent letters as each new letter appeared. This task required updating one’s memory by

adding the most recently presented letter and dropping the 4th most recently presented. After

three practice items, children performed nine trials on which five, seven, or nine letters

appeared before the recall request. The nine trials included three of each length, and were

ordered randomly. The dependent measure was percent recall of the 27 letters from the nine

trials.
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Inhibition—A fixation cross was presented at the center of the computer screen for a

period varying from 1500 to 3500 ms. A black square (0.4 degrees wide) then appeared for

200 ms on a randomly determined side of the screen. Next, a target letter appeared, either in

the square’s previous location (pro-saccade trials) or on the opposite side of the screen (anti-

saccade trials); the task was to identify the letter. Because the letter was present for only 150

ms before being masked by a gray square, initially looking toward the wrong side generally

ruled out correct letter identification.

Participants first completed 26 practice trials: 18 pro-saccade trials followed by 8 anti-

saccade trials. Then they completed the 36 anti-saccade trials that provided the experimental

data. These anti-saccade trials were the trials of interest, because they required participants

to inhibit the inclination to first look toward the cue that appeared in their periphery (the

black square) and instead to attend to the opposite side of the screen. The dependent

measure was the percent of anti-saccade target trials on which children correctly identified

the letter.

Design and Procedure

Children were tested individually in a quiet room in their school and completed all tasks on

a laptop computer during a single 45-minute session. Both the items within each

mathematics task and the tasks themselves were ordered randomly. The two executive

function tasks (updating and inhibition) were presented in random order following the math

tasks.

Results

We describe, in order, findings on development of fraction magnitude representations

(number line and magnitude comparison tasks), fraction arithmetic, whole number division,

executive functioning, and predictors of individual differences in fraction arithmetic and

overall math achievement. Pairwise comparisons using the Bonferroni correction were used

to interpret statistical interactions. Mauchly’s test indicated that the assumption of sphericity

was violated in a few cases; when that occurred, Greenhouse-Geisser corrections to the

degrees of freedom were used. Performance of the eight children whose PSSA scores were

unavailable was excluded from all analyses that included LA/HA status as a variable.

Fraction Magnitude Tasks

Number line estimation—Accuracy of number line estimation was indexed by percent

absolute error (PAE), defined as:

PAE = (|Child’s Answer – Correct Answer|) / Numerical Range * 100%

For example, if a child was asked to locate 9/2 on a 0–5 number line, and the child marked

the location corresponding to 7/2, the PAE would be 20% ((ú3.5 – 4.5ú) / 5 * 100%). PAE is

an index of error; the higher the PAE, the less accurate the estimate.

A 2 (grade: 6th or 8th) X 2 (achievement status: HA or LA) X 2 (number line: 0–1 or 0–5)

ANOVA revealed that 8th graders’ estimates were more accurate than those of 6th graders

(PAEs = 17% and 22%), F(1, 108) = 7.31, p = .008, ηp
2 = .06; HA students’ estimates were
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more accurate than those of LA students (PAEs = 13% and 26%), F(1,108) = 63.62, p < .

001, ηp
2 = .37; and estimates were more accurate on 0–1 than 0–5 number lines (PAEs =

16% and 23%), F(1,108) = 23.17, p < .001, ηp
2 = .18. No interactions were significant.

Magnitude comparison—A grade X achievement status ANOVA indicated that

comparison accuracy increased marginally from 6th to 8th grade (69% vs. 75% correct), F

(1,108) = 3.17, p = .078, ηp
2 = .03, and was higher among HA than LA students (81% vs.

63%), F (1,108) =24.05, p < .001, ηp
2 = .18. In both grades, the greater the distance of the

comparison fraction from 3/5, the greater the number of correct comparisons: r (6) = .73, p

= .039 for 6th graders, and r (6) = .66, p =.076 for 8th graders.

Fraction Arithmetic

To obtain a nuanced understanding of fraction arithmetic development, we examined

accuracy, strategy use, strategic variability, calculation errors, and confidence ratings.

Accuracy—A 2 (grade) X 2 (achievement status) X 4 (arithmetic operation) X 2

(denominator: equal or unequal) ANOVA on number of correct answers yielded main

effects for all four variables: grade (41% correct for 6th graders vs. 57% for 8th graders),

F(1,108) = 15.57, p <.001, ηp
2 =.13; achievement status (36% correct for LA students vs.

61% for HA students), F(1,108) = 37.97, p <.001, ηp
2 =.26; arithmetic operation (60%

correct for addition, 68% for subtraction, 48% for multiplication and 20% for division),

F(1.93, 208.3) = 45.82, p <.001, ηp
2 =.30; and denominator equality (55% correct for

problems with equal denominators vs. 43% for those with unequal ones), F(1,108) = 48.87,

p <.001, ηp
2 =.31. Interactions were present for grade X achievement status, F(1,108) =

4.24, p =.042, ηp
2 =.04; achievement status X arithmetic operation, F(1.93, 208.3) = 8.89, p

<.001, ηp
2 =.08; achievement status X denominator equality, F(1,108) = 34.34, p < .001, ηp

2

=.24; denominator equality X arithmetic operation, F(2.13, 230.0) = 39.15, p <.001, ηp
2 =.

27; and among arithmetic operation, denominator equality, and achievement status, F(2.13,

230.0) = 5.85, p =.003, ηp
2 =.05.

The three-way interaction and several of the two-way interactions reflected differences

between HA and LA children in the effects of denominator equality on the four arithmetic

operations (Table 1). Among HA children, accuracy was higher on equal than on unequal

denominator problems for addition (87% correct on equal vs. 74% on unequal denominator

problems, p = .013), subtraction (91% vs. 77%, p = .002), and division problems (36% vs.

27%, p = .002). In contrast, HA children’s multiplication accuracy was lower on equal than

on unequal denominator problems (34% vs. 61%, p < .001). This difference reflected

children often extending equal denominators in the operands to the answer (e.g., 1/5 × 3/5 =

3/5), an approach that was correct for addition and subtraction but incorrect for

multiplication.

LA children exhibited effects of denominator equality that were similar but much larger than

those of their HA peers for both addition (63% correct on equal denominators problems vs.

12%, on unequal denominator ones, p <.001) and subtraction (75% vs. 28%, p <.001). For

multiplication, the effect of denominator equality was somewhat smaller among children
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with LA than among their HA peers, but in the same direction (40% on equal vs. 55% on

unequal, p = .050). For division, the accuracy of children with LA was low regardless of

whether denominators were equal or unequal (12% and 6% correct, p = .114).

The forest and the trees—It is easy to get lost in the details of these data and to miss the

most striking finding: the differing pattern of change during middle school in fraction

arithmetic knowledge of HA and LA children. As shown in Table 2, increases in percent

correct between 6th and 8th grade were greater for HA than LA children on all eight types of

fractions arithmetic problems. HA children’s accuracy was significantly higher among 8th

than 6th graders on 6 of the 8 types of problems, compared to 0 of 8 for LA children. The

LA children were already less accurate as 6th graders, but the gap between their and the HA

children’s accuracy widened considerably between 6th and 8th grade.

Strategies—Children’s fraction arithmetic strategies fell into four categories. Correct

strategies (54% of trials) were generally the standard fraction arithmetic algorithms.

Independent whole numbers strategies (14%) involved performing the arithmetic operation

on numerators and denominators separately, as if they were unrelated whole numbers (e.g.,

3/5 + 1/4 = 4/9). Wrong fraction operation strategies (26%) involved importing components

of procedures that are correct for another fraction arithmetic operation but inappropriate for

the requested operation (e.g., leaving a common denominator unchanged on a multiplication

problem, as in 3/5 × 4/5 = 12/5). Finally, the None/Other classification (7%) included trials

on which children used idiosyncratic strategies (e.g., inverting the wrong fraction on a

division problem) or refused to try any approach.

The analysis of frequency of correct strategies yielded highly similar results to the analysis

of frequency of correct answers, despite correct strategies yielding incorrect answers on 9%

of trials, usually because of whole number arithmetic errors (e.g., 5 × 3 = 20). Therefore, we

only report analyses of frequencies of the two common incorrect strategies.

Independent whole numbers strategy—Treating numerators and denominators as

independent whole numbers leads to incorrect answers for addition and subtraction, and to

unnecessarily complex answers for division. We excluded multiplication from analyses of

this strategy, due to it and the correct strategy being identical.

A grade X achievement status X arithmetic operation X denominator equality ANOVA

indicated that the independent whole numbers strategy was more frequent among 6th than

8th graders (25% vs. 16%), F(1, 108) = 3.09, p = .082, ηp
2 = .03; among LA than HA

children (32% vs. 10%), F(1, 108) = 17.66, p < .001, ηp
2 = .14; on addition than on

subtraction or division problems (26%, 20%, and 15%, respectively), F(1.79, 193.4) =

10.37, p < .001, ηp
2 = .09; and on problems with unequal than equal denominators (25% vs.

16%), F(1, 108) = 16.58, p < .001, ηp
2 = .13.

These effects were qualified by interactions between arithmetic operation and denominator

equality, F(1.74, 188.1) = 11.48, p < .001, ηp
2 = .10; between arithmetic operation and

achievement status, F(1.79, 193.4) = 9.49, p < .001, ηp
2 = .08; and among arithmetic

operation, denominator equality, and achievement status, F(1.74, 188.1) = 4.04, p = .024,
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ηp
2 = .04. The three-way interaction and one two-way interaction reflected differing strategy

use by HA and LA children. Among HA children, use of the independent whole numbers

strategy was comparable for equal and unequal denominator problems for addition (10% and

12%, p =.643), subtraction (6% and 10%, p =.209), and division (12% and 8%, p =.306).

Among LA students, the same was true for division (20% and 21%, p = .735), but these

children used the independent whole numbers strategy twice as often on problems with

unequal as equal denominators for addition (55% vs. 28%, p < .001) and subtraction (45%

vs. 21%, p < .001). This suggests that LA children sometimes used the whole number

strategy because they did not know how to generate a common denominator, rather than

because they thought it was correct.

Wrong fraction operation strategies—Children often applied components of

procedures that were correct for another fraction arithmetic operation but incorrect for the

operation specified in the problem. A grade X achievement status X arithmetic operation X

denominator equality ANOVA indicated that such wrong fraction operation strategies were

more common among 6th than 8th graders (30% vs. 22% of problems), F(1, 108) = 5.31, p

= .023, ηp
2 = .05, and much more common on division and multiplication than on addition

and subtraction problems (55%, 46%, 1%, and 1%, respectively), F(1.77, 190.0) = 130.98, p

<.001, ηp
2 = .55. The disproportionate frequency of these errors on multiplication and

division problems seems attributable to children transferring components of earlier learned

fraction arithmetic operations (addition and subtraction) to later learned ones.

Interactions were present for achievement status and grade, F(1, 108) = 5.55, p = .020, ηp
2

= .05, achievement status and arithmetic operation, F(1.77, 191.0) = 3.30, p = .045, ηp
2 = .

03, and achievement status, grade, and arithmetic operation, F(1.77, 191.0) = 5.12, p = .009,

ηp
2 = .05. The three-way interaction reflected different patterns of differences between 6th

and 8th grade for HA and LA children. Among HA children, wrong fraction operation

strategies were more common in 6th than 8th grade on multiplication and division problems

(65% to 34% and 65% to 29%, p’s < .001). Similar decreases on addition and subtraction

were impossible, because wrong fractions operation strategies were already uncommon in

6th grade (0% and 3%). In contrast, among LA children, use of the strategy was comparable

for 6th and 8th graders for multiplication (47% and 40%, p =.596) and division (57% and

68%, p =.385). As with HA children, wrong operation errors were already rare in 6th grade

(3% and 1%), so no decrease was possible. Thus, another way that the arithmetic

performance of HA children improved between 6th and 8th grade, and that of LA children

did not, was in reduction of use of wrong fraction operation errors for multiplication and

division.

Variability of fraction arithmetic strategies—Highly consistent strategy use might

have been expected within the pairs of virtually identical problems (e.g., multiplication

problems with common denominators, such as 3/5 * 1/5 and 3/5 * 4/5). However, most

participants used different strategies on at least one pair of highly similar problems. This

variability was present among a greater percentage of LA than HA children, 79% vs. 51%,

F(1,108) = 7.94, p =.006, ηp
2 = .07. LA children also generated a greater number of pairs of
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trials that showed such strategic variability (21% for LA and 11% for HA children),

F(1,108) = 13.10, p < .001, ηp
2 = .11.

This variability often did not reflect children lacking knowledge of the correct strategy and

therefore vacillating between different incorrect strategies. Children used one correct and

one incorrect strategy on 65% of the inconsistent pairs of trials (67% for HA children, 64%

for LA children, n. s.).

Calculation errors during fraction arithmetic strategies—Incorrect answers

sometimes resulted from whole number fact errors, such as writing “5 × 3 = 20.” A grade X

achievement status ANOVA indicated that 6th graders made more such errors than 8th

graders (25% vs. 16%), F(1,108) = 9.76, p =.002, ηp
2 =.08, and that LA children made more

of them than did HA children (28% vs. 13% of trials), F(1,108) = 28.60, p <.001, ηp
2 =.21.

Confidence in fraction arithmetic answers—A grade X achievement status X

arithmetic operation X denominator equality ANOVA indicated that confidence in the

correctness of answers was greater among HA than LA children (means of 4.1 vs. 3.4 on the

1–5 rating scale), F(1, 108) = 20.17, p < .001, ηp
2 = .16; on addition than subtraction,

subtraction than multiplication, and multiplication than division problems (means = 4.2, 3.9,

3.7 and 3.1, respectively), F(2.23, 240.7) = 75.56, p < .001, ηp
2 = .41; and on problems with

equal than unequal denominators (3.8 vs. 3.6), F(1, 108) = 19.63, p < .001, ηp
2 = .15.

Denominator equality and arithmetic operation interacted, F(3, 324) = 20.20, p < .001, ηp
2

= .16. Confidence was higher on equal than unequal denominator problems for addition (4.4

vs. 4.1, p < .001), subtraction (4.1 vs. 3.7, p < .001), and division (3.3 vs. 2.9, p < .001), but

lower on equal than unequal denominator multiplication problems (3.6 vs. 3.8, p = .002).

This interaction for confidence ratings paralleled the one for accuracy; just as children erred

more often when multiplication problems had equal denominators, they were also less

confident in their answers on such problems. A three-way interaction of denominator

equality, arithmetic operation, and grade was also present, F(3, 324) = 4.19, p=.006, ηp
2 = .

04, though the reasons for it were unclear.

Among the 92% of children who generated at least one correct and one incorrect answer on

the 16 arithmetic problems, a within-subjects analysis revealed that children were more

confident in their correct than incorrect answers (mean confidence rating = 4.2 vs. 3.5),

F(1,109) = 126.61, p < .001, ηp
2 = .54. Mean confidence in correct versus incorrect answers

was higher among most children (79%-87%) in all four grade X achievement status groups.

Whole Number Division

A grade X achievement status ANOVA revealed that HA students were much more accurate

than students with LA at whole number division (89% vs. 53% correct), F(1,108) = 43.26, p

<.001, ηp
2 =.29. No other effects were significant (Fs ≤ 1).

Executive Functioning

A grade X achievement status ANOVA indicated higher memory updating scores for HA

than LA children (78% vs. 69% correct), F(1,108) = 8.54, p =.004, ηp
2 =.07. A grade X
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achievement status interaction, F(1,108) = 5.26, p =.024, ηp
2 =.05, reflected higher updating

scores among 8th than 6th grade HA children (82% vs. 74%, p =.042), but not among LA

peers (65% for 8th graders, 73% for 6th graders, p =.176).

A grade X achievement status ANOVA indicated that HA children were more successful

than LA ones in inhibiting inappropriate responses (40% vs. 34% correct), F(1,108) = 4.07,

p =.046, ηp
2 =.04. No effect for age or interaction was present.

Individual Differences

Predictors of fraction arithmetic performance. I—In both grades, almost all

measures were related to fraction arithmetic accuracy (Table 3). To examine predictors of

fraction arithmetic accuracy in a more structured way, we constructed a hierarchical

regression model. We first entered the child’s PSSA reading score, to control for general

intellectual ability. Next, we entered measures of performance on the experimental tasks in

the order in which the competencies seem likely to be acquired during the developmental/

educational process: 1) executive functions; 2) whole number division; and 3) fraction

magnitude measures. The two EF measures were entered in a single step of the hierarchical

regression, as were the three measures of fraction magnitude knowledge.

Reading scores accounted for 14% of the variance in 6th graders’ fraction arithmetic scores,

F(1,54) = 8.53, p =.005, and 33% of the variance in 8th graders’ scores, F(1,54) = 26.98, p<.

001. The two executive function measures explained an additional 2% of variance for 6th

graders (n.s.), and 1% for 8th graders (n.s.). Whole number division accounted for an

additional 8% of variance for 6th graders, F(1,51) =5.43, p =.024, and 6% for 8th graders,

F(1,51) = 5.31, p =.025. The fraction magnitude tasks contributed an additional 12% of

variance for 6th graders, F(3,48) = 3.04, p =.038, and 8% for 8th graders, F(3,48) = 2.37, p =.

082. In all, these predictors accounted for 36% of variance in 6th graders’ fraction arithmetic

scores, F(7,48) = 3.78, p =.002, and 48% of variance in the 8th graders’ scores, F(7,48) =

6.36, p<.001.

This ordering of variables might be viewed as underestimating the contribution of executive

functioning, due to it sharing variance with reading achievement. To evaluate this

hypothesis, we re-ordered the predictors so that executive functioning was entered before

reading achievement (the order of the other variables, and their contribution, remained

constant). In this analysis, EF accounted for 4% of variance in 6th graders’ fraction

arithmetic accuracy, F(2,53) = 1.10, p = .342 (n.s.) but 17% of the variance in 8th graders’

accuracy, F(2,53) = 5.28, p = .008. Reading achievement accounted for an additional 11% of

variance in 6th graders’ fraction arithmetic accuracy, F(1,52) = 6.83, p = .012, and 18% of

variance in 8th graders’ performance, F(1,52) = 13.91, p <.001.

Predictors of mathematics achievement—Bivariate correlations indicated that among

both 6th and 8th graders, all three fraction magnitude tasks, whole number division,

calculation errors and at least one EF measure were related to overall math achievement test

scores. The relations tended to be stronger for the older children (Table 3). The relations of

PSSA scores to fraction performance were not due to fraction questions being major parts of

the test. Analysis of test guidelines suggested that only 10%-15% of PSSA mathematics test
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items are dedicated to fractions for the grades in question http://www.portal.state.pa.us/

portal/server.pt/community/assessment_anchors/7440.

To examine predictors of individual children’s PSSA math scores more systematically, we

conducted a hierarchical regression analysis that paralleled the one for fraction arithmetic.

Because instruction in fraction arithmetic generally comes after instruction in fraction

magnitudes, we entered fraction arithmetic after fraction magnitudes.

PSSA reading scores accounted for 36% of the variance in 6th graders’ PSSA math scores,

F(1,54) = 30.40, p <.001, and 56% of the variance in 8th graders’ scores, F(1,54) = 67.44,

p<.001. The two executive function measures explained 8% of variance beyond that

explained by the reading scores for 6th graders, F(2,52) = 3.93, p =.026, and 2% for 8th

graders, (n.s.). Whole number division accounted for an additional 9% of variance for both

6th graders, F(1,51) = 9.38, p =.004, and 8th graders, F(1,51) = 14.13, p <.001. Fraction

magnitude tasks contributed an additional 10% of variance for 6th graders, F(3,48) = 4.10, p

=.011, and 9% for 8th graders, F(3,48) = 5.50, p <.002. The fraction arithmetic measure

added a non-significant 1% to the variance explained by the other measures for both 6th and

8th graders. Together, these predictors accounted for 64% of variance in 6th graders’ PSSA

math scores, F(8,47) = 10.33, p <.001, and 76% of variance in 8th graders’ scores, F(8,47) =

18.83, p <.001.

When entered first, EF accounted for 12% of variance in 6th graders’ math achievement

scores, F(2,53) = 3.59, p = .035, and 28% in 8th graders’ scores, F(2,53) = 10.05, p<.001.

Reading achievement explained 33% additional variance in 6th graders’ math achievement

scores, F(1,52) = 30.40, p<.001, and 30% in 8th graders’ scores, F(1, 52) = 36.10, p<.001.

Fraction magnitudes, fraction arithmetic, and mathematics achievement—
Fazio, Bailey, Thompson, and Siegler (under review) found that children who based number

line estimates predominantly on fraction magnitudes did better on other mathematics tasks

and on a math achievement test than children whose number line estimation was based

predominantly on numerators or denominators alone. To examine whether this relation was

again present, we followed Fazio et al.’s procedure of computing gamma correlations

between each child’s 0–1 number line estimates and the order of the fractions if ranked by

numerator, denominator, and fraction magnitude. The predictor corresponding to the largest

of these three correlations was interpreted as the child’s predominant approach, unless all

relations were weak (|gamma|<.25), which resulted in a strategy classification of

“unknown”. Two-thirds of children (69%) relied predominantly on fraction magnitudes,

17% on numerators, and 12% on denominators.

As in Fazio et al., children who relied mainly on fraction magnitudes on the 0–1 number line

task generated much better performance on all measures of mathematical knowledge than

children who did not. This was true on 0–5 number line estimation among 6th graders (PAE

= 18 vs. 30), t(58) = −3.73, p<.001, d = −1.03, and 8th graders (PAE = 17 vs. 25), t(58) =

−2.75, p = .008, d = −.82; on magnitude comparison among 6th graders (82% vs. 60%

correct), t(58) = 4.64, p <.001, d = 1.28, and 8th graders (83% vs. 55%), t(58) = 5.48, p<.

001, d = 1.63; on fraction arithmetic among 6th graders (50% vs. 39% correct), t(58) = 1.88,
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p = .066, d = .52, and 8th graders (64% vs. 40%), t(58) = 3.13, p = .003, d = .93; on whole

number division among 6th graders (83% vs. 62% correct), t(30.81) = 2.55, p = .016, d = .78,

and 8th graders (87% vs. 39%), t(58) = 5.83, p <.001, d = 1.73; and on overall math

achievement test scores among 6th graders (PSSA = 1597 vs. 1320), t(54) = 4.39, p <.001, d

= 1.26, and 8th graders (1547 vs. 1213), t(54) = 5.91, p <.001, d = 1.86. Thus, the

differentiation based on 0–1 number line estimation was strong not only on other measures

of numerical magnitude knowledge but also on fraction arithmetic, whole number division,

and mathematics achievement.

Focusing on the numerator alone or the denominator alone seemed likely to be related to

LA/HA status, and it was. Reliance on fraction magnitudes was much higher among HA

than LA children in both 6th grade (81% versus 27%) and in 8th grade (94% versus 45%).

Discussion

Development of Fraction Knowledge in LA and HA Children

The most striking finding from the study was that differences between the fraction

arithmetic knowledge of HA and LA children widen substantially between 6th and 8th grade.

HA children’s fraction arithmetic accuracy was much higher in 8th than 6th grade, but LA

children’s accuracy was similarly low in both grades.

At least three factors contributed to this pattern. One was differentiating between properties

of whole numbers and fractions. Among LA children, whole number strategies were equally

common on fraction arithmetic problems in 6th and 8th grade; in contrast, among HA

children, whole number strategies were fairly common in 6th grade but almost nonexistent in

8th grade. A second likely contributor to the differential improvement involved establishing

common denominators. On operations that require equal denominators (addition and

subtraction), LA 6th and 8th graders showed equally poor performance, but HA 8th graders

were considerably more successful than HA 6th graders. A third likely contributor involved

variability of strategies. Both 6th and 8th grade LA children and 6th grade HA children fairly

often used a correct and an incorrect procedure to solve pairs of virtually identical problems,

but HA 8th graders consistently used correct procedures.

Sources of Individual Differences in Fraction Arithmetic and Overall Math Achievement

Fraction magnitude knowledge—As found previously (Siegler, et al., 2011), individual

differences in fraction magnitude knowledge were closely related to individual differences

in fraction arithmetic and mathematics achievement. The present results showed that this

relation remains present even after controlling for reading achievement and executive

functioning.

The relation to math achievement test scores seems likely to be due in part to the importance

of fractions for solving pre-algebra and algebra problems. Consistent with this interpretation,

in both Siegler et al. (2011) and the present study, the relations of fraction magnitude

knowledge to mathematics achievement test scores were stronger in 8th grade, when children

would have taken or be taking pre-algebra and algebra courses, than in 6th grade. The fact
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that in both studies the relation was also present, albeit weaker, in 6th grade suggests that

fraction magnitude knowledge also facilitates learning of less advanced mathematics.

Whole number division—Whole number division accounted for substantial variance in

6th and 8th graders’ fraction arithmetic and overall math achievement test scores, even after

controlling for reading achievement and executive function. This predictive relation

probably had several sources: Whole number division and fractions are logically equivalent

(N/M); whole number division is assessed on middle school mathematics achievement tests;

and it is essential to solving many pre-algebra, algebra, and statistics problems that also

appear on the tests. Consistent with this analysis, HA and LA children’s whole number

division accuracy differed greatly (89% versus 53% correct.)

In contrast to this large difference between LA and HA children’s division accuracy, no

difference was present between 6th and 8th graders in either group. A likely reason is that

whole number division is not a focus of middle school math instruction. The lack of

improvement during middle school helps explain why 5th graders’ whole number division

uniquely predicts 10th graders’ mathematics achievement (Siegler, et al., 2012). If children

do not learn whole number division when it is taught, they may be unlikely to learn it later.

Executive functioning—Our findings regarding relations of executive functioning to

fraction arithmetic and overall mathematics achievement were complex. Eighth graders’

working memory updating and inhibitory skills correlated with their fraction arithmetic

accuracy and math achievement. These relations made sense; success at mixed series of

problems, like the present ones, requires inhibiting inappropriate procedures, such as

maintaining equal denominators in the product during multiplication, and it also requires

continuously updating working memory contents, such as which steps in a computation have

been completed and which remain. In contrast, 6th graders’ fraction arithmetic accuracy was

not related to either executive function, and their mathematics achievement was related to

inhibitory skill but not working memory updating. Adding to the complexity, when reading

achievement was statistically controlled, the relation between executive functioning and

fraction arithmetic disappeared at both grade levels, and the relation of executive

functioning to overall math achievement was present for 6th but not 8th graders. These

results were less consistent than those obtained in some previous studies (e.g., Bailey, et al.,

2012) but similar to those obtained in others (e.g., Mazzocco & Kover, 2007). The reasons

for this inconsistent pattern, both within the present study and in the literature in general,

remain to be established.

Metacognitive judgments—Previous studies have not tested whether children who use

inappropriate arithmetic procedures believe those procedures are correct or whether they

suspect that the procedures are incorrect but use them anyway because they cannot recall a

correct strategy. The present study provided evidence for both interpretations.

Consistent with the view that children often believe that incorrect procedures are correct,

HA children were wrong on 26% of answers in which they indicated maximal confidence,

and LA children were wrong on 46%. Such overconfidence may have negative
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consequences for learning. Children who are confident that their incorrect answers are

correct might not check them or attend to subsequent instruction.

On the other hand, the present results also reflected considerable metacognitive knowledge.

In both grades, children were more confident in their correct than in their incorrect answers,

and their mean confidence on each problem correlated positively with their overall accuracy

on the problem. The overall pattern suggests that both overconfidence in incorrect strategies

and uncertainty about the correct strategy contribute to use of incorrect approaches.

Several limitations of this study should be noted. The study was cross-sectional, so the

stability of individual differences could not be examined. The sample was relatively small

and included few Hispanic or Asian students. Results regarding unique contributions of

executive functioning did not yield clear conclusions.

Instructional Implications

A general instructional implication of these findings is that skills that are prerequisite for

subsequent mathematics need to be taught much more effectively than they are at present.

Illustratively, the recently adopted U. S. Common Core State Standards prescribe that whole

number division be taught and learned in 4th grade, but the present results demonstrate that

many 8th graders have not learned it. The strong relations of whole number division to both

fraction arithmetic and math achievement test scores found in this study, as well as the

inherently foundational role of division for later mathematics, show the necessity of

improving teaching and learning in this area.

Another instructional implication of the present findings involves a target for early

intervention that might avoid many subsequent difficulties that children have with fractions.

Roughly one-third of children in the present study, and a similar percentage in Fazio et al.

(under review), based their fraction magnitude estimates primarily on the numerator alone or

the denominator alone. This tendency was associated with many negative outcomes,

including poor performance on fraction arithmetic, whole number division, and overall

mathematics achievement test scores. Relying on the numerator or denominator alone also

overlapped with LA classification and with the tendency to treat numerators and

denominators in fraction arithmetic problems as independent whole numbers.

Viewing fraction magnitudes as independent whole numbers is understandable, because

fractions with larger numerators do tend to be larger, as do fractions with smaller

denominators. Moreover, the approach is appropriate for fraction multiplication and yields

correct answers to some other classes of problems that are often presented in textbooks, for

example comparing fraction magnitudes with equal denominators (e.g., 1/5 versus 3/5) or

equal numerators (e.g., 3/5 versus 3/7). However, it is not the right way to view fractions,

and does not yield consistently correct performance across unrestricted sets of fraction

comparison or arithmetic problems. Placing greater instructional emphasis on the need to

view each fraction as an integrated magnitude that expresses the relation between its

numerator and its denominator might avoid subsequent difficulties not only in fraction

arithmetic but in learning of mathematics more generally.
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Table 1

Percent Correct on Fraction Arithmetic by Problem Type for Low Achieving (LA) and Higher Achieving

(HA) Students

Operation Denominators Achievement
Status

LA HA

Addition Equal 63 87

Unequal 12 74

Subtraction Equal 75 91

Unequal 28 77

Multiplication Equal 40 34

Unequal 55 61

Division Equal 12 36

Unequal 6 27
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Table 2

Gains in Fraction Arithmetic Accuracy from 6th to 8th Grade Among Low Achieving (LA) and Higher

Achieving (HA) Children

Operation Denominators % Accuracy Gain
(8th minus 6th)

LA HA

Addition Equal 6 12

Unequal 4 22*

Subtraction Equal 10 13

Unequal 3 20*

Multiplication Equal 6 20*

Unequal 9 31*

Division Equal 11 36*

Unequal 11 40*

Note: Gains = 8th grade – 6th grade percent correct.

*
indicates significance at p <.05
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