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Abstract

Rhodopsin mutations cause many types of heritable retinitis pigmentosa (RP). Biochemical and in

vitro studies have demonstrated that many RP-linked mutant rhodopsins produce misfolded

rhodopsin proteins, which are prone to aggregation and retention within the endoplasmic

reticulum, where they cause endoplasmic reticulum stress and activate the Unfolded Protein

Response signaling pathways. Many vertebrate models of retinal degeneration have been created

through expression of RP-linked rhodopsins in photoreceptors including, but not limited to,

VPP/GHL mice, P23H Rhodopsin frogs, P23H rhodopsin rats, S334ter rhodopsin rats, C185R

rhodopsin mice, T17M rhodopsin mice, and P23H rhodopsin mice. These models have provided

many opportunities to test therapeutic strategies to prevent retinal degeneration and also enabled in

vivo investigation of cellular and molecular mechanisms responsible for photoreceptor cell death.

Here, we examine and compare the contribution of endoplasmic reticulum stress to retinal

degeneration in several vertebrate models of RP generated through expression of mutant

rhodopsins.
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74.1 Introduction

Rhodopsin encodes a G protein-coupled multipass transmembrane protein that is expressed

solely in rod photoreceptors and is essential for phototransduction [1]. Many heritable types

of RP are caused by mutations in rhodopsin (www.sph.uth.tmc.edu/retnet). Biochemical

studies in heterologous cell culture expression systems have found that many RP-linked
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rhodopsin mutations generate mutant rhodopsin proteins that are misfolded, abnormally

aggregated, and are retained within the endoplasmic reticulum (ER) by ER protein quality

control mechanisms such as the Unfolded Protein Response (UPR) [2–7]. Many animal

models of retinal degeneration have also been developed through expression of mutant

rhodopsins in photoreceptors. Here, we compare roles for ER stress in several vertebrate

models of retinal degeneration expressing mutant rhodopsins.

74.2 VPP and GHL Transgenic Mice

“VPP” and “GHL” transgenic mice both express genetically modified mouse opsin bearing

V20G, P23H, and P27L mutations under mouse opsin promoter control and have been

widely studied as models of human RP [8, 9]. In these mice, in the absence of any wild-type

rhodopsin (in rhodopsin knockout background), the triple mutant rhodopsin aggregates as

abnormal dimers and is found mostly within the rod inner segment co-localizing with ER

markers [9]. By contrast, in the presence of wild-type rhodopsin, fewer abnormal rhodopsin

dimers are formed, and mutant rhodopsin can be detected in the rod outer segment [10].

These findings indicate that the photoreceptor recognizes the triple mutant rhodopsin as a

misfolded protein and retains it in the ER, where it likely causes ER stress and activates

UPR signaling. These findings also suggest that wild-type rhodopsin somehow reduces the

levels of abnormal rhodopsin dimers and enables mutant rhodopsin protein to exit from ER

to the outer segment, when both wild-type and mutant rhodopsin are co-expressed in

photoreceptors. This alleviation may be incompletely sustained since these animals still

ultimately develop photoreceptor cell loss.

74.3 P23H Rhodopsin Transgenic Xenopus Laevis

Transgenic Xenopus laevis expressing X. laevis rhodopsin bearing a P23H mutation under

the control of the X. laevis opsin promoter develop progressive retinal degeneration in a

transgene dose-dependent manner [11]. Mutant X. laevis P23H rhodopsin predominantly

localizes within the rod inner segment in transgenic X. laevis, co-localizing with the ER-

resident calnexin protein [11]. Mutant X. laevis P23H rhodopsin protein also forms

abnormal dimers and other higher order protein aggregates in solubilized retina lysates from

these animals [11]. These findings in transgenic X. laevis indicate that X. laevis mutant

P23H rhodopsin is misfolded and retained in the ER. Interestingly, endogenous wild-type X.

laevis rhodopsin is still expressed in these animals, but amelioration of the abnormal

aggregation and ER retention has not been reported for P23H rhodopsin protein despite co-

expression of the wild-type protein.

74.4 P23H Rhodopsin Transgenic Rat

Transgenic rats expressing mouse opsin bearing P23H mutation under mouse opsin

promoter control develop retinal degeneration in a transgene dose-dependent manner and are

widely used to study retinal degeneration mechanisms and therapeutics [12–14]. Molecular

studies have found increased levels of ER stress-induced and UPR signaling pathway-

activated mRNAs and proteins, such as the ER-resident chaperone Grp78/BiP and the

transcription factor Chop, at ages that roughly correspond with the onset and early

progression of retinal degeneration [6, 15]. These findings mirror cell culture studies that
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found activation of UPR signaling pathways and ER stress-induced genes in response to

P23H rhodopsin expression [6, 16]. UPR signaling promotes selective degradation of

misfolded P23H rhodopsin in vitro and could also operate in these animals to remove P23H

rhodopsin protein from photoreceptors [7, 17]. P23H rhodopsin protein aggregation and

subcellular localization has been difficult to determine precisely in these transgenic rats, in

part because of nearly identical homology between the transgenic mouse P23H rhodopsin

protein and endogenous rat rhodopsin protein.

74.5 S334ter Rhodopsin Transgenic Rat

Transgenic rats expressing mouse opsin bearing a premature termination codon at residue

S334 also develop retinal degeneration in transgene dose-dependent manners [14, 18].

S334ter rhodopsin lacks carboxy-terminal residues required for accurate rhodopsin protein

intracellular localization and accurate phototransduction signaling by rhodopsin [19–22]. In

vitro studies have reported that many carboxy-tail mutant rhodopsin proteins fold with

sufficient fidelity that they do not form abnormal aggregates and can journey out of the ER

to the outer segment [3, 23]. Surprisingly, recent reports found increased levels of ER stress-

induced proteins, BiP/Grp78 and Chop, in retinas of transgenic S334ter rats compared to

wild-type animals [24, 25]. It is unclear why and how S334ter rhodopsin causes ER stress,

but ER stress could arise through the disruption of photoreceptor calcium homeostasis due to

abnormal rhodopsin phototransduction. Recent biochemical studies have also found that

some S334ter rhodopsin is retained within the ER to a greater degree compared to wild-type

rhodopsin (albeit less than the ER retention seen with P23H rhodopsin) [17]. Increased ER

latency of S334ter rhodopsin could also contribute to elevated ER stress levels seen in

transgenic S334ter rhodopsin rats.

74.6 R3 (C185R Rhodopsin) Mouse

The R3 mouse line was identified in an N-ethyl-N-nitrosourea mutagenesis mouse screen

[26]. These animals develop an autosomal dominant retinal degeneration that mapped to a

C185R mutation in the native mouse opsin gene [26]. Coincidentally, orthologous human

C185R mutations have also been identified in RP patients [27]. Structural modeling of the

C185R mutant rhodopsin predicted that the long side chain of the abnormal arginine residue

would interfere with rhodopsin folding and thereby lead to generation of misfolded

rhodopsin protein [26]. C185R rhodopsin protein entirely localized to the inner segment in

R3/R3 homozygous mice [26]. Ultrastructural studies further found that R3/R3 homozygous

animals produced virtually no outer segment, while R3/+ heterozygous animals showed

short outer segments with extensive disc disorganization [26]. These findings suggest that

photoreceptors recognize C185R rhodopsin as a misfolded protein to be retained in the ER

and targeted for degradation.

74.7 T17M Transgenic Mouse

Transgenic mice expressing the human rhodopsin gene and flanking sequences bearing the

T17M mutation develop a progressive retinal degeneration and have been used to study

therapeutic effects of vitamin A [28]. In vitro studies previously demonstrated that T17M

rhodopsin was misfolded and retained within the ER similar to P23H rhodopsin [2, 3, 7].
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Up-regulation of several ER stress-induced and UPR activated target genes were observed in

the retinas of transgenic T17M mice [29]. Furthermore, increased GFP fluorescence was

seen in photoreceptors when T17M mice were crossed with ER stress-sensitive GFP reporter

mice [29, 30]. Multiple additional intracellular signaling pathways and cellular processes,

including the Akt signaling pathway, autophagy, and mitochondrial intrinsic apoptosis

regulators, were also dysregulated in T17M animals in addition to activation of UPR

signaling pathways [29]. These findings suggest that many intracellular mechanisms are

disrupted during the course of T17M rhodopsin-induced retinal degeneration.

74.8 P23H Rhodopsin Knock-In Mouse

P23H rhodopsin knock-in mice have recently been generated through targeted replacement

of the P23H codon in endogenous mouse opsin gene [31]. By contrast to prior vertebrate

P23H rhodopsin models, the P23H rhodopsin knock-in mice express no exogenous

transgenic copies of rhodopsin. P23H rhodopsin knock-in heterozygous mice develop a

progressive retinal degeneration that is significantly more rapid and severe in mice

homozygous for the P23H rhodopsin knock-in allele. In P23H rhodopsin knock-in mice,

P23H rhodopsin was incompletely glycosylated, retained within the ER, and found at very

low levels compared to wild-type rhodopsin, presumably because ER-retained P23H

rhodopsin was quickly targeted for degradation [31]. In heterozygous animals, 1D4-

immunoreactivity to visualize rhodopsin protein localization showed rhodopsin labeling in

rod outer segments with minimal rhodopsin labeling elsewhere in the photoreceptor [31].

Moreover, the outer segments were significantly shorter and contained abnormal,

perpendicularly polarized discs [31]. Interestingly, the retinal degeneration seen in the P23H

knock-in mice was worsened by genetic depletion of 11-cis-retinal, a molecular chaperone

of P23H opsin in vitro [31].

74.9 P23H Rhodopsin-GFP Knock-In Mouse

P23H rhodopsin-GFP knock-in mice have also recently been generated through targeted

replacement of an endogenous mouse opsin allele with homologous human opsin genomic

region carrying a mutated P23H codon and GFP fused to the carboxy terminus of rhodopsin

[32]. Heterozygous mice develop a mild retinal degeneration that is severely worsened in

homozygous animals. In these animals, the P23H rhodopsin-GFP knock-in allele was

transcribed as efficiently as endogenous opsin [32]. However, P23H rhodopsin-GFP protein

levels were significantly lower than that of the wild-type rhodopsin protein, presumably

through decreased stability and enhanced degradation of the P23H rhodopsin-GFP protein

[32]. The fusion of GFP to P23H rhodopsin in these animals provided an opportunity to

specifically track the subcellular localization of P23H rhodopsin-GFP independent of wild-

type rhodopsin in photoreceptors. P23H rhodopsin-GFP was found to be predominantly

mislocalized to the rod inner segment and outer nuclear layer, where the ER and nuclear

membranes reside, with smaller amounts of GFP signal found in the outer segment and inner

plexiform layer [32].
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74.10 Discussion

Misfolded membrane proteins commonly aggregate, are retained within the ER, elicit ER

stress, and activate the UPR [33, 34]. UPR signaling then enhances degradation of

irreparably damaged proteins. Many mutant rhodopsins linked to RP display all of these

features in heterologous cell culture expression studies. In vertebrate models of retinal

degeneration generated through mutant rhodopsin expression in photoreceptors, abnormal

rhodopsin protein aggregation, ER retention, and UPR activation/ER stress are also seen to

varying degrees suggesting that ER stress is also involved in retinal degeneration in vivo.

Vertebrate models have also revealed additional intriguing properties and effects of mutant

rhodopsins in retina including: (1) photoreceptors can rapidly identify and clear mutant

rhodopsins from the ER via unclear mechanisms, (2) co-expression of wild-type rhodopsin

can enable mutant rhodopsin to escape ER and/or promote its degradation via unclear

mechanisms in photoreceptors, and (3) disorganization of discs and outer segments are

frequently in photoreceptors expressing mutant rhodopsins. Investigating functions and

properties of ER unique to photoreceptors may provide further insight into the role of ER

stress in retinal degeneration.
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Abbreviations

RP Retinitis pigmentosa

ER Endoplasmic reticulum

UPR Unfolded Protein Response

VPP V20G, P23H, and P27L mutations

GHL V20G, P23H, and P27L mutations
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