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Abstract

Training or exposure to a visual feature leads to a long-term improvement in performance on

visual tasks that employ this feature. Such performance improvements and the processes that

govern them are called visual perceptual learning (VPL). As an ever greater volume of research

accumulates in the field, we have reached a point where a unifying model of VPL should be

sought. A new wave of research findings has exposed diverging results along three major

directions in VPL: specificity versus generalization of VPL, lower versus higher brain locus of

VPL, and task-relevant versus task-irrelevant VPL. In this review, we propose a new theoretical

model that suggests the involvement of two different stages in VPL: a low-level, stimulus-driven

stage, and a higher-level stage dominated by task demands. If experimentally verified, this model

would not only constructively unify the current divergent results in the VPL field, but would also

lead to a significantly better understanding of visual plasticity, which may, in turn, lead to

interventions to ameliorate diseases affecting vision and other pathological or age-related visual

and nonvisual declines.
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Introduction

Visual perceptual learning (VPL) is defined as a long-term improvement in visual

performance on a task resulting from visual experiences.1–10 An expert in X-ray analysis,

for example, can identify a tumor from the pattern of gray and black spots on an X-ray scan

without much difficulty, whereas it is impossible for an untrained person to perform the

task. Such feats are possible because the experts are trained through experience.
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VPL indicates that, long after many aspects of sensory development have ceased in an early

period of our life, repeated exposure or training can improve our visual abilities and cause

reorganizations of neural processing in the brain. Therefore, VPL is regarded as an

important tool that can help to clarify the mechanisms of adult visual and brain

plasticity.11–14 In addition, an increasing number of studies have found that training on a

visual task can significantly strengthen the visual abilities of adult patients with amblyopia

and other forms of abnormal vision15–20 and ameliorate age-related visual declines.21–23

These recent clinical successes are the result of translating basic VPL research findings into

practical and powerful real-world applications.24–28 Thus, a clearer understanding of the

mechanisms of VPL in adults could lead to innovations in clinical intervention as well as

advancement in basic science.

Three major directions in VPL research

In light of the steadily increasing body of evidence in the VPL field, a unified model is

highly sought. However, a new wave of research findings has caused the field to diverge

along three major directions. First, the mechanisms that govern the specificity and

generalization of VPL remain controversial. Seminal psychophysical studies reported that

VPL is highly specific for stimulus features (e.g., retinal location, orientation, contrast,

spatial frequency, motion direction, background texture, and eye) that are trained or exposed

during training.29–44 However, recent studies have indicated that under some conditions

VPL can be generalized to untrained features.45–52 Second, the locus, or brain area/

information processing stage, at which VPL occurs has been highly debated. One line of

studies has suggested that VPL is associated with changes primarily in visual areas (visual

model),53–67 while the other line of studies has proposed that VPL arises from changes in

higher-level cognitive areas that are involved in decision making, or changes in weighting

between the visual and cognitive areas (cognitive model).68–76 Third, it has been

controversial whether task-relevant and task-irrelevant VPL (TR-VPL and TI-VPL,

respectively) share a common mechanism or reflect distinct mechanisms.8 TR-VPL of a

feature occurs owing to training on a task of the visual feature and is gated by focused

attention to the feature in principle.33,77–80 On the other hand, TI-VPL is defined as VPL of

a feature that is irrelevant to a given task.81 It has been found that TI-VPL does not

necessarily require attention to, and awareness of, the trained feature.81–83 Some studies

have suggested that the same or similar mechanisms84–86 underlie TI-VPL and TR-VPL,

while others have suggested distinct mechanisms.1,45,87,88

Toward a unifying model of VPL

The findings described above reveal a substantially divergent picture of the current VPL

field. Existing assembled models account for only a partial body of evidence. Instead, we

propose a constructive approach that builds a unified VPL model from a global perspective.

This approach attempts to comprehensively explain the existing divergent findings in the

field.

Here, we propose a new theoretical framework, termed a two-stage model, built on the

following two simple assumptions. First, there are two different types of learning: stimulus-

driven learning (feature-based plasticity) and task-dependent learning (task-based plasticity).
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Second, feature-based plasticity occurs within visual areas, whereas task-based plasticity

occurs in higher-level cognitive areas, where information from visual and nonvisual areas

are integrated, or in the connections between the visual and cognitive areas.

The goal of this review is to summarize the aforementioned three major directions in the

VPL field and describe how the two-stage model accounts for the divergent findings, and

therefore leads to a comprehensive picture of VPL. Systematic examination of the validity

of the two-stage model will be needed in future studies.

Specificity versus generalization of VPL

Specificity and generalization have been a point of divergence in the VPL field. A well-

established trademark characteristic of VPL is its specificity; improvement in visual

performance is largely specific to stimulus features such as retinal location,33,35,38,42

contrast,29,44 orientation,34,36,37,40 spatial frequency,32,36,40,42 motion direction,30,31,41,43 or

background texture38 that were used during training. In other words, VPL is not generalized

to other features. In addition, it has been shown that performance improvement is specific to

an eye to which a trained stimulus is presented during training.32,33,39,40 Such high

specificity of VPL has been often regarded as the evidence for refinement of the neural

representation of a trained visual feature.

The early general view that VPL occurs specifically for a trained feature has been

challenged by recent VPL studies that reported generalization of VPL to untrained features

under certain conditions.45–52,89 These results support the view that VPL is mostly caused

by improved task processing, and specificity of VPL is not explained by changes in low-

level visual representations, but rather by higher level cognitive factors such as enduring

attentional inhibition of the untrained features,48,50–52,90 selective reweighting of readout

process to find specific visual representations which are the most useful for a trained

task,46,69,75,76,91 or overfitting the trained neuronal network to accidental features of the

specific stimulus that is used during training.6,92

Lower versus higher brain locus of VPL

One of the controversies in the VPL field concerns the brain locus of VPL, that is, the neural

processing stage that is changed in association with VPL. The accumulated findings can be

generally framed in terms of one of two opposing models: the visual and cognitive models.

Both models have amassed substantial psychophysical, physiological, and computational

findings in their respective favors.

As mentioned, a number of psychophysical studies have shown that VPL is often specific to

a trained feature29–44 and eye.32,33,39,40 These findings suggest that VPL involves changes

in visual areas in which feature- and eye-specific information are processed.93–95 In

accordance with this visual model, physiological studies have reported changes in neural

responses of visual areas to a trained feature,54,96,97 even when the trained feature was

merely exposed to subjects without any active task on the trained feature.53,56–58,60,65

Results of neuroimaging studies have also supported this view.55,59,61,62,64,67
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On the other hand, recent psychophysical and computational studies have proposed the

cognitive model or connectivity model in which VPL arises from changes in higher level

cognitive areas that are involved in decision making (e.g., the intra parietal sulcus, frontal

eye fields, and anterior cingulate cortex) or changes in connection weights between the

visual and cognitive areas.50,51,69,74–76 This argument is supported by studies that showed

that VPL occurs in association with neural changes in cognitive areas or connectivity

between visual and cognitive areas,68,70,71,74 rather than only in visual areas.72

TR-VPL versus TI-VPL

Another open problem concerns whether TR-VPL and TI-VPL are subserved by common

mechanisms or by separate mechanisms. Since the initial discovery of TI-VPL,81 a number

of studies have been conducted on TI-VPL.82,83,88,98–110 However, the mechanism of TI-

VPL has yet to be well clarified. Some studies have developed models that focus on

accounting for TR-VPL, but not for TI-VPL.1,45,88 In contrast, other studies have proposed

models that assume that TR-VPL and TI-VPL share common mechanisms.84–86 In spite of

this controversy, there have been scarcely any attempts to empirically examine the

relationship between the neural mechanisms of TR-VPL and TI-VPL from a global

perspective.

Multistage mechanisms of VPL

A potentially useful framework for understanding the aforementioned divergent results

consists of multistage learning mechanisms. It has been generally assumed that a single

mechanism governs VPL of a given task throughout an entire training period. However, if

VPL is associated with changes in mechanisms in multiple stages, the seemingly

contradictory findings described above could be regarded as a reflection of changes in

different stages. As discussed below, several studies have shown the involvement of at least

two qualitatively different stages in VPL.

A pioneering study by Karni and Sagi39 indicated two different stages for TR-VPL of a

texture-discrimination task. In an early phase of training on the texture-discrimination task, a

rapidly saturating performance improvement occurred. After this initial improvement, no

further performance improvement was found during training. However, prominent

improvement occurred when the subjects’ performance was tested 8–20 h after the training

period. Importantly, while the initial improvement in the early phase was transferable from a

trained eye to an untrained eye, the improvement found several hours after the training

period was monocular (i.e., no transfer to the untrained eye). These results suggest that the

transferred learning component reflected the setting up of a task-related processing while the

eye-specific learning component occurred at an earlier stage of visual processing after

training was terminated. Thus, at least two qualitatively different stages of learning may be

involved in TR-VPL of the texture-discrimination task.

Two different stages of learning were also reported in a study for TR-VPL of a global

motion– discrimination task using a random dot–motion stimulus.109 The random dot–

motion stimulus in this study was designed so that the directions of local dots that compose

the stimulus do not overlap with a global-motion direction that is defined by the mean
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direction of the local dots. During relatively early phases of time course of training on the

global motion–discrimination task, motion sensitivities increased for the directions in which

the local dots moved. However, as training proceeds further, motion sensitivities increased

only at or around the trained global-motion direction. Importantly, the motion directions of

the local dots did not include the global-motion direction, which was the target in the

discrimination task. On the other hand, in a different condition in which the randomdot–

motion stimulus was merely presented as irrelevant to a given task, increase of motion

sensitivities was found only for the direction of the local dots, but not for the global-motion

direction, even after an extended training period. These results indicate that learning gain for

the directions of the local dots is obtained irrespective of whether the motion stimulus was

TR or TI, and that there is learning gain for a global-motion direction only when the global-

motion direction was TR. That is, learning on the local direction is based purely on the

stimulus while learning on the global direction is only in response to task demands, since the

global-motion direction was not physically presented during training. These results are also

in accord with the hypothesis that the two different stages of learning occur at different

temporal phases or at different speeds.

A recent neuroimaging study67 gave important hints about the multistage mechanisms of

VPL in the brain. In an early phase of training on the texture-discrimination task,

performance increase was accompanied with activation enhancement of a trained region of

the early visual area (V1). However, in a later phase, after performance on the task reached a

plateau, V1 activation was reduced to the baseline level, while performance remained high.

The observed time course of V1 activation might be a reflection of synaptic potentiation

during the early phase of training and synaptic downscaling in the later phase after

performance becomes saturated.67 This finding suggests a multistage mechanism of VPL in

which V1 is involved in the encoding of learning but not in the retention of already

improved performance after learning, which might be supported by a mechanism in a

different stage than encoding. This could explain why a number of single cell–recording

studies have found very little evidence for changes in receptive-field properties in V1.

A recent psychophysical study reported that location specificity of VPL is related to long-

term adaptation in early visual areas.89 Results of the study showed that location-specific

VPL occurs under conditions that involve sensory adaptation. However, VPL at one location

is completely generalized to a new and untrained location when sensory adaptation is

removed during training. Sensory adaptation, which develops within the visual system,111

can occur passively without any task involvement,112 persist for a long time,113 and

selectively reduce performance on an exposed feature.114–116 Together with the nature of

sensory adaptation, the results of the study are in accord with the hypothesis that location

specificity results from long-term sensory adaptation that may passively occur in visual

areas. The generalization of VPL to untrained features after the removal of the adaptation89

also suggests that plasticity related to the task occurs at a higher stage but is constrained by

the location-specific signals owing to sensory adaptation. This view is also consistent with

results showing that VPL becomes highly specific to a trained feature with a larger number

of trials, while more generalization of VPL occurs from shorter training with a relatively

small number of trials,117 since the shorter training leads to less sensory adaptation.118
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The above-mentioned findings in these four studies suggest that TR-VPL derives from

multistage neural mechanisms and that improved performance can be mediated by

refinement of a representation of a trained feature and/or improvement in task-related

processing. These results also suggest that the one learning type can precede the other,

depending on the phase of training and the stimulus and task used during training.

A unified two-stage model

Here, we propose a new theoretical framework, which we call a two-stage model. The two-

stage model is inspired by the findings about multistage mechanisms of VPL described

above and may account for the aforementioned divergent results in the current VPL field.

The two-stage model

According to the two-stage model, there are two different types of plasticity—feature-based

plasticity and task-based plasticity—that occur in different stages in visual information

processing. Feature-based plasticity refers to refinement of the processing/representation of

visual features (e.g., improved information transmission,119 gain, and bandwidth) that are

used during training. This type of plasticity results from simple exposure to the features,

irrespective of whether the feature is TR or TI, and results in specificity of VPL to the

features (feature constraints). Task-based plasticity refers to improvement in task-related

processing and results from active involvement in a trained task during training. Feature-

based plasticity occurs within visual areas in which feature-specific visual signals are

processed and/or feature representations are made, whereas task-based plasticity occurs in

higher level cognitive areas that govern task-related processing.

How does the two-stage model account for the divergent results in the current VPL field?

The aforementioned divergent findings/controversial issues could be understood within the

framework of the two-stage model. First, the two-stage model would clarify the relationship

between TR-VPL and TI-VPL. TR-VPL involves both refinement of the processing/

representation of visual features that were used during training (feature-based plasticity) and

improvements in task processing (task-based plasticity) (Fig. 1A). On the other hand, TI-

VPL only involves feature-based plasticity (Fig. 1B). In other words, TI-VPL is subserved

by the lower-level component of TR-VPL. This view is consistent with both common and

divergent aspects of TR-VPL and TI-VPL found in previous studies.84–86,88

Second, the two-stage model would account for the current divergent findings about the

brain locus of VPL. As described before, the visual model supports changes within visual

areas in association with VPL,53–67 whereas the cognitive model argues that VPL arises

from changes in higher-level cognitive areas or changes in connections between the visual

and cognitive areas.68–76 In particular, it is controversial whether TR-VPL involves changes

in the visual or cognitive areas, or both.8 From the viewpoint of the two-stage model for TR-

VPL (Fig. 1A), this lack of clarity derives from two different types of plasticity and their

different contributions to improved performance. For a certain task, stimulus, and training

phase, improved performance in TR-VPL mainly depends on feature-based plasticity, and

the resultant changes are observed in visual areas. In a different condition and phase,

Shibata et al. Page 6

Ann N Y Acad Sci. Author manuscript; available in PMC 2014 July 18.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



improved performance in TR-VPL is mainly based on task-based plasticity, which in turn

appears as changes in higher-level cognitive areas or connectivity between the visual and

cognitive areas, but not in the visual areas. This view does not accept a simple dichotomy

between the visual and cognitive models, but rather supports multifaceted mechanisms for

the loci of VPL in the brain. For example, the two-stage model may explain why changes in

visual areas are observed in some studies but not in other studies of TR-VPL, because

feature-based plasticity does not always occur during an entire period of training and its

neural signature may be observable only in a part of the period. This view can account for

both the involvement of the visual areas in human studies55,59,61,62,64,67 and little evidence

of changes in neural activity in the visual areas in monkey single-unit recordings.72,120

Animal studies have employed much longer training period (months) than human subjects

(days) before neurophysiological measurements to examine neural changes caused by VPL.

Third, the specificity of VPL29–44 can be accounted for as feature constraints that are

assumed in feature-based plasticity. The two-stage model (Fig. 1C) predicts that

generalization of TR-VPL to untrained features occurs if the feature constraints are removed

or not involved during training. As mentioned previously, removal of sensory adaptation

leads to generalization of TR-VPL.89 This generalization can be regarded as a result of a

lack of feature constraints during training. In addition, previous studies showed that

generalization of VPL is obtained as a result of training that employs easy task trials.1,45 It

has been suggested that, in this condition, refinement of processing/representation of trained

visual features does not occur, while performance increase is mediated mainly by

improvement in task-related processing.1,45 Furthermore, recent studies have reported that

performance improvement owing to training on a task of a feature is generalized to an

untrained location when the training is followed by an additional training on another

irrelevant task at the untrained location (so-called double-training paradigm).50 Although

precise nature of the effects of the double-training paradigm is still under debate,105,121 the

reported generalization effect may be attributed to removal of feature constraints as a result

of the additional training.

Relationships with existing models

What is the key difference distinguishing the two-stage model from existing models in the

field? As described, the visual, cognitive, and connectivity models assume that TR-VPL

involves changes in the visual areas, higher cognitive areas, and connection weights between

the visual and cognitive areas. In the two-stage model, a key difference from these models is

that TR-VPL occurs as a result of at least two different types of plasticity (feature and task-

based plasticity) at different cortical stages. The reverse-hierarchy theory1,87 proposed that

TR-VPL is derived from changes in higher and lower cortical stages. There are two

important differences between the reverse-hierarchy theory and the two-stage model. First,

the reverse-hierarchy theory considers only TR-VPL while, as described above, the two-

stage model covers both TR-VPL and TI-VPL within an integrated framework. Second,

while the reverse-hierarchy theory assumes that learning at a lower cortical stage follows

learning at higher cortical stage, the two-stage model retains flexibility in temporal order of

different types of plasticity. These types of plasticity can occur in order or at the same time,

depending on the task and stimulus. Indeed, task-based and transferrable learning may occur

Shibata et al. Page 7

Ann N Y Acad Sci. Author manuscript; available in PMC 2014 July 18.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



first in some cases,39 while learning based on an exposed TI feature occurs first in other

cases.109

Conclusions and future directions

As described above, the two-stage model would constructively clarify the incompatibilities

in the VPL field and synthesize current divergent findings into a global and comprehensive

shape.

The assumptions of the two-stage model need to be empirically validated in future studies.

The first touchstone is to test whether the two different types of plasticity (feature-based and

task-based plasticity) involved in TR-VPL are experimentally dissociable. Feature-based

plasticity refers to changes in the visual representation of a trained feature in visual areas,

while task-based plasticity refers to changes in task processing in higher level cognitive

areas. Thus, neural changes based on feature-based plasticity may be observed as changes in

neural responses to the trained feature in the corresponding visual areas in association with

TR-VPL, irrespective of whether subjects engage in a trained task on a feature or are merely

presented with a feature that is irrelevant to a given task. On the other hand, neural changes

due to task-based plasticity may be observed in higher cognitive areas or in connectivity

between the visual and cognitive areas only when subjects engage in the trained task on the

trained feature.

The second touchstone is to test whether the two different phases in TR-VPL are

experimentally dissociable. The two-stage model predicts that contributions of the feature-

and task-based plasticity to overall performance improvement vary according to a temporal

phase of training and a task and stimulus used during training. The previous psychophysical

studies suggested that performance improvement can occur on the basis of visual and task-

related processing in different phases of training.39,109 Thus, it is possible that in a certain

phase of training neural correlates of improved performance are found in the visual areas,

while in a different phase neural changes are observed in the cognitive areas or in the

connectivity between the visual and cognitive areas.

The framework of the two-stage model poses important questions/predictions that have the

potential to comprehensively connect different findings that have been investigated

separately and to clarify relationships between them. For example, it would be beneficial to

reconsider the roles of response feedback and reward from the multistage perspective.

Response feedback provides subjects with the information as to whether their response to a

stimulus was correct.122–124 Some types of TR-VPL require response feedback125 but others

do not.122,126 On the other hand, reward can be given to subjects irrespective of whether the

subjects engaged in a task on a trained feature.82 We propose that task-based plasticity

follows both supervised and reinforcement learning rules,40,73,76 while feature-based

plasticity, in which task-related improvement is not involved, is driven by unsupervised

learning modulated by reinforcement signals.63,82,83,85,106,126,127 Thus, it is likely that both

response feedback and reward facilitate task-based plasticity, whereas only reward

influences feature-based plasticity.
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Another example is the relationship between TI-VPL and perceptual-deterioration effects on

a visual feature that occur as a result of intensive training or overexposure to the

feature.114–116,118,128,129 It has been suggested that the deterioration effect is the result of

saturation of synaptic strength and the resultant breakdown of visual information processing

in early and local neuronal networks when too many task trials/stimuli are given.6,118

Importantly, it has been reported that TI-VPL often occurs when an exposed feature is not

suppressed by attention.108,130 In addition, a fast version of TI-VPL has been found to occur

with as little as a single trial of exposure to a feature.131 These characteristics of TI-VPL and

the perceptual-deterioration effect suggest that feature-based plasticity is sensitive to the

strength and frequency of visual signals that are exposed during training.

In this review, we focused on VPL of primitive features, such as motion direction,

orientation, and background texture. The learning of more complex features that may

involve affective or semantic processing, categorization learning, and other types of learning

and memory have emergent distinguishing characteristics of their own, but may also have

fundamentally common aspects of mechanisms shared by that of the learning of primitive

features. Thus, it is possible that the unified two-stage model leads to a better understanding

of the mechanisms unique to the learning of primitive features and also of a general

mechanism of learning and memory. Indeed, previous studies on VPL of primitive visual

features have shown them to be highly related to the learning of changes of objects,132,133

categorization learning,134 word learning,135,136 speech learning,137 learning in general,138

sleep,115,139 memory,140 psychiatric diseases,141 and attention.142

A fuller understanding of VPL also has implications for clinical applications. The research

history of VPL has proved that an understanding of the mechanisms of VPL is vital to the

development and application of clinical interventions for patients with weak or degraded

vision.15–23 Thus, the proposed two-stage model, if experimentally verified, would not only

resolve the major controversial issues in the current VPL field, but would also clarify the

comprehensive mechanisms of VPL, which would help us to develop more practical and

powerful clinical applications.
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Figure 1.
The two-stage model in visual perceptual learning (VPL). (A) Task-relevant VPL (TR-VPL)

reflects two different types of plasticity: feature-based and task-based plasticity.

Contributions of feature- and task-based plasticity to overall performance improvement vary

according to the phase of training and the task and stimulus used during training. (B) Task-

irrelevant VPL (TI-VPL) is subserved only by feature-based plasticity. (C) TR-VPL can be

generalized to untrained features if feature constraints are removed.
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