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Abstract
Amino acid repeats (AARs) are abundant in protein sequences. They have particular roles in protein function and
evolution. Simple repeat patterns generated by DNA slippage tend to introduce length variations and point muta-
tions in repeat regions. Loss of normal and gain of abnormal function owing to their variable length are potential
risks leading to diseases. Repeats with complex patterns mostly refer to the functional domain repeats, such as
the well-known leucine-rich repeat and WD repeat, which are frequently involved in protein^protein interaction.
They are mainly derived from internal gene duplication events and stabilized by ‘gate-keeper’ residues, which play
crucial roles in preventing inter-domain aggregation. AARs are widely distributed in different proteomes across a
variety of taxonomic ranges, and especially abundant in eukaryotic proteins. However, their specific evolutionary
and functional scenarios are still poorly understood. Identifying AARs in protein sequences is the first step for the
further investigation of their biological function and evolutionary mechanism. In principle, this is an NP-hard prob-
lem, as most of the repeat fragments are shaped by a series of sophisticated evolutionary events and become
latent periodical patterns. It is not possible to define a uniform criterion for detecting and verifying various repeat
patterns. Instead, different algorithms based on different strategies have been developed to cope with different
repeat patterns. In this review, we attempt to describe the amino acid repeat-detection algorithms currently avail-
able and compare their strategies based on an in-depth analysis of the biological significance of protein repeats.

Keywords: amino acid repeat; detection algorithm; low complexity sequence; repeat containing protein; protein domain
repeats

INTRODUCTION
Amino acid repeats (AARs) are abundant in protein

sequences either as periodic elements in structural

proteins such as collagens, keratins, silk and cell

wall proteins, or as structural modules in functional

proteins such as transcription factors, receptors, ion

channels, histones, ubiquitins and calcium storage

proteins. Table 1 shows some well-known examples

of human repeat-containing proteins (RCPs) gath-

ered in the UniProt/Swiss-Prot Knowledgebase

(http://www.uniprot.org/). For example, the

major prion protein (PRIO_HUMAN) contains an

N-terminal repeat region with several octamers

(PHGGGWGQ); the extra-embryonic spermato-

genesis homeobox 1 protein (ESX1_HUMAN) has

a sequence motif PPxxPxPPx repeated nine times

and the alpha-1 type I collagen protein contains a

repeat of various lengths of the periodic tri-amino

acid GPP. The giant muscle protein Titin composed

of 34 350 amino acid residues (TITIN_HUMAN)

contains several types of repeating domains. Single

amino acid repeats (SAARs) are also common, such

as the polyQ repeats in the Forkhead box protein

P2 (FOXP2_HUMAN), the androgen receptor

(ANDR_HUMAN) and the Huntington’s disease

(HD) protein (HD_HUMAN). Other SAARs

including polyL, polyA and polyH can also be

found in many other proteins. RCPs are distributed

in all life kingdoms, and especially abundant in eu-

karyotes [1].
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It is known that some AARs such as the leucine-

rich repeats (LRRs) form the structural framework

for protein–protein interaction, and the repeat frag-

ment in zinc finger transcription factors binds to cis-
elements of DNA promoters. AARs can also cause

problems such as the mis-folding of prion proteins

[2]. Furthermore, modification of repeat length may

introduce abnormal function. A typical case is the

expansion of polyQ, resulting in several neurological

disorders such as mental retardation, HD, inherited

ataxias and muscular dystrophy.

Classification of amino acid repeat
patterns at sequence level
Mathematical and statistical methodologies can be

applied to study the particular functional and evolu-

tionary background of an AAR. Several approaches

have been proposed to classify AARs into different

categories depending on the characteristics of repeat

units, including the sequence similarity among repeat

units, the distance between adjacent repeat units and

the complexity of the sequence pattern of the repeat

units.

The first approach is to classify AARs according

to the similarity among the repeat units. Based on

this approach, AARs can be classified into two main

groups: perfect repeats and imperfect repeats.

The repeat units in perfect repeat fragments are iden-

tical, e.g. AAAAAAA and PQPQPQPQ, whereas

the repeat units in imperfect repeat fragments are

not exactly the same, e.g. AAWAAAA and

QQQMLQQQFL. Imperfect repeats with highly

variable, but still recognizable, repeat units are also

called divergent repeats.

The second approach for repeat classification is

based on the distance between adjacent units. AARs

can be classified as tandem repeats (TRs) or non-

tandem repeats (NTRs). The units in TRs are con-

tinuously distributed in the repeat sequence, whereas

the units in NTRs are sequentially interspersed.

The third approach takes the complexity of the

sequence pattern of the repeat units into consider-

ation. Based on this approach, AARs can be roughly

classified as simple repeats or complex repeats. Simple

repeats generally refer to the continuous or inter-

rupted runs of single amino acid residues or short

peptides. The regions in a protein sequence contain-

ing simple repeats are often called simple sequences

(SSs) or low complexity regions (LCRs). On the

other hand, most of the complex repeats usually

have sophisticated patterns of repeat units with vari-

able lengths ranging from 10 to >100 residues, and

these complex repeats patterns are frequently recog-

nized as repeated protein domains [3].

In practice, it is rather difficult to strictly distinguish

the different classes owing to the complicated patterns

of AARs. For example, some domain repeats also con-

tain SSs, such as the abundant leucine residues found

in an LRR domain. And in the case of point mutations

or insertions/deletions (INDELs), the original per-

fectly repeated units in proteins could gradually

evolve into non-perfect tandem repeats (NPTRs).

The above approaches used to classify AARs are

all based on the protein sequence. However, they are

Table 1: Some examples of AARs in human proteins

UniProt ID Protein AA Repeat pattern

SECR_HUMAN Secretin 121 polyL
PRIO_HUMAN Major prion protein 253 (PHGGGWGQ)4
ANKR1_HUMAN Ankyrin repeat domain-containing protein 1 319 Ankyrin repeat
CASQ2_HUMAN Calsequestrin-2 399 D/E-Rich
ESX1_HUMAN Homeobox protein ESX1 406 (PPxxPxPPx)9
WDR1_HUMAN WD repeat-containing protein 1 606 WD repeat
UBC_HUMAN Polyubiquitin-C 685 Ubiquitin
FOXP2_HUMAN Forkhead box protein P2 715 polyQ
LRRN1_HUMAN Leucine-rich repeat neuronal protein 1 716 Leucine Rich Repeat
ANDR_HUMAN Androgen receptor 919 polyQ, polyG, polyP
SRBP2_HUMAN Sterol regulatory element-binding protein 2 1141 polyS, (PQ)4, (SGSS)2
BRD4_HUMAN Bromodomain-containing protein 4 1362 polyP, polyH, polyQ, K-Rich, S-Rich
CO1A1_HUMAN Collagen alpha-1(I) chain 1464 (GPP)n
CAC1A_HUMAN Brain calcium channel I 2505 polyQ, polyH, polyG
HD_HUMAN Huntington disease protein 3142 polyQ, polyP, polyT, polyE, HEAT domain
MLL2_HUMAN Histone-lysine N-methyltransferase MLL2 5537 (S/P-P-P-E/P-E/A)15
TITIN_HUMAN Titin 34350 Several types of repeating domains:

TPRWD RCC1PEVK Kelch Z Ig repeats
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insufficient to reveal the biological significance of

AARs, as proteins play their functional roles by fold-

ing into particular secondary and tertiary structures,

which are difficult to deduce through amino acid

patterns at sequence level. Data from several experi-

ments show that proteins with similar tertiary struc-

tures may share low sequence identity [4, 5]. And

similar functional domains of proteins do not neces-

sarily correspond to recognizable sequence repeat

patterns [3, 6–8]. Therefore, in-depth study of pro-

tein repeats requires better understanding of the cor-

respondence of repeat sequences with their structures

and functions. In addition, the acquisition of such

biological knowledge is more sophisticated than

simply classifying sequential repeat data.

Biological significance of different
patterns of AARs
Biologically, different amino acid repeat patterns

imply different functional and evolutionary back-

grounds. Repeats with simple patterns, such as

single AARs, mainly exist in intrinsically unstruc-

tured regions (IURs) of proteins [9, 10]. Such

protein regions that do not fold into a 3D structure

commonly have functions related to molecular rec-

ognition and molecular assembly [11, 12]. Single

amino acid or trinucleotide repeats like polyQ are

involved in neurodegenerative diseases such as HD

[13], where their length variations often result in

either loss of normal or gain of abnormal func-

tion[14, 15].

Most SAARs are presumed to be originally

derived from replicative DNA slippage [16] in the

coding region. Expansion of some SAARs might also

result from unequal chromosomal crossover, such as

the polyA in the human HOX13 gene [17]. In gen-

eral, perfect amino acid runs are inherently mutable

and are frequently interrupted by point mutations

[18] to become simple sequences [19].

In addition to SAARs, sequential tandem repeats

(PTRs and NPTRs) with highly similar units are

prevalent in protein sequences. We have found

that �13% of all proteins deposited in the public

protein databases contain at least one tandem

repeat fragment. And >40% of the tandem repeats

are PTRs, while �60% PTRs are single amino acid

runs [1]. Errors in sequencing and automatic anno-

tation procedures might have introduced some

false-positive PTRs into the public protein knowl-

edgebase. However, this cannot undermine the bio-

logical significance of frequently occurring PTRs in

protein sequences, especially considering the fact that

functional PTRs are being continuously experimen-

tally identified, and most of them are conserved

among orthologous proteins [20–22].

Consistent with this scenario, conservation of

amino acid tandem repeats is a strong indication for

biological relevance. The phylogenetically conserved

repeat fragments among orthologous proteins should

have a conserved function, such as the conserved

polyQ regions in primate FOXP2 proteins [23]. In

contrast, however, variable repeat unit length in cor-

responding regions of orthologous proteins indicates

a different scenario. These repeats are probably going

through a rapid change driven by selection [24].

More interestingly, tandem repeats have been

shown to play an important role in micro-evolution

by catalysing the rapid production of genetic and

phenotypic variation among organisms [25–28].

Repeats with complex patterns have compara-

tively stable structures and conserved functions,

which are generally called domain repeats. Domain

repeats are among the most common protein motifs

in the Pfam database [29], such as LRRs, Zinc finger

repeats, Ankyrin repeats and Tetratricopeptide re-

peats (TPRs) [30]. These domain repeats are

mostly involved in transcription regulation, cell-

cycle control and signal transduction [31–34] and

widely spread in the proteomes of different species

across different life kingdoms [35]. Many genes con-

taining these domain repeats in the coding region are

significant in certain diseases [36], as sequence iden-

tity increases the chance of protein aggregation [37]

and mis-folding. Domain repeats are thought to have

evolved through internal gene duplications arising

from recombination events [3, 38], such as unequal

crossing over [39] and exon shuffling [40]. The du-

plications may involve several domains at a time [3,

41]. In addition, a number of specific sequence-based

signals such as the ‘gate-keeper’ residues [41] play a

crucial role in preventing inter-domain aggregation.

Therefore, these repeat patterns are generally obscure

at sequence level, and a sophisticated search is

required to detect them.

REPEATDETECTION STRATEGIES
During the past decade, several strategies for the

identification of AARs from protein sequences

have been reported. Among these approaches, the

three major ones are self-comparison, pattern recog-

nition and complexity measurement. Table 2 shows
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the algorithms and publicly available tools including

online resources that can be used to detect AARs of

various types.

In the following section, we will give a brief intro-

duction to the amino acid repeat-detection strategies

focusing on the general principles behind these

strategies.

The self-comparison strategy
One of the most intuitive strategies to detect repeat

patterns in protein sequences is the self-comparison

method. The idea of this approach is rather simple,

i.e. comparing a protein sequence to itself. Sequence

comparison is a fundamental bioinformatics method

that has been extensively used to search similar

regions among biological sequences. The global

sequence alignment method was first proposed in

the 1970s [61] and focuses on finding the optimal

alignment of two entire biological sequences using

dynamic programming. Soon after, the Smith–

Waterman local alignment algorithm [62] was

developed to recognize the better aligned sub-

regions between two sequences in order to show

meaningful biological relevance.

On aligning a sequence with itself for the purpose

of identifying repeat patterns, the sub-optimal

alignments become obscured by the best (and most

obvious) alignment. This optimal alignment should

be excluded from the initial search. The reliability of

identifying sub-optimal alignments of protein se-

quences using the dynamic programming method

has been evaluated [62]. A very distinguishing feature

of this method is the use of a scoring system that

gives scores to paired amino acids and penalties to

unmatched gaps. Substitution matrices such as PAM

[63] and BLOSUM [64] are the basis of the scoring

system and represent the specific evolutionary rele-

vance among different amino acids. More specifically

tuned scoring matrices have also been proposed.

These matrices take special features of amino acids

such as polarity, electrostatic charge, structure, mo-

lecular volume and codon bias [65] into account.

One of the greatest advantages of using a scoring

system for identifying sub-optimal alignments is

that statistical models can be applied to define reliable

criteria [66, 67].

In principle, the self-alignment repeat-detection

methods are the extension of an alignment-based

homology-detection approach. Thus, they have

inherited characteristics that are more suitable for de-

tecting divergent internal repeats in protein se-

quences. The units of these repeats generally have

Table 2: Repeat detection algorithms

Method Repeat typea Ref Availability

Self-comparison
REP Domain [42] http://www.embl.de/�andrade/papers/rep/search.html
COACH Domain [43] http://www.drive5.com/lobster/
TPRpred Domain [44] http://tprpred.tuebingen.mpg.de/
REPRO Domain [45] http://www.ibi.vu.nl/programs/reprowww/
TRUST Divergent [46] http://www.ibi.vu.nl/programs/trustwww/
Internal Repeat Finder Divergent [47] http://nihserver.mbi.ucla.edu/Repeats/
HHrep Divergent [48] http://hhrep.tuebingen.mpg.de/hhrep/
RADAR Divergent [49] http://www.ebi.ac.uk/Tools/Radar/
HHrepID Divergent [50] http://toolkit.tuebingen.mpg.de/hhrepid/

Pattern recognition
REPETITA Solenoid [51] http://protein.bio.unipd.it/repetita/
LSTM Domain [52] http://www.bioinf.jku.at/software/LSTM_protein/
ARD Alpha-Rod [53] http://www.ogic.ca/projects/ard/

Complexity measurement
SIMPLE Simple [19] http://www.biochem.ucl.ac.uk/bsm/SIMPLE/
GBA Simple [54] xli@cise.ufl.edu

Others
XSTREAM NPTR [55] http://jimcooperlab.mcdb.ucsb.edu/xstream/
Apriod PPP [56] hwan@mindgen.org
LocRepeat PPP [57] http://www.cs.cityu.edu.hk/�lwang/software/LocRepeat/
REPfind NPTR [58] adebiyi@informatik.uni-tuebingen.de
Reptile Perfect [59] http://reptile.unibe.ch/
SUFFIX Perfect [60] http://www.cs.ucdavis.edu/�gusfield/strmat.html

aNPTR¼non-perfect tandem repeat; PPP¼pseudo-periodic partitions.
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low identities and ambiguous boundaries, but share

evolutionarily conserved sites or motifs, which are

presumed to have crucial functions. As such, the

accurate definition of repeat length and repeat

number according to substantial biological signifi-

cance is a sophisticated problem. And this is espe-

cially true for detecting repeat patterns without prior

knowledge, also called ‘de novo’ repeat detection.

On the other hand, the algorithms depending on

prior knowledge, such as REP, COACH and

TPRpred [42–44], generally search repeat patterns

from sequence databases by profiles constructed

with known repeat families using hidden Markov

models (HMMs) [68]. Therefore, the repeat patterns

identified by these programs are usually well-known,

and some of them are experimentally studied func-

tional protein domain repeats.

It is generally believed that detecting repeat pat-

terns with a self-alignment-based method is a feasible

strategy. However, it also has some flaws and limi-

tations. First, the computational complexity of per-

forming self-alignment is high. The general

complexity for a sequence with n amino acids is O

(n2) for both time and space, which will increase

exponentially with the increase of the sequence

length. Fortunately, this problem is not too serious

for protein sequences, as their average length is

around 320 AAs [69]. And the computational cap-

acity of current computer hardware is powerful

enough to handle this problem within acceptable

time and space. In addition, several optimization stra-

tegies have been recently applied to sequence

alignments, such as the implementation of the

Smith–Waterman algorithm with the new technol-

ogy of graphics processing units (GPUs) [70], and the

parallel computing version of the REPRO [71] al-

gorithm [72] can handle much longer sequences

within a reasonable time.

One of the main purposes for detecting AARs is

to find novel repeat patterns and infer their func-

tional and evolutionary roles. As the majority of

repeat patterns in protein sequences have not been

well studied, de novo repeat-detection algorithms are

more widely used, such as PEPRO, Internal Repeat

Finder, RADAR, TRUST, HHrep and HHrepID

[45–50, 56, 57]. All of them identify repeats using

the self-comparison strategy, but differ in some as-

pects. For example, Internal Repeat Finder assumes

that the statistically significant sub-optimal alignment

scores should have a Poisson distribution [47].

TRUST uses the particular strategy on sub-optimal

alignments, which could increase the chance and

reliability to identify divergent repeats [46]. HHrep

[48] and its optimized version HHrepID [50] com-

pares a sequence with itself by the HMM–HMM

[73] strategy, which looks for the sub-optimal align-

ments using a profile HMM constructed by iterations

of PSI-BLAST [74].

The pattern recognition strategy
The second strategy to detect AARs from protein

sequences uses the conventional method of pattern

recognition. The two main algorithms of this strat-

egy are the discrete Fourier transform (DFT) and

neural networks.

DFT has been widely applied in the research area

of signal processing. Generally, it can decompose

signals into constituent frequencies, so that the cryp-

tic patterns hidden in the signals could be analysed

intuitively. Early studies showed that DFT can be

used to detect periodic patterns in collagen protein

[75], but also has some fundamental difficulties

which limit its usage [45]. The accuracy of DFT-

based methods is easily biased by the length variation

of the repeat units caused by mutations or INDELs,

as this will weaken the periodical pattern of the

transformed Fourier spectral amplitudes.

Some recent algorithms make efforts to provide

better discrimination on Fourier spectral amplitudes

using newly developed methods. For example,

REPETITA yields better accuracy than self-

alignment methods on detecting solenoid repeats

by introducing several optimized strategies of the

DFT-based method [51]. In addition, the stationary

wavelet packet transform has been widely used in

bioinformatics and computational biology in recent

years [76]. As a state of the art optimization DFT

algorithm [77], it has been shown to have good qual-

ity on detecting protein repeat patterns [78].

The neural network-based method is another

well-studied pattern-recognition strategy, which is

also capable of identifying similar patterns in protein

sequences [79]. A well-established neural network is

able to associate homologous patterns in the protein

sequence with the input patterns and can be trained

to adapt the patterns. Several neural network algo-

rithms show good accuracy and time efficiency on

protein homologue detection. LSTM is able to com-

bine amino acid properties with patterns and does

not rely on pre-defined scoring matrices for similarity

measurements [52]. The ARD neural network is de-

signed to identify specific alpha-rod repeat patterns

586 Luo and Nijveen



and has been applied to the analysis of Huntingtin

protein sequences [53].

The complexity measurement strategy
The third approach of identifying AARs takes com-

plexity measurement into consideration. LCRs are

widely distributed in protein sequences. LCRs com-

monly contain particular repeat patterns that have

continuous repetitions of very short units, such as

the SAARs and cryptically simple sequences [19].

Apparently, these repeats have special functional

and evolutionary properties that differ from the re-

peats with more complex patterns and longer units.

Their typical short unit length makes both the

self-comparison- and the pattern recognition-based

strategies less well suited to identify LCR repeats

efficiently.

Fortunately, several algorithms have been intro-

duced to detect repeats involved in LCRs, most of

them using a strategy to measure the complexity of

sequences within a sliding window. As for complex-

ity measuring, SIMPLE [19] awards simplicity score

to the central amino acid of each window, and is

most suitable for detecting short unit cryptic repeats.

SEG [80], DSR [81] and CARD [82] are based on

Shannon entropy [83], which displays several limita-

tions when decoding complex protein sequences

(43).

The main drawback of sliding windows-based al-

gorithms is that they all require a pre-specified

window size, and repeats that are longer or shorter

than the window are not detectable. On the other

hand, non-sliding window algorithms show more

flexibility on detecting repeats in LCRs. GBA [54]

constructs a graph for each protein sequence, and

finds short subsequences as LCR candidates through

traversing. Coronado [84] introduces the composi-

tion-modified scoring matrices to identify LCRs

within cell wall proteins of fungi. These algorithms

are an important complement to the sliding

window-based algorithms.

Other strategies
As described above, the self-comparison strategy and

the pattern recognition strategy are mostly suitable

for detecting divergent repeats, whereas the com-

plexity measurement strategy is mostly suitable for

detecting simple unit repeats. In addition, exclusive

and optimized strategies for sequential tandem re-

peats are also particularly useful. Sequential tandem

repeats implicated in the amino acid fragments with

tandem repeat patterns are comparatively more ex-

plicit than divergent repeats. They are widely spread

in many proteomes across wide taxonomic ranges,

but are still insufficiently studied.

Hamming distance [85] and edit distance, also

called Levenshtein distance [86], are widely used

for measuring the similarity of sequential tandem

repeats [87–90]. Differing from hamming distance,

which only accounts for point mutations, edit dis-

tance-measuring algorithms also consider insertions

and deletions. In addition, Apriod [56] and

LocRepeat [57] focus on finding the ‘pseudo-

periodic partitions’, which are gradually evolved pat-

terns among repeat units. Given that NPTRs are

originally evolved from PTRs, Xstream [55] and

REPfind [58] detect NPTRs based on the extension

of exact repeats seeds, which could decrease the

computational complexity of both time and space.

Most of the repeat-detection algorithms can iden-

tify PTRs together with other repeat patterns inci-

dentally. But as some of the PTRs are nested in

larger NPTR fragments, which can hardly be distin-

guished by the common strategies, an exclusive

algorithm for detecting PTRs is also necessary. For

example, the suffix tree-based strategy is supportive

to identify all PTRs in a protein sequence with linear

time complexity [60]. Reptile uses a ‘brute-force’

strategy to detect PTRs from the proteins of parasite

antigens [59]. Following the definition of statistically

significant repeat runs in protein sequences [91], the

cut-off sizes of five, four, three and two of the repeat

unit repetitions are common criteria for identifying

mono-amino, di-amino, tri-amino and all other

repeats, respectively.

SUMMARYANDPERSPECTIVE
Identifying repeat patterns in proteins is the first step

towards the understanding of their physiological

function and evolutionary mechanism. During the

evolution process, these patterns become so intricate

that no single algorithm is adequate to identify all of

them. There is no doubt that an in-depth investiga-

tion of their biological background is required to

choose proper algorithms for the identification of

specific patterns. In general, self-comparison algo-

rithms are suitable to detect denovo repeats with com-

plex patterns. Pattern recognition-based algorithms

are suitable to detect repeats with low sequence

identities but high intrinsic biological similarities.

Complexity measurement-based algorithms can be
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applied to detect repeats with simple patterns

involved in LCRs. For the tandem repeats that

have more sequentially repetitive patterns, one

should consider the strategies that measure the

similarity of repeat units by edit or hamming

distance.

The biological significance of protein repeats has

been discussed for years. Internal duplication in gen-

omes is one of the most important evolutionary

mechanisms for species to adapt the environment

[92–94]. As a result, repetitive patterns at the DNA

level such as interspersed microsatellites and tandem

tri-nucleotide repeats are prevalent. Intragenic

repeats are presumed to have potential roles on gen-

erating functional variability [95, 96]. And the re-

peats in coding regions corresponding to AARs are

more likely to go through adaptive competition [24,

97, 98]. Therefore, large amount of repeats in pro-

teins is less likely to be regarded as ‘junk proteins’

[99], which merely have non-essential roles. At the

same time, their variable characters and vulnerabil-

ities to disorder and diseases has been a scientific

puzzle for a long time. Frequently asked questions

are: Is the characteristics of similar repeat patterns

coherent in different proteomes across different life

kingdoms? Could the functional and evolutionary

roles of certain repeats correspond to their particular

characters, such as position bias, GC content con-

strains and codon usage? How could the conserved

functions of particular repeats have been evolved by

selection? And what are the structure and

sequence-based strategies to prevent repeats from

aggregation?

The insufficient understanding of protein repeats is

not only due to the difficulty of identification, but

also because of the lack of integrated repository for

large-scale investigation and comparison of repeats

among a variety of proteomes across different king-

doms. To that end, we developed ProRepeat

(http://prorepeat.bioinformatics.nl), which inte-

grates non-redundant tandem repeats detected by

several algorithms from the UniProt [69] and

RefSeq [100] protein databases and offers powerful

analysis tools for finding biologically interesting

properties of query results. In addition, we also inte-

grated ProRepeat with ProGMap—a tool we

developed for the integration of annotation resources

for protein orthology [101]. With this set-up, we

will be making large-scale orthologous comparisons

on protein repeats over a broad taxonomy range

especially eukaryotes in the near future.

Key Points

� Amino acid repeats are abundant in protein sequences.
� They can be classified into different categories depending on the

characters of the repeat units.
� Different amino acid repeat patterns imply different functional

and evolutionary backgrounds.
� The threemajor approaches for detection of amino acid repeats

are the self-comparison strategy, the pattern recognition strat-
egy and the complexitymeasurement strategy.
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