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ABSTRACT

Summary: Technological advances in high-throughput sequencing

necessitate improved computational tools for processing and analyz-

ing large-scale datasets in a systematic automated manner. For that

purpose, we have developed PRADA (Pipeline for RNA-Sequencing

Data Analysis), a flexible, modular and highly scalable software plat-

form that provides many different types of information available by

multifaceted analysis starting from raw paired-end RNA-seq data:

gene expression levels, quality metrics, detection of unsupervised

and supervised fusion transcripts, detection of intragenic fusion vari-

ants, homology scores and fusion frame classification. PRADA uses a

dual-mapping strategy that increases sensitivity and refines the ana-

lytical endpoints. PRADA has been used extensively and successfully

in the glioblastoma and renal clear cell projects of The Cancer

Genome Atlas program.

Availability and implementation: http://sourceforge.net/projects/

prada/

Contact: gadgetz@broadinstitute.org or rverhaak@mdanderson.org

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Transcriptome sequencing provides insights into the quantity,

structure and composition of RNA molecules in a biological

sample. Analytical tools for analysis of RNA sequencing data

are available (Kim and Salzberg, 2012; McPherson et al., 2011),

but those tools generally focus on single end points, such as

quantitation of expression levels or identification of fusion tran-

scripts. As the technology becomes more accessible, there is an

increased need for computational pipelines that can process large

numbers of raw RNA-sequencing datasets quickly, accurately

and comprehensively. For that purpose, we have developed

PRADA (Pipeline for RNA-Sequencing Data Analysis).

PRADA was designed to be modular in the functional sense

that different modules output different types of information on

the transcripts. It implements resource management structures

such as LSF and PBS, allowing quick scale-up for processing

of thousands of RNA-seq samples.

2 METHODS

PRADAwas designed for processing paired-end sequencing data in fastq,

Sequence Alignment/Map (SAM) format or the compressed binary ver-

sion of SAM (BAM) (Li et al., 2009). The processing module applies an

alignment strategy in which reads are mapped to a combined genome and

transcriptome reference, allowing reads to align to known transcript se-

quences, including exon junctions and unannotated mRNAs. The map-

ping strategy has previously been described in Berger et al. (2010). The

appropriate reference files are available for download at http://bioinfor-

matics.mdanderson.org/Software/PRADA/. This strategy retrieves all

best alignments per read from the dual reference file using BWA

(Li and Durbin, 2009). After initial mapping, the alignments of reads

that map to multiple locations (both transcriptomic and genomic) are

collapsed into single genomic coordinates, including reads that span

exon junctions. Once mapped, reads are filtered out if their best

placements are not mapped to multiple genomic coordinates. Quality

scores are recalibrated using the Genome Analysis Toolkit (GATK)

framework (McKenna et al., 2010), index files are generated using

Samtools (Li et al., 2009) and duplicate reads are flagged using Picard

(http://picard.sourceforge.net/).

For expression and quality control metrics, PRADA’s expression

module calls the java executable of RNA-SeQC DeLuca et al., 2012).

RNA-SeQC is a publicly available tool that produces data quality metrics

of three types: mapped read counts, coverage and correlation. The

read count metrics include total number of reads, duplicates, uniquely

mapped reads and reads per kilobase per million mapped (RPKM).

The coverage metrics include GC bias, 30/50 bias and mean number of

bases per read. Expression correlation is reported when multiple samples

are analyzed.

The fusion module aims to detect chimeric transcripts through

identification of discordant read pairs and fusion-spanning

reads. Discordant read pairs are paired read-ends that map uniquely

(i.e. mapping quality equal to 37) to different protein-coding genes with

orientation consistent with formation of a sense–sense chimera.

Mitochondrial genes and clone IDs are ignored. If a read maps to over-

lapping genes, the genes are split up as two different instances. Further

evidence for transcript fusion is sought through evaluation of putative

fusion junction spanning reads. They are detected in PRADA by the

construction of a sequence database that holds all possible exon–exon

junctions that match the 30 end of one gene fused to the 50 end of a second

gene. All hypothetical exon junctions are created using the Ensembl tran-

scriptome reference. Then, unmapped reads aligned to the database of

hypothetical exon junctions. Only reads of which the mate pair maps to

either of the two fusion partner genes are considered. Each fusion is
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annotated by sample name, 50 and 30 gene name, chromosome location

and blastn homology scores (see below).

The supervised fusion screen module General User dEfined

Supervised Search (GUESS) was developed to facilitate rapid detection

of a single fusion, e.g. FGFR3-TACC3 in GBM (Singh et al., 2012).

GUESS screens BAM files for the presence of discordant read pairs

and fusion-spanning reads of specific genes defined by the user. We

have developed two variants of GUESS, one that searches for fusion

transcripts involving two given genes (GUESS-ft) and one that searches

for intragenic fusions (GUESS-if), such as the EGFR vIII variant that

deletes exons 2–7.

To allow filtering of homology artifacts from the results of the fusion

module and GUESS-ft, the similarity of two fusion partner genes is

assessed using BlastN. Metrics provided are bitscore and its

associated E-value, where an E-value of 40.001 is considered to be

non-homologous.

The frame module predicts whether a fusion transcript is in frame

and thereby capable of producing a functional protein, based on the

combinatorics of the transcript(s) in the Ensembl database for the

genes involved.

3 RESULTS

3.1 The Cancer Genome Atlas unsupervised fusion results

We used PRADA to process RNA-seq data from 416 renal clear

cell carcinoma (ccRCC) samples and 164 glioblastoma multi-

forme (GBM) samples from The Cancer Genome Atlas

(TCGA). Among 84 predicted gene fusions in 416 ccRCCs

were 5 SFPQ-TFE3 transcripts, and the overall validation rate

was 85% (Cancer Genome Atlas Research Network, 2013).

Fusions found in 164GBMs (n¼ 229) included recurrent re-

arrangements such as the previously reported FGFR3-TACC3

in 2 samples and EGFR-associated fusions in 11 samples

(Zheng et al., 2013). Data from whole genome sequencing, avail-

able for a subset of the GBM, validated 41 of 49 predicted fu-

sions (84%). A TFG-GPR128 fusion was observed in both renal

and GBM samples.

3.2 Supervised detection of TFG-GPR128

A germ line copy number variant involving TFG and GPR128

has been described in human population cohorts (Jakobsson

et al., 2008). Using the GUESS-ft supervised fusion search

module, we evaluated the presence of TFG-GPR128 fusions in

321 TCGA tumor-adjacent normal tissues from 11 cancer types

(Supplementary Table S1). TFG-GPR128 fusion was detected at

low levels in 3 of the 321 normal samples (Supplementary Table

S1). The matching tumor sample of two of three TFG-GPR128

harboring normals also expressed this fusion construct, corro-

borating its germ line status.

3.3 Correlation of RPKM values with U133A microarray

expression levels

We tested the RPKM functionality of PRADA’s expression

module in the context of subtype classification using 164

RNA-seq samples from GBM, comparing its subtype stratifica-

tion with that based on U133A array data. The comparison

showed a high (80.9%) concordance rate in subtype calls for

expression data generated by the two platforms

(Supplementary Table S2), a similar percentage classified reliably
as previously reported (Verhaak et al., 2010).

3.4 Comparison of fusion transcript detection by PRADA,

Defuse and Tophat-fusion

To evaluate PRADA fusion detection accuracy, we obtained
RNA-seq data and whole genome sequencing data of the U87

glioma cell line. PRADA detected 11 fusions, 6 of which related

to DNA structural rearrangements, TopHat-fusion (Kim and

Salzberg, 2012) predicted 42 fusions of which 12 validated in
DNA, while Defuse (McPherson et al., 2011) found 51 fusions

of which 12 related to DNA lesions (Supplementary Text and

Supplementary Table S3).

4 DISCUSSION

The power of PRADA is based on (i) its scalability, (ii) its map-

ping to both transcriptomic and genome, a distinctive feature of

PRADA in comparison with other RNA analysis tools such as

Tophat-fusion and Defuse, which rely on alignments of partial

reads to identify gene fusions, (iii) its modularity and (iv) its
comprehensive repertoire of output information from the incor-

porated modules. It enables the user to compute multiple ana-

lytical metrics using one software package and to do so for large

numbers of samples at once in a fully automated fashion. It has
been tested on thousands of RNA-seq samples from a wide var-

iety of tumor types and normal tissues in TCGA. PRADA is

designed to be run out of the box with little configuration, and is

compatible with PBS and LSF compute clusters. A single
PRADA tarball, including binaries of the packages it relies on,

a comprehensive and detailed manual, and test FASTQ/BAM

files, are freely available at http://sourceforge.net/projects/prada/

and through Galaxy at http://toolshed.g2.bx.psu.edu/view/
siyuan/prada.
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