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ABSTRACT

Motivation: Next-generation RNA sequencing offers an opportunity to

investigate transcriptome in an unprecedented scale. Recent studies

have revealed widespread alternative polyadenylation (polyA) in eu-

karyotes, leading to various mRNA isoforms differing in their 30 un-

translated regions (30UTR), through which, the stability, localization

and translation of mRNA can be regulated. However, very few, if

any, methods and tools are available for directly analyzing this special

alternative RNA processing event. Conventional methods rely on an-

notation of polyA sites; yet, such knowledge remains incomplete, and

identification of polyA sites is still challenging. The goal of this article is

to develop methods for detecting 30UTR switching without any prior

knowledge of polyA annotations.

Results: We propose a change-point model based on a likelihood

ratio test for detecting 30UTR switching. We develop a directional

testing procedure for identifying dramatic shortening or lengthening

events in 30UTR, while controlling mixed directional false discovery

rate at a nominal level. To our knowledge, this is the first approach

to analyze 30UTR switching directly without relying on any polyA an-

notations. Simulation studies and applications to two real datasets

reveal that our proposed method is powerful, accurate and feasible

for the analysis of next-generation RNA sequencing data.

Conclusions: The proposed method will fill a void among alternative

RNA processing analysis tools for transcriptome studies. It can help to

obtain additional insights from RNA sequencing data by understanding

gene regulation mechanisms through the analysis of 30UTR switching.

Availability and implementation: The software is implemented in

Java and can be freely downloaded from http://utr.sourceforge.net/.

Contact: zhiwei@njit.edu or hongzhe@mail.med.upenn.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

The past two decades have witnessed dramatic changes

brought on by high-throughput technology in both statistics
and the biological sciences. Hybridization-based microarray

technology, which emerged in the late 1990s, had been

widely applied by researchers for more than a decade and

led to a myriad of seminal advances. During the past few
years, next-generation sequencing (NGS) has matured as a

more powerful and accurate tool. It is replacing the once dom-

inant microarray technology in all areas of application be-
cause of its affordable cost and highly accurate digital

resolution (Wang et al., 2009). For transcriptome study, the

introduction of RNA-Seq technology along with new analytic
methods makes it possible to address an increasing number of

compelling biological questions that may not be possible using
microarray technology. In particular, alternative RNA spli-

cing and processing, common phenomena in eukaryotes,

play so critical a role in gene function regulation that they
receive much attention in RNA-Seq analysis (Keren et al.,

2010) and motivate quite a few methodological developments.
For example, Mixture of Isoforms (MISO) uses a probabilistic

mixture model to quantify alternative splicing and processing,

and it, then, tests the equality of transcript isoform ratios be-
tween samples (Katz et al., 2010); multivariate analysis of

transcript splicing (MATS), by using a Bayesian statistical
framework, offers the flexibility to identify differential alter-

native splicing and processing events that match a given user-

defined pattern (Shen et al., 2012); DEXSeq uses generalized
linear models to test for differential usage of exons and pro-

vides reliable control of false discoveries by taking biological
variation into account (Anders et al., 2012); other develop-

ments include (Griffith et al., 2010; Rogers et al., 2012;

Trapnell et al., 2013). Despite the success of these methods,
detecting 30 untranslated regions (30UTR) switching remains

challenging. Very few, if any, methods and tools are available
for directly analyzing this special alternative RNA processing

event.
The pre-mRNA 30 end processing plays a crucial role in eu-

karyotic mRNA maturation (Colgan and Manley, 1997;
Proudfoot, 2011). Through cis elements in the 30UTR of

mRNAs, post-transcriptional gene regulation frequently occurs

and determines the stability, localization and translation of
mRNA (Martin and Ephrussi, 2009; Moore, 2005). These roles

are mediated by interactions with RNA-binding proteins and
microRNAs (miRNAs) (Licatalosi and Darnell, 2010). Over

half of mammalian genes contain alternative cleavage and poly-

adenylation (or polyA) sites, which lead to various mRNA iso-
forms differing in their 30UTRs (Zhang et al., 2005). Alternative

cleavage and PolyAdenylation (APA) in 30UTR, including
shortening and lengthening events, have recently been identified

as global phenomena under different cell conditions (Flavell

et al., 2008; Ji et al., 2009; Mayr and Bartel, 2009; Sandberg
et al., 2008) and different species (Sherstnev et al., 2012;

Smibert et al., 2012; Ulitsky et al., 2012). They have also*To whom correspondence should be addressed.
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drawn much attention in cancer studies (Fu et al., 2011; Lembo

et al., 2012; Lin et al., 2012; Mayr and Bartel, 2009).

In contrast with the increasingly recognized importance of

APA, computational methods and tools for the APA analysis

using RNA-Seq are underdeveloped. In unraveling APA regu-

lation, Ji and colleagues scored relative expressions by taking

the ratio of short reads density in extended and common re-

gions, as defined by distal and proximal polyA sites, respect-

ively (Ji et al., 2011). A higher score, therefore, indicated

higher abundance of long 30UTR isoform. A similar approach

was taken in a recent tandem 30UTR analysis, where the stat-

istical significance was assessed by Fisher’s exact test for the

switch score under different conditions (Wang et al., 2008).

The same group further improved the approach and imple-

mented a new computational tool, MISO (Katz et al., 2010).

Specifically, tandem 30UTR was treated as special alternative

processing, and thus the quantification of expression level for

each isoform can be estimated by computing Percent Spliced

Isoform. These existing methods, however, have one critical

drawback, namely, they rely on prior knowledge of annotated

polyA sites. For example, MISO constructs 30UTR isoform

based on polyA sites information collected from the PolyA

site database (Lee et al., 2007; Zhang et al., 2005). It is

noted that the polyA sites from the current database are com-

putationally inferred from cDNA (complementary DNA) /

EST (expressed sequence tag) sequences. It is far from com-

plete and may also contain false-positive findings. Therefore,

these approaches that depend on polyA information may not

be precise or powerful because of incomplete information of

all potential cleavage sites on 30UTR.

In this article, we propose using a change-point model for

identifying 30UTR switching. To our knowledge, this is the

first available method that allows investigators to directly ana-

lyze 30UTR length changes without being dependent on polyA

site information. To determine whether a 30UTR is shortening or

lengthening to a certain extent, we further develop an additional

testing procedure to make directional decisions. We show that

this directional procedure can control the mixed directional FDR

(mdFDR) at a pre-specified nominal level. Simulation studies in

various settings and applications to two real NGS datasets have

demonstrated that our proposed change-point model and the

testing framework are powerful and accurate. The methods de-

veloped in this article have been implemented using Java in a

computationally efficient and user-friendly software package

available from http://utr.sourceforge.net/. This tool will allow

investigators to analyze next-generation RNA sequencing data

in an effective and efficient way.

The rest of the article is organized as follows. First, we intro-

duce a change-point model based on a likelihood ratio test, fol-

lowed by an iterative procedure for computing P-values. We then

present a new directional testing procedure for identifying dra-

matic shortening or lengthening events while controlling

mdFDR at a nominal level. We perform simulation studies to

investigate numerical performance of the proposed method.

Moreover, we apply the proposed method to analyze two real

RNA sequencing datasets for identifying genes with length

changes in their 30UTRs. Finally, we conclude and discuss the

results and methods.

2 METHODS

2.1 A change-point model for 30UTR switching

The 30UTR switching problem and the change-point model are illustrated

via a toy example in Figure 1. We assume there are two 30UTR isoforms,

isoform 1 and isoform 2, ending with a distal and proximal polyA site,

respectively. These two polyA sites define common and extended regions.

We consider expression ratio of the two isoforms across two conditions,

treatment and control, which can be quantified by the percentage of read

counts from the treatment condition (Fig. 1c). We expect a constant ratio

throughout the whole 30UTR (pi¼C, for i¼ 1, . . . ,T) if the isoform

usages are identical under these two conditions. A ratio change at a cer-

tain position � implies a ratio change between the two isoforms, which is

the so-called 30UTR switching. We wish to test the null hypothesis Ho

that the ratio pi is constant against the alternative hypothesis that, for

some point � in the 30UTR, the ratio changes from p0 to p� ,

H1 : pi ¼
p0; i ¼ 1; . . . ; � � 1;

p�; i ¼ �; . . . ;T:

(

When the change-point location � is known, e.g. based on isoform know-

ledge if it is available, detecting the change is straightforward. However,

p0, p� and, most importantly, � are unknown in our problem.

We start with a setup for the sequenced reads on 30UTR with length T.

Let fXt j t5Tg be the number of reads whose first base maps to the left of

base location t of a given 30UTR under the treatment condition.

Similarly, let fYt j t5Tg be the number of such reads under the con-

trol condition. We denote mx and my to be the total num-

ber of reads in the treatment and control conditions, respectively. Let

U ¼ U1;U2; . . . ;Umxf g and V ¼ V1;V2; . . . ;Vmyf g be the event locations

for processes fXtg and fYtg, namely,U and V are the mapped positions of

reads from the treatment and control samples. We let m ¼ mx þmy be

the total number of reads combined from treatment and control samples,

and then we obtain combined event locations W1;W2; . . . ;Wmf g. We

define an indicator variable Zi to denote whether an event is a realization

of the treatment process or control process as follows:

Zi ¼
1; if Wi 2 U1;U2; . . . ;Umxf g;

0; if Wi 2 V1;V2; . . . ;Vmyf g:

(

Fig. 1. Illustration and notations of the change-point model for 30UTR

switching problem. (A) Treatment process; (B) Control process; (C)

Combined process. Isoform 2 has a higher percentage expressed in the

treatment condition, leading to a higher ratio of short reads density in

common versus extended regions, as defined by the proximal and distal

polyA sites, respectively
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For any short read i in the combined process, we use the term ‘success’ to

refer to Zi ¼ 1, that is, the read is from the treatment process. Hence,

following Worsley (1983), we define a change-point model on the indices

f1; . . . ;Tg for read counts by the binomial log-likelihood function.

Considering a candidate change point at �, for 15�5T, we have a gen-

eralized likelihood ratio statistic

L� ¼
X

k2 1;��1½ �

Zk � log
p̂0
p̂
þ 1� Zkð Þ � log

1� p̂0
1� p̂

� �

þ
X

k2 �;T½ �

Zk � log
p̂�
p̂
þ 1� Zkð Þ � log

1� p̂�
1� p̂

� �
;

where p̂0, p̂� and p̂ are the maximum likelihood estimates of success

probabilities:

p̂0 ¼

P��1
k¼1 Zk

� � 1
; p̂� ¼

PT
k¼� Zk

T� � þ 1
;

p̂ ¼

PT
k¼1 Zk

T
:

This is an exact binomial generalized likelihood ratio statistic and can

help to quantify the ratio change. Because the change-point location � is

unknown, we compute the statistic for all candidate loci �¼ 2, . . . , T-1,

and find the one yielding the maximal change. The solution is

�̂ ¼ argmax
�

L�:

2.2 A general iterative procedure for calculating P-value

We seek to compute the significance P-value for the maximum test sta-

tistic. To this end, following Worsley (1983), we use a general iterative

procedure to calculate how likely the maximum likelihood ratio statistic L

would be less than L�̂ , denoted as PrðL5L�̂ Þ, under the null hypothesis.
For the combined process in Section 2.1, let Sk and Sk

0 be the total

numbers of successes (from the treatment process) at intervals [1, k� 1]

and [k, T], respectively, (k¼ 2, . . . ,T� 1). The likelihood ratio test statis-

tic L� depends only on Sk and Sk
0. Given that S ¼ Sk þ Sk

0, and S ¼ mx

is fixed, L� depends only on Sk.

Therefore, given L�̂ and the test statistics, events of Lk5L�̂ can be

expressed as events of the form ak � Sk � bk for suitable choices of

ak ¼ inffSk : Lk5L�̂ g and bk ¼ supfSk : Lk5L�̂ g. For k ¼ 1; . . . ;T, we

define Fk vð Þ ¼ Pr \ki¼1 events of Li5L�̂ jSk ¼ v
� �

so that the P-value

can be derived as follows:

(1) Initially; set F1 vð Þ ¼ 1; for a1 � v � b1.

(2) For 2 � k � T� 1; find Fk vð Þ for ak � v � bk by

Fk vð Þ ¼
Xbk�1

u¼ak�1

Fk�1 uð Þhk�1ðu; vÞ

where, for 0 � u �Mk�1 ¼
Pk�1

i¼1 mi; 0 � v� u � mk;

hk u; vð Þ ¼
Mk�1

u

 !
mk

v� u

 !
=

Mk

v

 !
:

(3) A final iteration for k¼T at v¼S will produce

FT Sð Þ¼PrðL5L�̂ Þ.

(4) The desired probability will be Pr L � L�̂ð Þ ¼ 1� PrðL5L�̂ Þ.

The procedure is based on a dynamic programming approach. Its

working logic is similar to the forward/backward algorithms used in

hidden Markov models (Rabiner, 1989). Because the statistic L� depends
only on Sk, as a naı̈ve approach, we may enumerate all possible values

of Sk for each position and consider all combinations S1S2 . . .ST, then

pick the ones having L5L�̂ and sum their likelihoods to obtain the

final solution PrðL5L�̂ Þ. Let D be the maximum number of possible

values for Sk, k¼ 1,2 . . . ,T, then the computational complexity for

this brute-force approach is O(DT), namely, exponential in terms of

the problem size T.

In contrast, our algorithm solves this complex computation iteratively.

Fk(v) represents the likelihood that no testing statistics � L�̂ can be

found from position 1 to k, given Sk¼ v. So when k reaches the terminal

point T and v¼S, we can obtain the final solution PrðL5L�̂ Þ. To com-

pute Fk(v), we only need Fk�1(.), as illustrated in Supplementary Figure

S1. Specifically, Fk(v) will assume that u successes are contributed by

Fk�1(u) (namely, sampled from Mk � 1) and the remaining (v� u) suc-

cesses come from mk, whose likelihood is then governed by the hypergeo-

metric function hk(u,v). From the figure, we know that the

computational complexity for one iteration, as determined by the

number of edges, is O(D2). The total computational complexity is, there-

fore, O(TD2), namely, linear in terms of the problem size T.

2.3 A directional multiple testing procedure for identifying

dramatic shortening or lengthening events

If the usage of the long isoform increases, we call it lengthening, and if it

decreases, we call it shortening. Identifying shortening or lengthening

events may be critical for downstream analyses, such as analyzing

miRNA target sites. The significance we compute in the previous section

is for a two-sided test. That is to say, when the null hypothesis is rejected,

we can only state that there is a change, either lengthening (p̂�4p̂0) or

shortening (p̂�5p̂0). In practice, on rejecting the null H0, one may often

conclude that the change is either lengthening or shortening based on the

sign of (p̂� � p̂0). There is a chance that this decision strategy will make a

false statement about the sign, which is termed a directional error, or a

type III error (Benjamini et al., 2005). It is desirable to control this error

when making directional conclusions, which may not be negligible when a

large number of tests are conducted simultaneously. In our applications,

we often test for tens of thousands of genes at a time.

In the multiple-testing field, it is often argued that an exact null

hypothesis is never true in reality; instead, more likely only significant

differences matter (Benjamini et al., 2005; Williams et al., 1999). Here for

our 30UTR switching problem, small change may happen by chance and

is irrelevant to the phenotype of interest. Dramatic change may be more

robust and easier to replicate. Therefore, focusing on dramatic change is

particularly meaningful, as we often have only one or few replicates in

RNA-Seq experiments.

We propose to use the odds ratio (OR) at the estimated change-point �̂

to measure the change direction and magnitude, reasoning that the pro-

posed method essentially chooses the location that gives the strongest

association in a 2� 2 contingency table among all possible locations.

Thus, we perform Fisher’s exact test at the estimated change-point �̂ to

make such directional decisions. We formulate this problem as control-

ling false discoveries within the multiple-testing framework. Using a simi-

lar definition as in Guo et al. (2010), we denote the mdFDR to be a

combination of two parts. One is the false discovery rate (FDR), resulted

from the change-point testing procedure. The other is the pure directional

FDR (dFDR), derived from Fisher’s exact test,

mdFDR ¼ FDRþ dFDR ¼ E
C

R _ 1

� �
þ E

F

R _ 1

� �
¼ E

Cþ F

R _ 1

� �

where C is the number of falsely rejected true null hypotheses and R is the

total number of rejected hypotheses among H1, . . . , Hm. F denotes the

total number of false null hypotheses among H1, . . . , Hm that are cor-

rectly rejected while at least one directional error has been made when

deciding on the signs of the components.
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To control mdFDR, the expected proportion of Type I and directional

errors among all the rejections, we propose a directional testing procedure

as follows:

(1) Apply the BH procedure (Benjamini and Hochberg, 1995) at level

� to test whether there is a significant change among all the

m hypotheses.

(2) Let R denote the number of hypotheses rejected.

(3) For every i¼ 1, . . . , R, perform one-sided Fisher’s exact test for

testing OR4d (d� 1).

(4) If Fisher’s exact test has a P-value Pi
fisher �

R
ma, then reject the null

hypothesis.

It is shown that a similar BH procedure using the same two-sided

P-value twice can control the mdFDR at level a (Benjamini et al.,

2005). The directional testing procedure proposed here has its novel ex-

tension in comparison with the BH procedure in Benjamini et al. (2005).

Specifically, the same significance P-values are reused in testing direction

and controlling directional errors in (Benjamini et al., 2005); in contrast,

our procedure uses an additional one-sided Fisher’s exact test for detect-

ing dramatic change and the rejection is based on these new P-values. We

show in our simulation studies that our new testing procedure can control

mdFDR at the nominal level. It is noted that when d¼ 1, the one-sided

test determines the direction of 30UTR changes. The user may set d to be

much larger than 1 to detect genes with more dramatic 30UTR changes.

3 SIMULATION STUDIES

3.1 Power and FDR evaluation of the change-point model

We first present simulation results to demonstrate the perform-

ance of our change-point model. We assume there are two

30UTR isoforms with different ending polyA sites as shown in

Figure 1. The gene expression ratio before and after the change

point (Fig. 1C) will critically influence how easily the change can

be detected. So we generated the 30UTRwith different expression

ratios under two conditions. Specifically, under condition 1, the

entire 30UTR has a constant expression level, whereas, under

condition 2, the expression level was increased by K-fold in the

common region and the extended region remained the same as in

condition 1. Gene expression level was measured in reads per

kilobase per million mapped reads (RPKM), Mortazavi et al.,

2008). We simulated two constant expression levels RPKM¼ 1

and RPKM¼ 2 for condition 1. These two RPKM values are

commonly used for determining expressed genes in RNA-Seq

real data analyses (Ji et al., 2011; Zhang et al., 2013). We

assumed that the total number of mapped reads was 100 mil-

lion/sample and the 30UTR length was 1000 bp. We considered

three possible change points at 250, 500 and 750bp of the

30UTR. We varied the fold change K in the common region

from 2 to 4 with increments of 0.5. The null distribution was

simulated by setting K¼ 1 for estimating type I errors. We simu-

lated 500 30UTRs with change (K41) and 500 30UTRs without

change (K¼ 1) to estimate the power and FDR of our proposed

method, respectively. We set FDR nominal level¼ 0.05. The

simulation was repeated 50 times, and we reported the averaged

power and FDR.

The simulation results are summarized in Figure 2. We see that

FDR was controlled at the nominal level¼ 0.05 in all settings,

suggesting that the proposed method is a valid testing procedure.

Moreover, we find that the fold change, expression level and

change-point position all influence 30UTR switching detection.

First, the power of our proposed method increases with the fold

change from small to large. This is expected because the change

is more likely to be detected when the signal becomes stronger.

Second, the power increases when the gene expression level in-

creases. Under the same fold change, the power of RPKM¼ 2 is

always higher than that of RPKM¼ 1, suggesting that increasing

the number of reads that are covered in the 30UTR will also

benefit change detection. Third, the position of the change

point has an impact on the performance too. The change point

in the middle yielded the highest power, compared with the

change points close to the two ends.

3.2 Power and mdFDR evaluation of the proposed

testing framework

We next evaluate the power and mdFDR for the proposed two-

step testing framework. To simulate alternative hypotheses with

mixed ORs, we used similar simulations as above but with the

following modifications. For the 500 30UTRs with fold change,

we divided them into two groups with 250 each. The fold change

for the first group is uniformly distributed from 1 to 3, and the

second group is uniformly distributed from 3 to 5. We set d¼ 1

and d¼ 3 to test the changes with OR41 and OR43, respect-

ively. We applied our proposed directional testing procedure at

mdFDR level¼ 0.05.

As we can see from Figure 3, our proposed testing framework

is able to control mdFDR at the nominal level¼ 0.05 for all the

settings. Similarly, the power increases when the expression level

doubles from RPKM¼ 1 to RPKM¼ 2, and the change point at

the middle position is easier to detect than those closer to the two

Fig. 2. Power and FDR evaluation of the change-point model at the

nominal level FDR¼ 0.05. The FDR for the change-point model was

controlled at the nominal level. Fold change, expression level and

change-point position all have an influence on 30UTR switching detection
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ends. It is noted that when the hypothesized OR is changed, the

results change accordingly. For example, if we are interested in

detecting the 30UTRs with OR43 by setting d¼ 3, the testing

procedure then favors the second group of 30UTRs with

OR�unifð3; 5Þ and would not reject the 30UTRs in the first

group with OR�unifð1; 3Þ. When we set d¼ 1 for testing the

30UTR changes with OR 41, the 30UTRs in the group with

OR�unifð3; 5Þ are easier to detect because the signal is relatively

stronger than that of d¼ 3. This explains the power difference

between testing OR 41 and OR 43 as shown in Figure 3.

In summary, it is easier to capture the switching events when

the OR is higher, the expression level is higher or the change

point is closer to the middle.

4 REAL DATA APPLICATIONS

4.1 Application to regular RNA-Seq data

We first applied our proposed method to analyze regular RNA-

Seq data that have been commonly produced to profile transcrip-

tome changes. MYC is a notable transcriptional factor that has

been frequently activated in many human cancers with profound

cellular influence. Although MYC-binding sites and target genes

have been documented extensively in the past decade, thanks to

the widespread application of high-throughput technology, the

role of MYC and MYC target genes in androgen-controlled

breast cancer growth remains unclear. To elucidate MYC regu-

latory network in molecular apocrine breast cancers, Ni and col-

leagues used RNA-Seq to profile transcriptome changes before

and after MYC knockdown by siRNA in MDA-MB-453 breast

cancer cells with androgen stimulation (Ni et al., 2013). In sum-
mary, they transfected MDA-MB-453 breast cancer cells with
control (siCtrl) or MYC siRNA (siMYC) for 48 h, followed by

treatment with 10 nM DHT (DiHydroTestosterone, the most
potent androgen) or vehicle (veh) for 6 h, resulting in three con-
ditions: siCtrl-veh, siCtrl-DHT and siMYC-DHT. High-

throughput 50bp single-end sequencing was performed on
Illumina HiSeq 2000 platform for each sample, generating total
numbers of short reads ranging from �26 million to�39 million.

Following the authors, we made two comparisons, siCtrl-DHT
versus siCtrl-veh and siMYC-DHT versus siCtrl-DHT, but to
detect 30UTR shortening events instead of gene expression level

changes.
We downloaded the dataset from NCBI (National Center for

Biotechnology Information) Gene Expression Omnibus (http://
www.ncbi.nlm.nih.gov/geo/) under GSE45202. We aligned the

raw reads to hg19 reference genomes using a conventional
RNA-Seq aligner Tophat (Trapnell et al., 2009) v1.3.1 with de-
fault parameters. Coverage filter can help to reduce false-positive

findings and is a heuristic strategy commonly used in existing
RNA sequencing tools and analyses. Following MISO (Katz
et al., 2010), we required that each 30UTR should have at least

20 supporting reads in both samples, leading to 8052 and 7878
genes in the two comparisons, respectively, for further analysis.
Our method was applied to detect shortening events with OR42

at an mdFDR level of 0.05. We identified 947 shortening 30UTRs
in siCtrl-DHT versus siCtrl-veh and 1524 shortening 30UTRs in
siMYC-DHT versus siCtrl-DHT, respectively, with 461 genes in

common. There are 1063 genes uniquely identified in the com-
parison of siMYC-DHT versus siCtrl-DHT but not in the com-
parison of siCtrl-DHT versus siCtrl-veh, which may be

associated with MYC knockdown given the DHT treatment.
We describe two examples of significant MYC-dependent
shortening events, LDHA and OGDH, on the UCSC genome

browser (Fig. 4), to demonstrate that our proposed method
worked well in detecting such 30UTR switching without relying
on any polyA annotations. Because of space limitation, we only

displayed the 30UTR region despite that the actual reads spanned
the whole gene body. We observed a highly non-uniform distri-
bution of data in the 30UTR, a common phenomenon in RNA-

Seq data, which may be caused by polyA mRNA selection bias
(Wang et al., 2009). We included the polyA track in the genome
browser, which showed the annotated polyA sites (colored bars)

from the PolyA_DB. We observed dramatic changes before and
after the predicted change points. Clearly, the two genes LDHA
and OGDH tend to use the proximal polyA site instead of the

distal site in siMYC-DHT. These change points are also consist-
ent and supported by the polyA sites annotated in the
PolyA_DB. Together, these results suggest that our proposed

method works well to detect 30UTR switching without relying
on any polyA annotations.
LDHA catalyzes the conversion of L-lactate and NAD to

pyruvate and NADH in the final step of anaerobic glycolysis.
It has been shown to be highly correlated with breast cancer
growth (Wang et al., 2012). OGDH encodes one subunit of the

2-oxoglutarate dehydrogenase complex that catalyzes the overall
conversion of 2-oxoglutarate (alpha-ketoglutarate) to succinyl-
CoA and CO(2) during the Krebs cycle. It also plays an

important role in breast cancer cells (Qattan et al., 2012).

Fig. 3. Power and mdFDR evaluation of the directional testing proced-

ure at the nominal level mdFDR¼ 0.05. For all the settings, our pro-

posed testing framework is capable of controlling mdFDR at the nominal

level. It is easier to capture the 30UTR switching events when the OR is

higher, the expression level is higher or the change point is closer to the

middle
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These shortening genes may be worthwhile for further biological

study because the loss of distal region, if containing miRNA

target sites, may help escape degradation destiny or translational

repression.
We further conducted a gene set enrichment analysis (GSEA)

of these 1063 MYC-dependent shortening genes using a hyper-

geometric test. The canonical pathways and Gene Ontology

(GO) gene sets definitions were downloaded from the

Molecular Signatures Database (http://www.broadinstitute.org/

gsea/msigdb/index.jsp). The results are summarized in Table 1

(Canonical pathways) and Supplementary Table S1 (GO gene

sets). It has been suggested that MYC plays a crucial role in

several aspects of cellular function, such as metabolism,

growth, replication, differentiation and apoptosis (Ni et al.,

2013). These pathway results suggest interesting transcription

relevant functions of these 1063 MYC-dependent shortening

genes, such as splicing, intron processing and transcript elong-

ation. These genes are primarily associated with mRNA

processing and gene expression, which are critical in cancer de-

velopment (David and Manley, 2010; Sotiriou et al., 2006). The

original studies (Ni et al., 2013) focused on conventional differ-

ential expression analysis. Capturing 30UTR switching from the

same RNA-Seq dataset using our proposed method would shed

additional light on cancer transcriptome regulations and suggest

new roles of MYC.

To compare with the existing methods that rely on polyA

annotations for 30UTR switching analysis, we also run MISO

(Katz et al., 2010; version 0.4.1 with default parameters) to ana-

lyze this RNA-Seq dataset for identifying 30UTR shortening

events. We filtered tandem 30UTR events following the MISO

manual as follows: (i) at least one inclusion read, (ii) one exclu-

sion read, such that (iii) the sum of inclusion and exclusion reads

is at least 10 and (iv) the � � is at least 0.2 and (v) the Bayes

factor is at least 10, and (i)–(v) are true in one of the two samples.

MISO did not output any tandem 30UTR events, although it did

report other alternative splicing events, such as skipped exons,

intron retentions, etc. This shows that methods depending on

polyA annotations may suffer from low power in 30UTR switch-

ing analysis. The capability of our method for detecting 30UTR

switching will fill a void among current alternative splicing and

processing analysis tools.

4.2 Application to special RNA-Seq data

We analyzed another breast cancer dataset (Fu et al., 2011) to

highlight the flexibility of our proposed method to handle special

RNA-sequencing data. To improve efficiency of capturing APA

sites, Fu et al. (2011) developed a novel strategy to sequence only

reads with poly(A) tails followed by a linear trend test method

for analyzing APA site switching. Specifically, they modified

oligo-d(T) tagged with sequencing primers after polymerase

chain reaction (PCR) to sequence polyadenylated reads. They

performed their SAPAS (Strategy of sequencing APA Sites)

method to profile APA sites of human breast cancer lines and

compared it with normal cell lines, generating in total �31 mil-

lion short reads with 75 bp length from the Illumina platform.

Fig. 4. Examples of two MYC-dependent 30UTR shortening events. The

vertical lines indicate the estimated change points predicted by our pro-

posed model. We observed dramatic changes before and after the pre-

dicted change points. Clearly, the two genes LDHA and OGDH tend to

use the proximal polyA site instead of the distal site in siMYC-DHT.

These change points are also consistent and supported by the polyA sites

annotated in the PolyA_DB (colored bars in the PolyA_DB and Poly(A)

tracks). Together, these results suggest that our proposed method works

well to detect 30UTR switching without relying on any polyA annotations

Table 1. Significantly enriched canonical pathways in analysis of the

breast cancer dataset of (Ni et al., 2013) at FDR¼ 0.05

Canonical pathway P-value

REACTOME_MRNA_SPLICING 3.74E-05

REACTOME_GENE_EXPRESSION 4.99E-05

REACTOME_PROCESSING_OF_CAPPED_

INTRONCONTAINING_PRE_MRNA

7.74E-05

BIOCARTA_PROTEASOME_PATHWAY 1.06E-04

REACTOME_FORMATION_AND_MATURATION_

OF_MRNA_TRANSCRIPT

1.32E-04

REACTOME_METABOLISM_OF_PROTEINS 2.51E-04

REACTOME_ELONGATION_AND_PROCESSING_

OF_CAPPED_TRANSCRIPTS

2.55E-04

KEGG_OXIDATIVE_PHOSPHORYLATION 3.35E-04

REACTOME_TRANSLATION 6.15E-04

KEGG_CARDIAC_MUSCLE_CONTRACTION 7.68E-04

REACTOME_INFLUENZA_LIFE_CYCLE 9.18E-04
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We downloaded the dataset from the NCBI sequence read
archive (http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi; acces-

sion number SRA023826). PolyA containing reads cannot be

mapped to the genome directly. Therefore, we used Bowtie2

(Langmead and Salzberg, 2012) local model to align those

polyA containing reads because this model does not require

end-to-end mapping. We then applied our method to identify
30UTR shortening events. The authors reported their results at

FDR level¼ 0.01. To make a comparison, we reported shorten-

ing events at the same mdFDR level of 0.01 for OR 41.

We identified 972 shortening events in the breast cancer cell

line (MCF_7) in comparison with the control sample

(MCF_10A). Their linear trend test method was conservative
according to the authors and detected only 428 shortened

30UTRs (Fu et al., 2011). We found that 85% of their shortening

genes were also detected as shortening by our method. The larger

numbers of 30UTR shortening events we identified under the

same significance level suggest the higher power of our method.
To demonstrate the accuracy of these findings, we first exam-

ined the four genes that were validated in their studies. All the

four genes, DDX5, SEC61A1, HSBP1 and FAM134A, were
detected to be shortening in MCF_7 by our method. The short-

enings of these four genes were all experimentally confirmed (see

the PCR results in the Supplementary Material of Fu et al.,

2011). Moreover, visualization of the identified shortening

events highlighted the accuracy of our prediction. Figure 5

shows two genes OAZ1 and SDC1 that were missed by the
linear trend method but demonstrated clear shortening patterns.

Both genes are known to be related with cancer (Kastl et al.,

2010; Nikolova et al., 2009). Finally, we conducted the GSEA

for these 972 shortening genes. The results are summarized in

Table 2 (canonical pathways) and Supplementary Table S2 (GO

gene sets). Interestingly, we also found the mRNA splicing path-

way to be the most significantly enriched in this breast cancer

dataset, as in the first breast cancer dataset we analyzed in

the previous section. In particular, these genes are related to

spliceosome, a large ribonucleoprotein complex that guides

pre-mRNA splicing in eukaryotic cells. Recent studies have

demonstrated the contribution of spliceosome as a core compo-

nent in oncology (Quidville et al., 2013) and its role in determin-

ing 30UTR length (Berg et al., 2012). Taken together, these

results indicate the accuracy of our proposed method in captur-

ing 30UTR switching. Overall, this real data application

highlights the flexibility of our method for analyzing NGS data

that are specially generated to sequence and capture polyaden-

lyation cleavage sites.

5 CONCLUSION AND DISCUSSION

We propose a change-point model based on a generalized likeli-

hood ratio statistic for identifying 30UTR length change in the

analysis of next-generation RNA sequencing data. We develop a

directional multiple testing procedure for identifying dramatic

shortening or lengthening events. The numerical performances

of our approach are investigated using both simulated and real

data. The results show that our proposed method is powerful,

accurate and flexible for analyzing various types of next-gener-

ation RNA sequencing data.

Some experimental approaches may measure polyA sites ex-

plicitly, e.g. the one for the breast cancer dataset of (Fu et al.,

2011) we analyzed. They can provide results serving directly to

identify polyA sites. It is noted that detecting polyA sites and

30UTR switching are two different problems, although related.

Essentially, 30UTR switching implies polyA site usage change. It

will benefit from the discovery of polyA sites but does not require

this information directly. As a simple strategy, one may first use

an algorithm to identify polyA sites and then apply a simple

approach such as Fisher’s exact test to detect changes.

However, the polyA site discovery step may not be trivial be-

cause of the heterogeneity of the cleavage sites at polyA sites

and/or low coverage at some locations. For example, the authors

of the Fu et al. (2011) dataset performed a modified snowball-

like clustering (Tian et al., 2005) and then empirically took the

Fig. 5. Examples of two shortening events that were identified by our

method but missed by the linear trend test. The vertical lines indicate the

change points predicted by our proposed model. We observed a clear

change before and after the predicted change points, suggesting that

our proposed method work well to detect 30UTR switching without rely-

ing on any polyA annotation information. The two genes OAZ1 and

SDC1 tend to use the shorter isoform in the MCF_7 cancer cell line in

comparison with the control sample MCF_10A, and demonstrated clear

shortening patterns

Table 2. Significantly enriched canonical pathways in analysis of the

breast cancer dataset of (Fu et al., 2011) at FDR¼ 0.05

Canonical pathway P-value

REACTOME_MRNA_SPLICING 3.83E-05

REACTOME_ELONGATION_AND_PROCESSING_

OF_CAPPED_TRANSCRIPTS

1.78E-04

KEGG_CELL_ADHESION_MOLECULES_CAMS 1.88E-04

KEGG_SPLICEOSOME 2.11E-04

REACTOME_DIABETES_PATHWAYS 2.25E-04

BIOCARTA_EIF_PATHWAY 4.07E-04

REACTOME_PROCESSING_OF_CAPPED_INTRON_

CONTAINING_PRE_MRNA

5.36E-04

REACTOME_FURTHER_PLATELET_RELEASATE 7.13E-04
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cleavage clusters with more than one read as polyA sites. It may
be complex and non-trivial to optimize such a two-step ap-
proach. In contrast, it is an advantage of our method over

two-step strategies by providing a one-stop integrated solution.
The dynamic programming strategy has greatly reduced the

computational complexity of our algorithm from exponential

O(DT) to linear O(TD2). In practice, the typical 30UTR size T
is �1000–2000bp. We observed that most legitimate regions [ak,
bk] for Sk have size5150 for the conventional RNA-Seq data

from Ni et al. (2013) we analyzed. We ran our program on a
computing node with 800MHz CPU and 4GB memory. It took
only �6h to analyze the whole dataset of (Ni et al., 2013) for

the two comparisons at the speed of a few seconds/gene.
Therefore, our program is so efficient that it does not require
high-performance computing facility and can run feasibly on

most computers.
Many genes may have more than two polyA sites. Given more

than two polyA sites, the alternative model (H1) in our method

assuming two polyA sites will fit less well but still better than the
null model H0 assuming one polyA site. The null remains the
same. Thus, our testing procedure remains valid even though it

may not be optimal under some circumstance. In other words,
the actual FDR may be lower than the nominal FDR cutoff
when more polyA sites are involved. Empirically, the user may

use a more lenient cutoff if he feels our procedure is (over) con-
servative. Our method may not always be optimal when the
signal is subtle. For instance, when there are multiple change

points that are all subtle, a more powerful test can be designed
by considering all change points. However, we do not expect
many such instances. Moreover, if they are interested, the users

may manually inspect further those identified genes to see
whether there is more than one change point and where they are.
It is noted that the expression of 30UTR and its regulation can

be complex. For example, there are transcripts that are solely
composed of 30UTR (Carninci et al., 2006; Mercer et al.,
2011). Although the development of our tool is motivated for

the need to detect 30UTR switching, it may also identify changes
caused by such transcripts. Depending on applications, caution
thus should be used with regard to the biology and the interpret-

ation of the identified change points.
The proposed method can be improved in several ways. First,

one limitation is that the current method cannot handle sample

replicates. We may extend it by computing joint likelihood over
multiple samples, assuming the same change point across sam-
ples but allowing p̂0, p̂� and p̂ to vary for different sample com-

parisons. Second, we assume there are only two isoforms with
one change point. We may extend it for multiple isoforms with
K41 change points. In principle, we may search similarly for the

K points that yield the most significance with computational
complexity of O(LK), where L is the whole UTR length. We
may further assume K is unknown and determine it using

model selection (Shen and Zhang, 2012). Third, statistical infer-
ence of confidence estimates is as important as point estimates.
For example, the confidence intervals on the estimated change

points could provide more information as needed for some
downstream analyses, such as determining the loss/gain of
miRNA target sites. This can be obtained based on the values

accepted by a level � of likelihood ratio test (Worsley, 1986).
Fourth, in addition to 30UTR switching analysis, our proposed

method can also be extended to other applications. For example,

one can merge together the multiple 30UTRs of a gene, if any, to

perform alternative last exon analysis. Moreover, if input vector

is the coverage of entire exon regions of a gene, our proposed

method can also detect premature cleavage and polyA events,

another set of interesting biological phenomena that has received

much attention recently (Kaida et al., 2010). We are working on

these extensions.
To our knowledge, the proposed approach is the first one to

allow the analysis of 30UTR switching without relying on any

polyA annotations, one major limitation of existing methods.

The closest existing approximate solution may be those requiring

polyA annotation information, e.g. MISO compared in our ana-

lysis. These existing tools also have the same limitations as our

method, such as not capable of handling sample replicates, not

supporting multiple isoforms and no confidence interval esti-

mates for the change point. These limitations warrant develop-

ment of new bioinformatics methods.
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