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Abstract

A growing number of patients are recognized worldwide to have chronic kidney disease. Glomerular and interstitial fibrosis
are hallmarks of renal progression. However, fibrosis of the kidney remains an unresolved challenge, and its molecular
mechanisms are still not fully understood. Gremlin is an embryogenic gene that has been shown to play a key role in
nephrogenesis, and its expression is generally low in the normal adult kidney. However, gremlin expression is elevated in
many human renal diseases, including diabetic nephropathy, pauci-immune glomerulonephritis and chronic allograft
nephropathy. Several studies have proposed that gremlin may be involved in renal damage by acting as a downstream
mediator of TGF-b. To examine the in vivo role of gremlin in kidney pathophysiology, we generated seven viable transgenic
mouse lines expressing human gremlin (GREM1) specifically in renal proximal tubular epithelial cells under the control of an
androgen-regulated promoter. These lines demonstrated 1.2- to 200-fold increased GREM1 expression. GREM1 transgenic
mice presented a normal phenotype and were without proteinuria and renal function involvement. In response to the acute
renal damage cause by folic acid nephrotoxicity, tubule-specific GREM1 transgenic mice developed increased proteinuria
after 7 and 14 days compared with wild-type treated mice. At 14 days tubular lesions, such as dilatation, epithelium
flattening and hyaline casts, with interstitial cell infiltration and mild fibrosis were significantly more prominent in transgenic
mice than wild-type mice. Tubular GREM1 overexpression was correlated with the renal upregulation of profibrotic factors,
such as TGF-b and aSMA, and with increased numbers of monocytes/macrophages and lymphocytes compared to wild-type
mice. Taken together, our results suggest that GREM1-overexpressing mice have an increased susceptibility to renal
damage, supporting the involvement of gremlin in renal damage progression. This transgenic mouse model could be used
as a new tool for enhancing the knowledge of renal disease progression.
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Introduction

Kidney disease and renal failure are worldwide health problems

and increasing research efforts are required to understand the

molecular mechanisms underlying kidney injury to identify new

therapeutic approaches.

Gremlin is a highly conserved secreted protein that is present

both on the external cell surface and within the ER-Golgi

compartment of different cell types [1,2], affecting diverse

biological processes such as growth, differentiation and develop-

ment [2]. At early stages of development, gremlin is expressed in

the mesoderm and inhibits BMP (bone morphogenetic protein)

signaling by binding to and blocking BMP activity [3]. Thus,

gremlin is considered a BMP antagonist. The Grem1-null mouse

was the first in vivo gremlin model. This model was neonatally

lethal, and the embryos presented kidney and lung defects [4].

Gremlin is critical in nephrogenesis but is quiescent after birth and

absent in the normal adult kidney [5]. The gremlin gene may be

induced in human mesangial cell cultures that are exposed to high

glucose levels and is expressed in the kidneys of diabetic rats [6–8].

In biopsies obtained from patients with diabetic nephropathy, we

have observed gremlin expression in areas with tubule-interstitial

fibrosis, and it colocalizes with transforming growth factor-b
(TGF-b) [9]. Moreover, gremlin is also expressed in cellular

glomerular crescents and in the tubular and infiltrating interstitial

cells of human biopsies of pauci-immune glomerulonephritis and

chronic allograft nephropathy, broadening the range of activity to

a more global role for gremlin in renal diseases [10,11]. We have

recently shown that recombinant gremlin directly regulates

profibrotic events in cultured tubulo-interstitial cells and acts as

a mediator of TGF-b responses [12]. Blockade of gremlin in

experimental models of diabetes, using heterozygous grem1 mice

or gene silencing, has been shown to ameliorate renal damage,

including proteinuria and fibrosis, suggesting that gremlin

contributes to renal damage progression [13,14]. Furthermore,

gremlin overexpression in rat lungs results in a partly reversible

lung fibrosis through the activation of alveolar epithelial cell
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proliferation [15]. Interestingly, there are no data regarding the

direct effect of gremlin in the kidney.

With the interest to investigate the potential role of gremlin in

the kidney in physiological and pathological conditions in vivo, we

generated viable transgenic (TG) mice expressing the human

gremlin gene (GREM1) in the renal proximal tubular cells under

the control of a specific kidney androgen-regulated promoter

(KAP) that can be used as a molecular ‘‘on-off’’ switch.

We found that GREM1-expressing mice presented normal

renal function, but they were more susceptible to developing renal

damage induced by folic acid (FA) administration (a known

experimental model of acute renal injury), suggesting that gremlin

plays a pathogenic role in renal damage. These mice could be used

as an in vivo experimental model to study the role of gremlin in

renal diseases, such as diabetic nephropathy.

Materials and Methods

GREM1 cloning
Because human and murine mRNAs and proteins for gremlin

exhibit high homology (89% and 98%, respectively), all of the

experiments were performed using the human sequence. GREM1

cDNA was purchased from the Mammalian Gene NIH Collection

(Bethesda, Maryland USA). To facilitate the detection of human

gremlin (as opposed to the endogenous mouse protein), we added a

c-myc tag to the 39 portion of GREM1 using PCR with the

forward primer 59AGTGCGGCGGCTGAGGACCC GCCGC-

ACTGACAT-39 and the reverse primer 59-ATAGCCGCCGCT-

TACAGATCCTCTTCTGAGATGAGTTTTTGTTCATCCA-

AATCGATGGATATGC-39. To add another signal to the

transgene to facilitate detection in transfected cells, we inserted

an e-GFP sequence downstream of human gremlin as follows. The

IRES-eGFP sequence was obtained by PCR using a pIRES2-

EGFP plasmid (Clontech Mountain View, CA, USA) as the

template with the following primers: IRES-eGFP-F (59-TACAT-

TAATGGGCCCGGGATCCGCCCCTC-39) and IRES-eGFP-

R (59-GGCCATATGCGCCTTAAGATACATTGATG-39). The

GREM1-c-myc and IRES-eGFP fragments were independently

cloned into a pGEMT-Easy vector and then sequenced (Macro-

gen, Seoul, Korea) to confirm the modifications and absence of

additional mutations. Next, both the GREM1-c-myc and IRES-

eGFP fragments were subcloned into a modified pCDNA3 vector

using the EcoRI and NotI restriction sites, respectively.

Transfection of EBNA293 and HK-2 cells
To determine whether the pCDNA3-GREM1-myc-IRES-

eGFP generated stable proteins, EBNA293 and human renal

proximal tubulo-epithelial (HK2 cell line, ATCC CRL-2190,

Virginia, USA) cells were both grown in RPMI with 10% fetal

bovine serum (FBS), 1% non-essential amino acids, 100 U/ml

penicillin, 100 mg/ml streptomycin, Insulin Transferrin Selenium

(5 mg/ml) and hydrocortisone (36 ng/ml) in 5% CO2 at 37uC and

were then transfected. EBNA293 cells were transfected with 0.6 mg

of plasmid using LF2000 (Invitrogen, Carlsbad, CA, USA).

Immunofluorescence was performed using a mouse anti-c-myc

antibody (M4439, clone 9E10, Sigma, St. Louis, USA) at a 1/500

dilution followed by a donkey anti-mouse IgG conjugated to Cy3

antibody (Jackson ImmunoResearch, West Grove, PA, USA) at a

1/800 dilution. Images were captured using a Zeiss Axiovert

100M epifluorescence microscope. HK2 cells were grown in the

aforementioned conditions and at 60–70% of confluence; cells

were growth-arrested in serum-free medium for 24 hours before

experiments. HK2 cells were transiently transfected for 48 hours

using FuGENE (Roche, Basel Switzerland) and the pCDNA3-

GREM1-c-myc-IRES2-eGFP plasmid vector. To study the

expression of GREM1 in renal-specific tubulo-epithelial cells,

HK2 cells were transiently transfected with pKAP-GREM1-c-

myc-IRES2-eGFP to confirm the promoter activity. Immunocy-

tochemical studies were performed in cells grown on coverslips.

The cells were then fixed in Merckofix (Merck, Darmstadt,

Germany) and permeabilized with 0.2% Triton-X100 for 1 min.

After blocking with 4% bovine serum albumin and 8% of the

corresponding serum (secondary antibody) for 1 hour, the cells

were incubated with primary antibodies overnight at 4uC, followed

by an Alexa Fluor 633-conjugated antibody (Invitrogen) at a 1/

300 dilution for 1 hour. Negative control samples were processed

in the absence of primary antibody. The cells were mounted in

Mowiol 40–88 (Sigma) and examined using a Leica DM-IRB

confocal microscope.

Transgenesis, genotyping and colony expansion
The pKAP plasmid, which has been previously shown to be

specific in males [16–20], was used as the backbone for transgene

generation. The pKAP plasmid was modified by excising an exon

of the human angiotensinogen gene and the poly (A) signal. First,

the IRES-eGFP sequence was subcloned downstream of GREM1-

c-myc into pGEMT-Easy. The resulting construct was digested

with SphI and NdeI, and the 2.3 kb fragment containing GREM1-

myc IRES-eGFP was subcloned into the modified pKAP plasmid.

The 4.1 kb-long transgene was isolated with AseI and EcoRV and

purified using the QIAEx II kit (QIAGEN, Valencia, CA, USA).

Five hundred molecules were microinjected into hybrid C57BL/6J

x CBA/J zygotes, which were then transplanted into 13

pseudopregnant mothers. The born mice were maintained in a

specific pathogen-free mouse facility in a 12-hour light:dark cycle

with access to food and water ad libitum. The sacrifice of animals

was done with administration of anaesthesia and analgesia,

following the protocols approved by the Committee on the Ethics

of Animal Experiments of Universidad Austral de Chile (Permit

Number:20.2011), and FONDECYT Ethics Committee, and

according to the NIH Guidelines. The founders and pups were

screened using PCR with the following primers: GREM1 intron

1F (59-GCCAGTA AGGAATTCTAATAGG-39), KAP promoter

F (59-ATGAGGACTCTAA TGCGTACAT-39) and GREM1
exon 2R (59-TCCAAATCGATGGATA TGCAAC-39). The PCR

reaction generated two differential products (820 bp endogenous;

1040 bp TG). Once the genotype of the founders was confirmed,

the founders were mated with pure C57BL/6J mice to expand the

colony. F1 mice were screened using PCR as previously described

and used for further molecular and phenotypic characterization

studies.

Mouse characterization
First, kidneys from 4 to 5 week-old mice were analyzed by

indirect immunofluorescence using a rabbit anti-GFP antibody at

a 1/100 dilution (Invitrogen) and immunohistochemistry (IHC) to

detect c-myc. Following confirmation that the female transgenic

mice did not express the transgene, these mice were used only for

mating and to evaluate the off/on system by the administration of

2.5 mg of testosterone via an intraperitoneal (i.p.) injection over

five consecutive days [17,18]. Male TG and wild-type (WT) mice

of five selected lines were also analyzed using western blotting

analyses. The kidneys were dissected from both WT and TG mice

homogenized in lysis buffer (125 mM Tris pH 6.8 and 1% SDS)

supplemented with 1X protease inhibitor cocktail (Sigma P8340).

Twenty micrograms of protein was electrophoresed in a 4–12%

SDS-PAGE gel and transferred onto a PVDF membrane (Bio-

Rad, Dreieich, Germany). The membrane was incubated with
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Figure 1. In vitro validation of the GREM1 plasmid. (a) EBNA293 cells were transfected with pCDNA3-GREM1-c-myc-IRES-eGFP, as described in
the methods. Immunofluorescence shows that eGFP (green) and c-myc (red) are expressed in the same transfected EBNA293 cell. Nuclei were stained
with DAPI (blue) (1000x). (b) In HK-2 cells transfected with pCDNA3-GREM1-c-myc-IRES-eGFP, GREM-1 expression was evaluated by
immunocytochemistry using an antibody against GREM-1, followed by a secondary TRICT antibody (red staining). The figure shows eGFP and
GREM-1 expressed in the same cell (800x). (c) Confocal immunofluorescence of HK-2 transfected cells, showing the loss of E-cadherin and induction of
vimentin in eGFP-positive GREM-1-expressing cells (1600X). E-cadherin and vimentin immunostaining was detected with secondary anti-FITC
antibodies (green).
doi:10.1371/journal.pone.0101879.g001
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anti-c-myc at 1/2500 or anti-actin at 1/5000 (Sigma). Densito-

metric analysis of the immunoreactive bands was performed using

Quantity One software (Bio-Rad).

mRNA expression
Total RNA was extracted with TRIzol according to the

manufacturers instructions and quantified using Qubit reagent

(Invitrogen). RNA was treated with DNase I (Ambion, Austin TX,

USA) to remove potential contamination and reverse transcribed

using random primers and the ImProm-II kit (Promega) to

synthesize double-stranded cDNA. qPCR was performed with the

commercial reagent Maxima SYBR Green qPCR Master Mix

(Promega, Madison WI, USA) to determine GREM1, cyclophilin
and GAPDH mRNA expression levels using the following primers:

human GREM1 F (59-CCCGGGGAGGAGGTGCTGGAGT-

39); human GREM1 R (59-CCGGATGTGCCTGGGGATGTA-

GAA-39); mouse cyclophilin1 F (59-GCAGACATGGTCAACCC-

CACCG-39); mouse cyclophilin1 R (59-GAAATTAGAGTTGT-

CCACAGTCGG-39); mouse GAPDH F(59-TCCGCCCCTTCT-

GCCGATG-39); and mouse GAPDH R (59-CACGGAAGGCC-

ATGGCAGTGA-39). PCR product specificity was verified by

melting curve analysis, and all of the real-time PCR reactions were

performed in triplicate. The 22DDCT method was used to analyze

the relative changes in gene expression levels [21].

Induction of acute renal damage in TG mice
The adult TG lines A and D and wild-type (WT) male

littermates aged 4 to 5 months were used. TG and WT mice were

injected i.p. with 250 mg/kg body weight of FA (Sigma F7876),

dissolved in the vehicle 0.3 M sodium bicarbonate (veh). Control

animals, both WT and TG, received 0.3 ml of veh. Additional

studies were done in transgenic homozygous mice from line A,

injected with FA or vehicle (used as control, because there were

not wild type littermates). Spot urine and serum were collected on

days 0, 7 and 14 from all of the animals and analyzed for

proteinuria and creatininuria using Bradford assay (Bio-Rad) and

a Creatinina Wiener Lab Kit (Wiener Laboratorios, Rosario,

Argentina), respectively. Seven or 14 days after the injection, the

animals were anesthetized with 2% 2,2,2-tribromethanol (Sigma)

dissolved in 2-methyl-buthanol (Sigma). The kidneys were

removed, decapsulated and cut along the sagittal plane. The left

kidney was fixed in 4% formaldehyde, while the right kidney was

immediately frozen in liquid nitrogen and processed for RNA and

protein extraction. The specimens were embedded in paraffin and

cut into 4 mm tissue sections for further histological (PAS/Masson)

Figure 2. Generation and validation of transgenic mice with specific tubular GREM1 overexpression. (a) Illustration of the pKAP GREM1-
c-myc-IRES-eGFP plasmid. Restriction sites used for transgene isolation are indicated with EV (EcoRV) and A (AseI). (b) eGFP and c-myc detection in
renal tubular epithelial cells of transgenic mice. Immunofluorescence against eGFP and immunohistochemistry for c-myc (peroxidase
immunostaining) to detect these proteins in the kidney tissue of transgenic males from line A and WT mice (400x). (c) Kidneys were dissected from
WT and transgenic male mice of lines A, B, C, D and E, and isolated proteins were subjected to western blotting using an antibody against c-myc
(1:1000); anti b-actin (1:2500) was used as a loading control. GREM1 expression was determined by densitometric analysis of the c-myc/b-actin ratio
and normalized to transgenic line C expression.
doi:10.1371/journal.pone.0101879.g002
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and IHC studies using antibodies against gremlin and aSMA, F4/

80, CD3 and PCNA.

Histological analysis and IHC
Tubular and interstitial lesions were graded from 0 to 4 and

analyzed as previously described [22]. IHC for different markers

was performed following heat-induced epitope retrieval (micro-

waving for 10 min in citrate buffer), and sections were incubated

overnight with rabbit anti-human gremlin 1/300 (AP6133a,

Abgent, San Diego, CA, USA), followed by incubation with

Impress anti-rabbit reagent (Vector, Burlingame, CA, USA); or

mouse anti-aSMA 1/100 (DAKO, Carpinteria, CA, USA),

monoclonal anti-c-myc clone 9E10 1/300 (Thermo, Rockford

IL, USA) or anti-PCNA (PC10, DAKO) followed by incubation

with the M.O.M. Immunodetection kit (PK 2200 Vector). All of

the tissue sections were developed using AMEC red chromogen

(SK 4285, Vector) or DAB, and counterstained with hematoxylin.

Interstitial infiltrating cells were detected by mean of F4/80

(monocytes/macrophages) and CD3 (T lymphocytes) antibodies.

F4/80 was detected by using the MA1-91124 antibody (dilution:

1/100, THERMO, Rockford, IL, USA) followed by Immpress

Reagent Kit (MP 7444, Vector, USA) and CD3 was detected

using Trilogy epitope retrieval (Cell Marque, Rocklin, USA) and A

0452 (181–195) antibody (dilution: 1/200, DAKO, USA) followed

by horseradish peroxidase streptavidin (dilution 1:500, SA-5004

Vector, USA), reveled with DAB, and counterstained with

hematoxylin.

Murine Gremlin was detected using anti-murine Gremlin

antibody (dilution: 1/20 AF 956, R&D Systems, Minneapolis,

MN, USA) overnight at 4uC, and the reaction was developed with

Impact NovaRed SK-4805 (Vector, USA).

Image analysis and quantification of the IHC signals were

performed using the KS300 imaging system, version 3.0 (Zeiss).

For each sample, the mean staining area was obtained by an

analysis of 20 fields (20x). The staining score is expressed as the

mm2/dens

Statistical analysis
The results were expressed as the means 6 SEM. Two-tailed

chi-square tests were performed to determine the statistical

significance of the viability of the transgene and the proportion

of female:male pups born in the TG lines. A factorial ANOVA

followed by the Tukey test was performed to compare proteinuria

and Grem1 mRNA expression. The Mann-Whitney U-test was

performed to compare the tubular/interstitial lesions and Grem1,

aSMA, F4/80 and CD3 IHC signals in the TG and WT mice

injected with FA. A Spearman rank correlation was performed to

determine the correlation between GREM1 and TGF-b, and

Kruskal-Wallis analysis was performed to evaluate endogenous

murine gremlin and PCNA expression. Values of p, 0.05 were

considered significant.

Results

Generation of TG GREM1 mice
Validation of the GREM1 expression vector. Expression

of pCDNA3-GREM1-c-myc-IRES-eGFP in EBNA293 cells

revealed that this construct produced stable proteins of c-myc-

GREM1 and eGFP, and both were expressed simultaneously in

these cells (Figure 1a). To distinguish the human TG protein from

the murine endogenous gremlin, a c-myc tag was fused to the

GREM1 protein, and we used eGFP as reporter for transgene

expression. In vitro experiments in EBNA293 cells were

performed to detect the c-myc signal and showed an expression
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pattern consistent with GREM1 subcellular localization [1,2]; in a

similar pattern to that found in human renal biopsies [9–11],

where this protein is localized in cytoplasm and nucleus of the

affected tubular epithelial cells. HK-2 cells transfected with

pCDNA3-GREM1-c-myc-IRES-eGFP were positive for GREM1

(Figure 1b), which confirmed that eGFP could be used as a

reporter for in vivo experiments and that c-myc could be used to

differentiate human GREM1 in TG animals.

To validate our TG construction, exclude loss of function of the

GREM1-c-myc-fused protein and determine whether GREM1

was functional, several experiments were performed in HK2 cells.

We have previously demonstrated that stimulation with recombi-

nant GREM1 protein in HK2 cells induces phenotypic changes

related to epithelial to mesenchymal transition (EMT) [12].

Transient transfection of these cells with pCDNA3 GREM1-c-

myc IRES-eGFP also induced characteristic EMT features, such

as the downregulation of E-cadherin immunostaining and an

induction of vimentin expression, as well as changes in the cell

phenotype to a fibroblast-like morphology, confirming that our

expression vector displayed similar effects to the GREM1

recombinant protein (Figure 1c).

Thus, to specifically induce the expression of GREM1 in

proximal tubular renal cells, we used the promoter of kidney

androgen-regulated protein (pKAP) to drive transgene expression

because it is transcriptionally active only in these cells and its

activity is testosterone dependent.

Transgene isolation was performed by digestion of the pKAP

GREM1-c-myc IRES-eGFP plasmid (Figure 2a) with AseI and

EcoRV, which generated three fragments of 4.1, 1.5 and 1.2 kb.

The 4.1 kb fragment was purified and quantified to obtain 500

molecules/picoliter and then microinjected into C57BL/6J x

CBA/J hybrid zygotes. Ninety percent (232/259) of the microin-

jected zygotes were transferred to pseudopregnant mothers. Eight

of the 57 (14%) pups born were confirmed to be TG using PCR.

All of the founders reached the age of 3 months, and seven of the

founders were subsequently mated with pure C57BL/6 to

generate F1 mice.

Molecular and phenotypic characterization of GREM1
mice

TG lines (named in alphabetic order (A–G)) demonstrated

normal fertility and litter sizes. Transgene transmission from all of

the lines was verified using PCR analysis and appeared normal in

Figure 3. FA injection induces proteinuria and GREM1 and aSMA expression in transgenic line D. (a) The urinary protein to creatinine
ratio (mg/mg) was examined in each experimental group. Positive IHC signals were quantified for (b) gremlin and (c) aSMA with KS300 image analyzer
software. (d) Gremlin mRNA expression levels were determined using real-time PCR. The four parameters were significantly increased in GREM1-
overexpressing transgenic mice. Data are shown as the mean 6 SEM of 5-6 mice per group * p , 0.05; ** p , 0.01; *** p , 0.001. TG vs WT control
doi:10.1371/journal.pone.0101879.g003
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the first and second (F1 and F2) generations in all lines but was

significantly increased in line D (p # 0.001) (Table 1). In all TG

lines, Mendelian ratios were observed between TG/WT males

and females at birth, discarding an effect of transgene expression

on male survival during gestation (Table 1).

Males and females were subjected to immunofluorescence

analysis for eGFP and immunohistochemistry for c-myc. Males

showed specific tubular epithelial expression of eGFP that was

qualitatively variable in each TG line (Table 1). The eGFP and c-

myc signals were not detected in WT males (Figure 2b). Moreover,

this signal was not detected in TG females but could be induced in

testosterone-treated TG females (data not shown), verifying the

functionality of the promoter as previously described [18,20].

To confirm that the TG mice expressed a stable TG protein,

western blotting analysis for c-myc-tagged GREM1 was per-

formed. The assay detected a protein with the expected molecular

weight (,21 kDa) in the kidneys of the TG lines, and this c-myc-

tagged protein was absent in WT mice (Figure 2c). Densitometric

analysis revealed that the GREM1 expression levels were variable

in each TG line and ranged between 1 (line C exhibited the lowest

expression) and 7.5 (line A exhibited the highest expression)

(Table 1). Line G was not used in further experiments because the

RT-PCR analysis detected ectopic expression of GREM1 in seven

extra-renal tissues. The other six TG lines showed low extra-renal

expression (cerebellum, data not shown). The levels of GREM1

mRNA in the kidney ranged between a 2- and 200-fold increase

compared with the WT mice and were related to the transgene

copy number (2 to 44 transgene copy number) (Table 1).

Proteinuria (urine protein to creatinine ratio) was monitored in

the first generation of males every 2 weeks until the age of 6

months in the three groups (WT and TG lines B and D), and no

abnormal increases were observed compared with the WT mice,

indicating that GREM1 expression alone was not sufficient to

develop renal injury. Moreover, no histological lesions were

observed at 6 months of age in any group.

Renal injury induction in GREM1 TG mice
To determine the effect of GREM1 in renal damage in vivo, we

selected mice from two lines and challenged these mice with a

model of FA-mediated acute renal failure [23].

The line D, TG mice (8–18 transgene copies) were evaluated

first. Seven days after FA injection, TG mice presented a

significant increase in proteinuria compared with the treated

WT mice (Figure 3a). However, the morphological lesions score

found at 7 days, did not reach statistical significance between TG-

FA compared with WT-FA (TG 9.0 6 1.0 vs. WT 8.0 6 2.1; p =

0.328, n = 5–6 mice per group). To further evaluate profibrotic

markers, IHC for aSMA, as the first phenotypic marker of

activated fibroblasts, was performed. In FA-TG mice, aSMA was

markedly upregulated, showing a significant increase compared

with FA-treated WT mice (Figure 3c).

Gremlin expression was also evaluated using real-time PCR. In

FA-injected TG mice, (TG-FA) gremlin mRNA expression

showed a nearly 10-fold increase compared with veh-injected

mice and was significantly higher than FA-treated WT mice (WT-

FA) (Figure 3d). Similar findings were observed by IHC, with a

significant increase in gremlin staining after FA injection in TG

mice compared with WT-FA mice (Figure 3b). Furthermore, we

found a significant correlation between aSMA and gremlin IHC

signals (F1,10: 14.34; p , 0.0356; r = 0.5892), indicating that

gremlin is associated with the variation in aSMA (r = 0.5892).

Taken together, these results indicated that the effect observed in
vitro [12] could be corroborated in vivo.

To further evaluate the effect of gremlin in FA-induced damage

and determine if this was a transient or sustained effect, we

performed additional studies using homozygous mice from TG

line A and additionally evaluated its expression 14 days after

treatment with FA. This line had the greatest number of copies of

GREM1 (88 transgene copies) and gremlin mRNA. By real time

PCR, we demonstrated that Grem1 was significantly increased at

7 and 14 days after FA injection (Figure 4) and by IHC gremlin

renal staining was also increased at 7 and 14 days, with higher

level at 14 days after treatment (score, expressed as mean of

percentage/mm2: TG-VEH; 14, TG-FA at 7 days; 343, TG-FA at

14 days; 862, p # 0.0049), indicating that GREM1 expression in

TG mice induces higher renal synthesis of gremlin following FA

administration. Additionally, gremlin has been proposed as a

downstream mediator of TGF-b [6], and we have previously

Figure 4. Effect of FA administration on GREM1 expression in
transgenic line A homozygous mice. Gremlin expression in
transgenic mice was examined 7 and 14 days after treatment with
FA. The GREM1 relative expression in homozygous mice of transgenic
line A was increased at 7 days after injection with FA and remained
increased at 14 days. Data are shown as the mean 6 SEM of 4-9 mice
per group * p#0.0049 TG-FA vs TG-Veh, used as control because no WT
littermates of the transgenic homozygotes mice were available.
doi:10.1371/journal.pone.0101879.g004

Figure 5. Correlation of TGF-b and GREM1 expression in
transgenic line A homozygous mice. TGF-b gene expression was
measured in FA-injected GREM1 transgenic mice. We observed a
strongly positive correlation between TGF-b and GREM1 expression (p#
0.029, R = 0.67; 4-9 mice per group).
doi:10.1371/journal.pone.0101879.g005
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reported that TGF-b induced gremlin expression in renal tubular

cells in vitro [12]. Therefore, to further evaluate profibrotic

factors, TGF-b gene expression was measured. In FA-injected

GREM1 TG mice, an increased relative renal expression of TGF-

b at 7 and 14 days after treatment was observed compared with

WT mice. Moreover, a strongly positive correlation was found

between TGF-b and gremlin expression (p # 0.029, R = 0.67)

(Figure 5). Renal histological analysis at 14 days showed more

severe morphological lesions (tubular dilatation, epithelium

flattening, hyaline casts, interstitial cell infiltration and mild

interstitial fibrosis) in TG-FA mice compared with WT-FA mice

(p = 0.0037 Fisher’s test, and Mann-Whitney p, 0.01) (Figure 6).

Figure 6. Histological analysis (PAS, Masson) of FA-injected mice in transgenic line A homozygous mice. TG-FA mice (right column)
showed more severe morphological lesions (tubular dilatation, flattening of tubular epithelial cells, hyaline casts, interstitial infiltrating cells and mild
interstitial fibrosis) compared with WT mice (left column). p , 0.05 (200x-400x). Control vehicle treated mice are shown at bottom. Figure shows
representative mice of each group of 14–18 studied.
doi:10.1371/journal.pone.0101879.g006
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To further evaluate inflammatory cell infiltration and prolifera-

tion, IHC for F4/80 (murine macrophages), CD3 (murine T cells),

and PCNA was performed. In TG-FA mice, all markers were

strongly upregulated, showing a significant increase compared

with WT-FA mice (Figure 7). Also, a positive correlation was

found between gremlin expression and PCNA at 14 days (R =

0.88, p # 0.0019; data not shown)

Discussion

We reported here, for the first time, the generation of TG mice

expressing GREM1 in a sex- and renal tubular cell-specific

manner with no evident lethal effects and normal renal function

and morphology. This mouse model was designed as a molecular

tool to analyze the effect of gremlin expression in renal damage.

Our results suggest that under normal conditions, GREM1 in

adult tubular cells is not sufficient to cause renal damage.

However, in response to acute renal injury caused by FA injection,

GREM1 TG mice presented exacerbated renal damage, suggest-

ing that gremlin could participate in renal damage progression in
vivo. Gremlin is a developmental gene involved in renal

morphogenesis due to its role as a BMP antagonist, but its

function in the adult kidney is unknown. Several in vitro studies

have evaluated the effect of gremlin in renal cells; however, the in
vivo function has not been investigated. In tubular epithelial cells

in vitro, overexpression of this expression vector resembles the

effect of recombinant GREM1, inducing phenotypic changes

related to EMT [12].

These pKAP GREM1-overexpressing mice, which presented a

specific GREM1 expression pattern in kidney tubular epithelial

cells, demonstrated normal renal function and morphology. The

specific pKAP promoter [20], motivated the specific cell type and

hormone-regulated targeting of transgene expression. In addition,

due to the developmental role of gremlin, expression driven by the

pKAP promoter prevented any lethal effects at embryonic stages

and generated a testosterone-dependent off/on switch in TG

females.

Studies in TG mice overexpressing profibrotic factors, such as

connective tissue growth factor (CTGF-CCN2) in different tissues

have shown similar findings, as observed in our renal GREM1 TG

mice. Although in vitro studies have shown that recombinant

CCN2 increased extracellular matrix production [24], as observed

with gremlin, several in vivo studies have shown that CCN2 alone

is not sufficient to cause ongoing profibrotic changes. In the

kidney, podocyte-specific CCN2-TG mice (in C57BL/6 back-

ground) exhibit no glomerular abnormalities, proteinuria or

matrix accumulation [25]. In C57BL/6 mice, systemic CCN2

administration has been shown induce a transient overexpression

of profibrotic genes at day 5, but it is not sufficient to induce

progressive fibrosis [26], as observed following CCN2 overexpres-

Figure 7. FA injection induces interstitial cell infiltration in transgenic line A homozygous mice. The inflammatory cell infiltration was
characterized by immunohistochemistry with anti-F4/80 (monocytes/macrophages) and anti-CD3 (T cells) antibodies. (A and B). Representative
immunostaining of one mouse from each group (x400 magnification). (C) Quantification of positive IHC signals were quantified for (a) F4/80, (b) CD3
and (c) PCNA using KS300 image analyzer software. All parameters were significantly increased in transgenic mice. Data are shown as the mean 6

SEM of 14–18 mice per group * p , 0.05; ** p , 0.01 vs WT-FA.
doi:10.1371/journal.pone.0101879.g007
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sion in rat lungs [27]. In a mouse skin model, only coinjection of

CCN2 and TGF-b1, not either cytokine alone, caused persistent

fibrosis [28].

Several authors have suggested that gremlin could be consid-

ered as a mediator of renal injury in diabetic nephropathy, based

on experimental studies showing a beneficial effect of gremlin

inhibition [13,14]. In response to FA-induced acute renal damage,

GREM1 TG mice developed higher proteinuria after 7 and 14

days than WT mice. Tubular GREM1 overexpression was

associated with renal upregulation of profibrotic factors, such as

TGF-b and aSMA, recruitment of F4/80 and CD3 positive cells,

and increased cell proliferation in TG mice challenged with FA

compared with WT mice. Furthermore, as hypothesized these

GREM1 overexpressing mice developed more severe histological

damage in response to FA injection at 14 days, particularly those

mice with more transgenic copies and at the time of more gremlin

expression.

In biopsies from patients with diabetic nephropathy, we have

demonstrated that GREM1 is expressed in areas of tubular-

interstitial fibrosis and that it colocalizes with profibrotic markers,

including TGF-b, aSMA and vimentin. These changes also

correlate directly with renal dysfunction, as shown by serum

creatinine levels [9]. All these data suggest a role for gremlin in the

pathogenesis of kidney damage.

Indeed, in the transgenic mice we found more acute tubular

injury induced by folic acid than chronic damage progression.

However it is important to note, than acute tubular injury is

clearly associated with progression towards end stage renal disease

[29], and on the other hand we found a significant interstitial cell

infiltration that is commonly considered as the major initial

mechanism leading to renal fibrosis.

Some evidence supports a potential interrelation between TGF-

b1 and gremlin responses. We have previously demonstrated that

in vitro blockade of endogenous gremlin by a specific siRNA

inhibits TGF-b1-induced profibrotic gene overexpression and

extracellular matrix production in renal fibroblasts. Moreover,

gremlin blockade inhibits TGF-b1-mediated phenotypic-changes

in tubular epithelial cells [12]. Even more, recently, it has been

reported that gremlin likely induces endogenous TGF-b/Smad

signaling, resulting in podocyte injury in mouse podocytes cultured

in high glucose conditions [30]. Many data suggest that gremlin

could be an important promoter of fibrosis in different pathologies,

including liver fibrosis and lung diseases, particularly pulmonary

hypertension, idiopathic pulmonary fibrosis and cancer invasion

[31-35], as we have shown here in an experimental model of renal

damage.

Our results suggest that GREM1-overexpressing mice have an

increased susceptibility to renal damage, supporting the involve-

ment of gremlin in renal damage progression.
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