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We propose a numerical scheme to integrate equations of motion in a mixed space of rigid-body and
dihedral angle coordinates. The focus of the presentation is biomolecular systems and the framework
is applicable to polymers with tree-like topology. By approximating the effective mass matrix as di-
agonal and lumping all bias torques into the time dependencies of the diagonal elements, we take
advantage of the formal decoupling of individual equations of motion. We impose energy conser-
vation independently for every degree of freedom and this is used to derive a numerical integration
scheme. The cost of all auxiliary operations is linear in the number of atoms. By coupling the scheme
to one of two popular thermostats, we extend the method to sample constant temperature ensembles.
We demonstrate that the integrator of choice yields satisfactory stability and is free of mass-metric
tensor artifacts, which is expected by construction of the algorithm. Two fundamentally different
systems, viz., liquid water and an α-helical peptide in a continuum solvent are used to establish
the applicability of our method to a wide range of problems. The resultant constant temperature
ensembles are shown to be thermodynamically accurate. The latter relies on detailed, quantitative
comparisons to data from reference sampling schemes operating on exactly the same sets of degrees
of freedom. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4887339]

I. INTRODUCTION

Molecular mechanics is the classical description of the
internal and relative motions of molecules using suitable in-
teraction potentials known as force fields. These models have
been explored most often by the numerical integration of
Newton’s equations of motion, i.e., by molecular dynamics
(MD).1 Auxiliary constructs couple the system to an exter-
nal bath (thermostats and manostats), and these methods are
often required to generate data that can be compared to exper-
iment. Thermodynamic information is obtained in much more
straightforward ways from these simulations than dynamical
information. The reasons lie in the focus of parameteriza-
tion of the models toward thermodynamics, in the greater de-
pendence of measured dynamics on details of the simulation
setup,2 and in the different susceptibilities to discretization
error.3

The statistical precision of data obtained by unbiased
molecular dynamics methods depends primarily on simula-
tion length.4 This motivates ongoing optimization and de-
velopment on software and hardware levels.5, 6 The cost of
molecular mechanics is dominated by the evaluation of forces
and it is desirable to maximize the simulation time between
successive evaluations. However, increases in the integration
time step (δt) lead to increasing discretization errors, which
bias results and eventually lead to catastrophic instability.3, 7

In the canonical ensemble, integrator errors are absorbed by

a)Author to whom correspondence should be addressed. Electronic mail:
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the thermostat. This leads to incorrect averages and fluctu-
ations of thermal variables and can alter the equipartition
of kinetic energy amongst degrees of freedom.8, 9 Discretiza-
tion errors are amplified for particles with low mass sub-
jected to stiff potentials. Consequently, much work has fo-
cused on algorithms that address the stability issue either by
redistributing or changing atomic masses10 or by eliminating
the fastest motions altogether (constrained dynamics). Geo-
metric constraints can be incorporated via techniques based
on Lagrange multipliers coupled to approximate or iterative
solvers11 and techniques resorting explicitly to generalized
coordinate spaces.12 This paper is concerned with an ap-
proach to the latter.

Given the difficulty in defining “correct,” thermostatted
dynamics,7 it seems justifiable to mandate that molecular sim-
ulations should first and foremost yield accurate and statisti-
cally robust information regarding the equilibrium configura-
tional distributions. Accordingly, a wide spectrum of methods
has emerged whose focus it is to explore the multidimensional
energy landscape governed by the force field of interest.13

These approaches, often by design, sacrifice the pursuit of
dynamical information in favor of extracting thermodynamic
quantities. The most extreme realization of this is the use of
a random Monte Carlo (MC) propagator capable of sampling
different amplitudes of motions in a manner that is even spe-
cific to individual degrees of freedom.14

Unfortunately, the inclusion of constraints can rarely be
decoupled from force field parameterization. This means that
simulations incorporating a significant deviation from the
set of constraints used during parameterization will produce
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inconsistent equilibrium statistics.15, 16 While the most com-
mon biomolecular force fields assume, at most, constrained
bond lengths, there are a few important models that assume
dihedral angles as the only internal degrees of freedom, for
example, ECEPP17 or ABSINTH.18 Most prominently, the
ROSETTA paradigm generally keeps bond lengths and angles
fixed, and this is reflected in its composite energy function.19

It is therefore of continued interest to have access to a stable
molecular dynamics engine that efficiently produces unbiased
equilibrium ensembles for force fields that use constant bond
lengths and angles. This paper proposes one such method. For
clarity, we first review the difficulties associated with design-
ing a stable, efficient, and configurationally unbiased algo-
rithm that uses torsional molecular dynamics to achieve an
accurate description of equilibrium statistics in constant tem-
perature ensembles.

Consider a system of Nat atoms organized into Nmol
molecules each with position vectors �ri with i = 1, . . . , Nat.
The vectors �ri are assumed to be in a space-fixed, global
reference frame. Together, they constitute the state vector r
of dimensionality 3Nat associated with this Cartesian coordi-
nate space. We assume a separable Hamiltonian with a po-
tential energy U(r), which is written explicitly or implicitly
as a function of r such that any given conformation specified
by r has a single, well-defined value for U. Using momenta
and positions as independent variables (Hamiltonian formu-
lation), the integration of the classical equations of motions
takes the following form:

ṗ = −∇U (r),

ṙ = M−1p.
(1)

The mass matrix M is diagonal and trivially inverted. Because
the kinetic energy is 1

2 pTM−1p with M−1 also being diago-
nal, there is no direct coupling between the 3Nat differential
equations for ṙ, and any correlation results indirectly from the
particular functional form of U(r). It is possible to explicitly
constrain any given coordinate by setting its momentum to
zero without changing the contributions to the kinetic energy
made by other degrees of freedom. This means that the factor
resulting from integrating the momenta in the partition func-
tion is constant for a given set of constraints and temperature
and independent of r.

In generalized coordinates φ of the same dimen-
sionality (3Nat) the kinetic energy is written as Ek

= 1
2 pT

φ (JTMJ)−1pφ = 1
2ωT(JTMJ)ω. The Jacobian matrix J

describes the coordinate transformation from Cartesian to
generalized coordinates and its elements are Jkl = δr

k

δφ
l

. The

pφ are the generalized momenta conjugate to the gener-
alized velocities, ω, i.e., pφ = (JTMJ)− 1ω. The matrix
G = JTMJ is called the mass-metric tensor (MMT). For a
separable Hamiltonian H(pφ ,φ) written as a sum of EK(pφ)
and U(φ), the partition function in the canonical ensemble is
Q = ∫

exp [−βH(pφ , φ)]dpφdφ. Here, we have used short-
hand notation for the multidimensional integral, and β equals
(kBT)−1, where kB is Boltzmann’s constant and T is the ensem-
ble temperature. Integration over the generalized momenta
yields Q = ∫ √

det G exp[−βU (φ)]dφ.20 In the absence of
any constraints on the degrees of freedom, the determinant

of the MMT is independent of φ, and Q can be written as
a product of thermal and configurational contributions: Q =
QTQC = C(T)

∫
exp [−βU(φ)]dφ.

The equations of motion for the generalized momenta be-
come:

ṗφ = d

dt
[(JTMJ)ω] = −J∇U (r) = Fφ. (2)

In Eq. (2), we formally impose constraints by letting a sub-
set of elements of ω be zero at all times. Conjugate momenta
become zero as well, and the constrained coordinates are no
longer integrated over. This leads to a term

√
det GS in the

configurational probability density of the free subsystem with
det(G) �= det(GS). More importantly, the constraints lead to
the artifact whereby, unlike det(G), det(Gs) varies with φ (we
refer to these effects as MMT artifacts), and this is highlighted
in panel (a) of Fig. S1 in the supplementary material.21 The
dependence on conformation derives from coupling terms be-
tween constrained and unconstrained coordinates in the ex-
pression for the kinetic energy and is zero only if the con-
strained coordinates correspond to a complete block in a block
diagonal MMT (e.g., an entire molecule).

The magnitude of MMT artifacts depends on the level
of coupling, and it can be argued that corrections for the
weakly coupled constraints supported by linear solvers such
as SHAKE22 are negligible (panel (e) in Fig. 1). Fixman advo-
cated the use of compensating potentials containing det(GS)
explicitly to alleviate the statistical bias introduced by MMT
artifacts. These corrections have been derived in different
forms and shown to be effective,20, 23–26 yet they are not rou-
tinely in use. Numerical efficiency is an important considera-
tion for algorithms meant to propagate φ directly. Many pub-
lished algorithms scale unfavorably with system size either
because one of the nondiagonal matrices is considered explic-
itly or because one requires second derivatives.12, 27

An efficient treatment of complex constraints is made
possible by formalisms originally developed in other
fields.28–30 Recursive computations of det(GS) or its deriva-
tives with φ have been established,23, 31 and these scale lin-
early with system size. By considering each molecule as a
chain of rigid bodies connected by hinges32 with a base and
at least one tip (branched chains have correspondingly more
tips), the free subsystem comprises K degrees of freedom,
which are a combination of torsional ones (hinges) and ex-
ternal ones (global motion of the base). It has been argued
that generalized coordinates are rarely useful for molecular
dynamics,33 and the complexities encountered even for inte-
grators for simple rigid bodies underline the value of the sim-
ple structure of Eq. (1).34–36 Additionally, Eq. (2) reveals the
existence of bias terms deriving from the time dependence
of the generalized momenta that must now involve the time
derivative of J. Elements of J for angular degrees of freedom
are given by

( J3i−2,k J3i−1,k J3i,k ) = ∂�ri

∂φk

= �ak × (�ri − �bk). (3)

In Eq. (3), �ak is the respective unit length vector specifying
the axis of rotation and �bk is a reference point on the axis. The
time derivative of J produces torques not related to Fφ .12, 29, 37
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FIG. 1. Absence of mass-metric tensor artifacts in simulations using Eq. (11) in the main text. (a) Histograms (100 bins) are plotted for all 15 dihedral angle
degrees of freedom of the chain for 3 different mass distributions. Data sets are shifted to allow a more compact visualization within a single panel, and separate
y-axes are provided (color coded). Red, green, and blue colors indicate the chosen distribution of masses (Sec. II E 1). Within each subset, colors change
from light to dark in correspondence with the position of the dihedral angle along the chain. Dashed lines indicate the unbiased (flat) distributions we expect
to observe. Data are for Eq. (11) with the Andersen thermostat and using the middle of the chain as the base of motion. (b) The same as (a) for the velocity
rescaling thermostat. Note that individual velocities can never change sign due to the rescaling protocol (see Appendix C). (c) The same as (a) when using the
first 3 atoms of the chain as the base of motion. (d) Results as in (a) are shown for a Cartesian Langevin integrator with bond length and angle constraints. (e)
The same as (d) for simulations using just bond length constraints. (f) We plot a two-dimensional histogram for two specific dihedral angles. Data correspond
to the conditions for the red data set in (a). Panels (a)–(c) and (f) establish the absence of MMT artifacts, which are clearly discernible in panel (d) and
Fig. S1(a) in the supplementary material.21

This is true irrespective of whether we introduce constraints
to create the K-dimensional space defined above. The time de-
pendence of J describes well-known effects observed in sys-
tems with multiple rotating frames. It has also been proposed
that the use of fully flexible hinges will eliminate the need
for bias terms.35 Importantly, the variable transformation in
Eq. (2) is canonical, and the resultant MMT artifacts must be
compensated if constraints are in use.23, 26

The approach proposed in this paper is different in this
regard. It neither ignores MMT artifacts nor corrects for them
using a Fixman-style potential. We never evaluate det(GS) or
det(G) or its derivatives explicitly. Instead, we derive prop-
agators for φ and ω that can be shown to correspond to
a (generally) artificial dynamics on a modified constant en-
ergy hypersurface with �k = I

1/2
kk ωk and φk as the under-

lying independent variables. Here, the Ikk are the diagonal
elements of the MMT, and the modified kinetic energy is
E′

k = 1
2

∑K
k Ikkω

2
k . This restores Eq. (2) to the simple form

of Eq. (1) while lumping all bias torques into a time depen-

dence of effective masses. Given r and ∇U(r), the Ikk and Fφ

are calculated recursively in linear time. We have coupled the
integrator to two well-known thermostatting schemes to ob-
tain constant temperature configurational statistics. Because
the kinetic energy is modified, and because the level of dy-
namic coupling is reduced, the system dynamics are modi-
fied for all but special cases. This is precisely what allows the
propagator to avoid MMT artifacts by construction. Simplic-
ity, versatility, and most importantly thermodynamic correct-
ness are our main design goals. We achieve these by sacri-
ficing dynamical accuracy, and the method is therefore in the
spirit of MC propagators.

The remainder of the text is organized as follows: First,
we introduce our methodology for obtaining equilibrium sam-
pling of the configurational distribution by propagating trajec-
tories in a mixed torsional/rigid body space. We test integra-
tor stability using long, flexible, self-avoiding chains as the
benchmarking system. Detailed results are presented for two
systems of relevant complexity that establish the thermody-
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namic accuracy of the sampling obtained using our approach.
Tests of accuracy are achieved through comparisons to results
obtained for the same two systems using a suitable MD inte-
grator and an MC propagator, respectively.

II. METHODS

A. Motivation of approximations

In the development of the method, we focused on the fol-
lowing goals:

1. Avoiding MMT artifacts to make data comparable with
those generated by MC simulations in the same coordi-
nate space.31

2. Ease of implementation and computational efficiency:
Auxiliary computations should scale as O(Nat) as in es-
tablished approaches.29, 37

3. Stable numerical integration.
4. Seamless extension to simulations with multiple

molecules. This is important because external motion
does not seem to be a trivial issue in the most common
framework.38, 39

5. Thermodynamic, but not kinetic correctness since the
constraints themselves will usually make it difficult to
assign physical meaning to the apparent dynamics of a
molecular system.

Using the same notation as above, we follow the approach of
representing the system in a set of mixed rigid-body and di-
hedral angle coordinates of overall dimensionality K ≤ Nat.
The dihedral angles are a subset of a typical molecular Z ma-
trix, i.e., a set of M − 1 bond lengths, M − 2 bond angles, and
M − 3 dihedral angles defined for atoms separated by 1, 2, and
3 covalent bonds, respectively. Except for the first 3 atoms,
each of the M atoms in a molecule has one associated coordi-
nate of each type. All bond lengths and angles and some di-
hedral angles correspond to constraints. The rigid-body coor-
dinates of the Nmol molecules are encoded by using Cartesian
coordinates for the first three atoms in each molecule (Ap-
pendix A). For this choice, we stipulate a reversible mapping:

φ = A(r) and r = A−1(φ). (4)

Here, A is the nonlinear operator encompassing all the func-
tions needed for the coordinate transformation and A−1 is its
inverse. We impose a tree-like structure for the operator A−1,
which means that a molecule is built from its first three atoms
onward using Z matrix variables37 while imposing an arbi-
trary directionality and full backward dependency along the
main chain and a backward dependency to the branch point
for branches (such as polypeptide side chains). The choice of
Z matrix-like variables is based on convenience but poses lim-
itations for systems with flexible rings. This is because one of
the ring bonds is not represented in the Z matrix and can-
not be constrained explicitly. It has been argued that these
variables are generally far from optimal,12 but we use them
here because more informative coordinates of universal merit
across multiple conditions (like temperature) cannot be iden-

tified without prior knowledge for systems with high confor-
mational flexibility.

The key approximation of our approach is to now stipu-
late a diagonal mass matrix such that

E′
k = 1

2

∑K

i
Iiiω

2
i = 1

2ωTIDω �= 1
2 pTM−1p. (5)

Here, the approximate kinetic energy is obtained from the
stipulated diagonal mass matrix ID and the generalized ve-
locities, and it will in general be different from the standard
kinetic energy as used above. This approximation is an im-
portant step toward satisfying point 1 above, because the ki-
netic coupling is explicitly removed. This of course comes
at the cost of having introduced a potentially severe approx-
imation – an issue that we address in detail below. The di-
agonal matrix implies that structurally the problem becomes
very similar to that in unconstrained Cartesian dynamics, i.e.,
equations of motion are formally decoupled. This restores im-
portant notions such as the equipartition principle to their in-
tuitive forms.40 Note that units across the elements in φ are
heterogeneous, which is relevant for both forces and effec-
tive masses. Effective masses correspond to the appropriate
masses and rotational inertia for linear and angular motion,
respectively:

diag(ID)=[
M1 M1 M1 I 1

x I 1
y I 1

z I 1
φ1 ... I 1

φk M2 ...
]
.

(6)

In Eq. (6), upper indices denote which molecule the degrees
of freedom belong to, M denotes molecular mass, Ix/y/z repre-
sent rotational inertia around axes defined by the base vectors
of the global reference frame passing through the molecular
center of mass, and the Iφi denote effective masses (inertia) for
rotation around the ith dihedral angle in that molecule. The el-
ements of ID, which we refer to as Ikk throughout, as well as
Fφ

41 and estimates for ṙ can all be obtained by the recursive
computations provided as Eqs. (B1)–(B3).

B. Numerical integration scheme on a constant
energy hypersurface

We derive a numerical scheme by mandating conserva-
tion of energy, E′

k (ω) + U (r), for a discrete integration step
t1 → t2:

0 = 1
2 [ω(t2)TID(t2)ω(t2) − ω(t1)TID(t1)ω(t1)]

+U (t2) − U (t1),
(7)

0 = ω(t2)TID(t2)ω(t2) − ω(t1)TID(t1)ω(t1)

− δt(ω(t1) + ω(t2))Fφ(t1.5).

This single condition is not sufficient to constrain the dynam-
ics meaningfully. However, because of the diagonal nature of
ID and in analogy to the Cartesian case, it is reasonable to
mandate that Eq. (7) be fulfilled by each of the K degrees of
freedom independently:
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ωk(t2)2 − Ikk(t2)−1[δt(ωk(t2) + ωk(t1))Fφ,k(t1.5) + Ikk(t1)ωk(t1)2] = 0
(8)

ωk(t2) = δt
Fφ,k

(
t1.5

)
2Ikk(t2)

±
√

Fφ,k(t1.5)2δt2 + 4Ikk(t2)ωk(t1)Fφ,k(t1.5)δt + 4Ikk(t2)Ikk(t1)ωk(t1)2

2Ikk(t2)
.

Equations (7) and (8) contain a time dependence of Ikk that is
meant to preserve kinetic energy for angular variables in the
diagonal assumption. This is fundamentally different from the
way the aforementioned bias torques would steer the system
toward preserving both total angular momentum and the cor-
rect total energy in the context of a nondiagonal mass matrix.
As a result, the level of dynamical coupling and the overall
system dynamics are altered. Note that the initial choices for
ω define the hypersurface explored by the new dynamics.

Equation (8) is time-reversible, which, in a weak sense,
is a desirable property.7 However, Eq. (8) is not guaranteed
to have a real solution, and we address this as follows. We
can approximate Ikk(t2) in the second term in the square root
by

√
Ikk(t1)Ikk(t2). Then, only one of the solutions to the

quadratic equation is meaningful:

ωk(t2) ≈ δt
Fφ,k(t1.5)

Ikk(t2)
+

√
Ikk(t1)

Ikk(t2)
ωk(t1). (9)

In practice, we use Eq. (9), which is not time-reversible, as a
guide to identify the correct solution for Eq. (8). All integra-
tors presented in this paper use the simplest update rule for φ:

φk(t2.5) = φk(t1.5) + δtωk(t2). (10)

The only exception to Eq. (10) is rigid-body rotation, for
which we directly construct a quaternion from the ωk(t2), i.e.,

there is no explicit representation of the corresponding φk (see
below).

Equation (8) is also implicit because the Ikk(t2) are needed
to determine the new angular velocities. We use the as-
sumed time dependence Ikk(t) to mask the true dependence
Ikk({φj �= k(t)}). Consequently, the required values for Ikk(t2)
are obtained by guessing the values for φk(t2) and not by ex-
trapolating the apparent time dependencies of the Ikk them-
selves. In detail, we first obtain a guess of all relevant ωk(t1.5)
using Eq. (8) with t2 replaced with t1.5 throughout and δt/2 in-
stead of δt. This is followed by a positional increment by δt/2
to advance the φk(t1.5) to φk(t2) similar to Eq. (10). The impact
of the underlying asymmetry (the deterministic force uses the
values obtained for t1.5 and not for t1.75) is weakened by the
fact that the new conformation is used exclusively to calculate
guesses for the Ikk(t2). Upon restoring the system configura-
tion to that encoded by φk(t1.5), Eq. (8) is applied as written.
The resultant scheme is force-explicit, i.e., no additional eval-
uations of the force are required.

If we assume time-independent masses in Eq. (8), then
we recover the basic leap-frog integrator used frequently in
molecular dynamics.6 We can therefore expect that the prop-
erties of the integrator will depend on the rate of change of the
Ikk, i.e., the absolute magnitude of the effective bias torques.
If the rate of change of the Ikk is high, Eq. (8) can be extended
to update the velocities iteratively:

ωk(ti) = τ


Fφ,k(t1.5)

2Ikk(ti)

±
√

Fφ,k(t1.5)2τ 2

 + 4Ikk(ti)ωk(ti−
−1 )Fφ,k(t1.5)τ
 + 4Ikk(ti)Ikk(ti−
−1 )ωk(ti−
−1 )2

2Ikk(ti)

with τ
 = δt/
 and i = 1 + 
−1, 1 + 2
−1 . . . 2. (11)

Equation (11) corresponds to a partitioning of the integration
time step into 
 segments while assuming a linear evolution
of Ikk(tj) between the known values at times t1, t1.5, and t2. The
deterministic force is held constant, and therefore Eq. (11) is
still force-explicit. It is not time-reversible, however. For each
increment, the corresponding analog of Eq. (9) is used to pick
the solution to Eq. (11). The parameter 
 should preferably be
a multiple of 2 and benefits are expected to taper off quickly

for large 
. Equation (11) serves to better represent the im-
pact of changing effective masses, e.g., in the rotation of rigid
water molecules. We reiterate the true dependence of Ikk to
be Ikk({φj �= k(t)}), which prevents straightforward iteration of
Eq. (8) toward self-consistency.

The scheme described above satisfies goal 2 stated at the
outset, since the integrator is structurally very similar to the
Cartesian case. If the hidden computations are performed in
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recursive fashion, the complexity is indeed O(Nat), which is
less than what is expected for the computation of U(r) for all
but trivial cases. Goal 4 above is conceptually fulfilled, viz.,
limiting cases such as monoatomic gases, molecular liquids,
or mixtures of different polymers are handled within the same
framework and with the same efficiency. We evaluate integra-
tor stability (goal 3) by performing simulations in the constant
energy ensemble as presented at the beginning of Sec. III.

C. Technical issues

Rigid-body coordinates of molecules appear explicitly in
the equations of motion. This is an important difference to the
spatial operator formalism,29 which maps external motion to
the rigid-body identified as the base. Proposed corrections38

and a lack of applications with multiple molecules39, 42 sug-
gest that our treatment may be simpler. We still require a well-
defined rule for assigning the base for each flexible molecule,
and we test different protocols for this in the context of this
paper (using either terminus or the middle of the chain as the
base of motion).

As mentioned before, rigid-body rotation uses a unique
update step:

qrot (t1.5 → t2.5)

= [
c sin

(
1
2δtωx

)
sin

(
1
2δtωy

)
sin

(
1
2δtωz

)]
. (12)

Here, the ωx/y/z denote the angular velocities at time t2 for rigid
rotation of a given molecule (labels are omitted) around the
fixed axes of the laboratory frame passing through the molec-
ular center of mass, and c is determined by the constraint that
the quaternion be of unit length. Rigid translation of the center
of mass of each molecule is implemented in a straightforward
manner because masses are constant. For flexible molecules,
the center of mass is updated after the entire conformational
update occurred. This implies that the actual displacement is
mismatched relative to the increment governed by the veloc-
ities. For this protocol, linear momentum, in the absence of
external forces, is always conserved for the approximation

in Eq. (5). Conversely,
∑3N

at

k pk is only conserved for rigid
molecules.

The final methodological issue concerns simulations in a
constant temperature ensemble, where temperature is a func-
tion of ωIDω. In the context of this paper, we use two suit-
able thermostats. The Andersen method43 is implemented as
a stochastic process that couples each degree of freedom sep-
arately to a bath resetting velocities to those from the target
Maxwell distribution (this is also how all velocities are ini-
tialized). The effective masses are those in ID for the cur-
rent conformation. Because of the asynchronous and inde-
pendent coupling of each degree of freedom, equipartition ar-
tifacts are unlikely but collective dynamics may be slowed
down.44 The stochastic process is applied immediately after
computing Fφ(t1.5) and before any velocity increments occur.
Conversely, the method of Bussi et al.45 operates as a global
rescaling procedure coupled to a single stochastic process. It
requires no modifications per se. In Eqs. (8), (9), and (11),
ωk(t1) is simply replaced with αTωk(t1), where αT is the global
rescaling factor derived from instantaneous and target tem-

peratures. Both thermostats employ a coupling time, τ T. A
summary of the entire integration cycle with both thermostat
variants is provided in Appendix C. The extension to constant
temperature ensembles allows us to quantify the thermody-
namic correctness of the sampled ensembles (point 5 in the
list of design goals). It is also required for establishing the ab-
sence of MMT artifacts (goal 1). Figure S1 in the supplemen-
tary material21 and Fig. 1 demonstrate that the scheme appears
to indeed meet this goal in the limit of zero potential energy,
and a theoretical framework for this is established next.

D. Underlying equations of motion

It might not be obvious that Eqs. (8) or (11) should pro-
duce an integrator that is free of MMT artifacts (design goal 1
above). Equations (8) and (11) are numerical schemes to inte-
grate equations of motion. These equations of motion are not
the ones of Hamiltonian mechanics as in Eq. (2) because we
introduced the approximation in Eq. (5). This section derives
the underlying equations of motion and provides proof that
configurational statistics should be free of systematic errors,
e.g., MMT artifacts.20 This discussion is entirely distinct from
a discussion of errors incurred by the numerical discretization
scheme (see Sec. III for the latter).

We begin with an intuitive notion. Because of the inde-
pendent treatment of the equations of motion for ω in Eq. (8),
the thermostats enforce equipartition as

∀k :
〈
ω2

kIkk

〉 = β−1. (13)

Similarly, the bias torques, as seen most easily in Eq. (9),
explicitly conserve ωkI

1/2
kk . This suggests that neither ωk nor

the conjugate momenta obtained from the diagonal assump-
tion, ωkIkk, are distributed independently in the limit of zero
potential energy. Indeed, we show next that Eq. (8) can be
mapped to equations of motion for positions and velocities
each weighted by the square root of their corresponding ef-
fective mass.

Eq. (8) reads for the kth degree of freedom:

ωk(t2)2Ikk(t2) − ωk(t1)2Ikk(t1)

= δt(ωk(t2) + ωk(t1))Fφ,k(t1.5). (14)

By substituting �k(t) = ωk(t)Ikk(t)1/2, we have

(�k(t2) − �k(t1))

δt
(�k(t2) + �k(t1))

= (Ikk(t2)−1/2�k(t2) + Ikk(t1)−1/2�k(t1))Fφ,k(t1.5). (15)

In the linear approximation also used in Eq. (8), the sums in
Eq. (15) correspond to twice the means of the values at the
half-step (t1.5), while the finite difference on the left-hand side
measures the rate of change. By letting the time step approach
zero, we can infer the underlying equations of motion as

�̇k(t)�k(t) = Ikk(t)−1/2�k(t)Fφ,k(t). (16)

The case of angular velocities being exactly zero always ful-
fils Eq. (16) trivially. This is a disadvantage of the formu-
lation, and this disadvantage is manifested in the quadratic
form of Eq. (8). Excluding this case, we obtain the equations
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of motion as

Ikk(t)1/2�̇k(t) = −∂U (φ(t))

∂φk

,

Ikk(t)1/2φ̇k(t) = �k(t).
(17)

Eq. (17) demonstrates that the bias torques in our scheme are
hidden by considering � as a dynamical variable. The Ikk(t)1/2

terms are what preserves volume in φ. With the system’s La-
grangian given as L = ∑

k

1
2�2

k − U , we recognize the first

line of Eq. (17) as

Ikk(t)1/2 d

dt

(
∂L

∂�k

)
= ∂L

∂φk

. (18)

It may be tempting to simplify Eq. (18) further by an analo-
gous substitution for the positions, viz., �k(t) = φk(t)Ik(t)1/2,
which would give an equation identical in form to one of the
Euler-Lagrange equations in variables � and �. However, for
masses that are not constant, we would then no longer have
a valid second equation of motion, i.e., �̇k �= �k . This high-
lights that Eq. (17) generally leads to artificial dynamics. The
virtue of Eq. (17) is that MMT artifacts are avoided by con-
struction. We write the canonical partition function in terms
of the independent variables, � and φ:

QS =
∫ φmax

φmin

∫ ∞

−∞
exp

[−β�2 − βU (φ (r))
]
d�dφ. (19)

In Eq. (19), integration over momenta is straightforward. The
integral uses shorthand notation to indicate the various inte-
gration boundaries for the coordinates, viz., φmin and φmax.
We obtain

QS = C(T )
∫ φmax

φmin

exp [−βU (φ (r))] dφ. (20)

While this might seem like a trivial result, Eq. (20) hides the
caveat defined by Eq. (5): our method does not transform the
Cartesian momenta or velocities canonically. The applicabil-
ity of Eqs. (19) and (20) is illustrated in detail in Fig. S1 in
the supplementary material.21

E. Simulation protocols

All simulations in this paper used the software
CAMPARI (http://campari.sourceforge.net).

1. Flatness of dihedral angle distributions
in the absence of a potential

We performed simulations of a linear polymer of 18
atoms resembling polyethylene glycol in terms of the cova-
lent geometry of heavy atoms. The molecule has 15 dihedral
angle degrees of freedom and 6 rigid body degrees of free-
dom. The system was integrated with Eq. (11), 
 = 4, and δt
= 5 fs. We explored different distributions of mass, viz., equal
masses of 10 Da (red data sets in Fig. 1), masses increasing
from 4 to 38 Da along the chain in steps of 2 Da (green data
sets in Fig. 1), and masses in 6 identical triplets of 10, 5, and
20 Da, respectively (blue data sets in Fig. 1). The base of mo-
tion was formed either by atoms 8 to 10 (panels (a) and (b)
of Fig. 1) or by atoms 1 to 3 (panel (c) of Fig. 1). Constant

temperature ensembles were obtained by coupling the integra-
tor to our variant of the Andersen thermostat with τ T = 1 ps.
Fig. 1(b) also shows results obtained by the velocity rescal-
ing thermostat, but it must be noted that for a system with
no energetic coupling the resultant velocity distributions are
incorrect at the level of individual degrees of freedom (e.g.,
velocities can never change sign).

To obtain reference data, we resorted to a Langevin dy-
namics integrator in Cartesian space coupled to SHAKE22 to
enforce geometric constraints. We used the impulse integra-
tor of Skeel and Izaguirre46 with δt = 5 fs and uniform fric-
tion coefficient of 1 ps−1. The choice is motivated by the fact
that a scheme of this type is at least approximately compati-
ble with holonomic constraints47 and couples atoms individu-
ally. Bond length and angle potentials were derived from ini-
tial geometries. For the data in Fig. S1(d), we added distance
constraints leaving exactly the 15 dihedral angles as internal
degrees of freedom. Conversely, only bond lengths were con-
strained for Fig. S1(e). For the former, SHAKE required an
average of more than 100 steps to converge to high precision
(absolute error below 10−6 Å), but convergence was reliable,
and simulations were stable. For each case, we performed 50
runs of 10 ns each (i.e., each individual line in Fig. 1 is based
on a cumulative simulation time of 0.5 μs). Every run used
a randomized starting condition at the level of velocities and
dihedral angles.

2. Integrator stability

Tests for integrator stability were performed on a system
of two capped polypeptide chains of 100 residues each with
the sequence (GS)50 in all-atom representation. Two different
choices of the base of motion were explored. The system was
contained in a cubic box with 200 Å side length using periodic
boundary conditions. All runs employed an identical initial
structure. Constant energy simulations in the sense of Eq. (7)
used values for δt ranging from 4 fs to 10 fs for correct atomic
masses and from 10 fs to 30 fs for adjusted atomic masses
(see Sec. III for details). The integrator corresponded to
Eq. (11) with 
 = 4. Data on total energy and its components
were collected every 20 steps, and we performed 20 identical
runs with a maximum length of 1 ns for each combination of
δt and choice of base.

3. Simulations of a rigid water model

Simulations of liquid Tip4p water48 were performed us-
ing a cubic box of 32 Å side length (1095 molecules) with
periodic boundary conditions in both constant temperature
(10 ns length) and constant energy ensembles. All simula-
tions used the same starting conformation equilibrated pre-
viously. Temperature was maintained by the velocity rescal-
ing thermostat with τ T being 1 ps. Cutoffs to all nonbonded
interactions were applied at a distance of 12 Å. Grid-based
neighbor lists were recomputed at every step. The reaction-
field method49 was used to eliminate cutoff errors due to elec-
trostatic interactions, but the truncation of Lennard-Jones in-
teractions is expected to introduce a small amount of noise.
Quantities were estimated from different numbers of samples

http://campari.sourceforge.net
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as stated throughout. For the constant energy runs, the target
for the initial temperature was 300 K. In all cases, a reference
leapfrog integrator in Cartesian space enforcing constraints
via SETTLE50 was used for comparison.

4. Simulations of the FS peptide

The FS peptide has the sequence N-Acetyl-
A5(AAARA)3A-N′-methylamide.51 The system was de-
scribed by the ABSINTH implicit solvent model and force
field as published.18 Forces derived from the solvation model
have been used previously,16 and are provided in the sup-
plementary material21 for completeness. Because transitions
into the left-handed portion of Ramachandran space were
shown to drastically slow down convergence for canonical
dynamics simulations, we added a blocking potential acting
on the φ-angle of every polypeptide residue (panel (a) of
Fig. S2 in the supplementary material).21 Initial conforma-
tions were generated randomly and independently by MC for
every single simulation. Constant temperature simulations
were performed in a spherical droplet of 40 Å radius and in
the presence of explicit, neutralizing counterions and excess
salt (NaCl) of ∼0.15 M. The boundary of the droplet used
a half-harmonic function acting on all atoms to enforce the
approximate system volume (effective spring constant of
0.05 kcal mol−1 Å−2). All nonbonded interactions were
truncated at a distance of 12 Å. Temperature was maintained
by the Andersen thermostat as described above and in
Appendix C with τ T = 10 ps. The integration time step
depended on the target temperature and decreased systemat-
ically from 10.1 fs for 220 K to 7.8 fs for 374 K. All simu-
lations ran for 1.08 × 108 steps with the first 1.8 × 107 steps
being discarded as equilibration. This corresponds to lengths
for production simulations of 0.7–0.9 μs depending on
temperature. Reference data were produced by a long replica
exchange Monte Carlo (REMC) calculation52 using move
sets comparable to published work for the same peptide.18, 21

Segment statistics based on torsional secondary structure
annotation (panel (b) of see Fig. S2 in the supplementary
material)21 were used to estimate helicity as in prior work.16

Two or more consecutive residues in the α-basin count as a
helical segment and contribute to Ns. A helical segment of
length Nα contributes Nα−2 hydrogen bonds to Nh. Finally,
α-helical “segments” of length 1 contribute exclusively to N1.

III. RESULTS

We provide results on four test systems. First, we test for
the absence of MMT artifacts with the potential energy turned
off to test the reasoning given in Eqs. (13)–(20) (goal 1). This
is followed by tests of integrator stability on simulations of
two long, coil-like polymers (goal 3). Finally, detailed analy-
ses of equilibrium statistics, fluctuations, and dynamical prop-
erties are performed for the remaining two systems (goals 4
and 5). The first of these is liquid water. We use it as a canon-
ical test for rigid-body integrators due to the low inertia as-
sociated with rotation of individual molecules. It also offers
the benefit of being able to compare all properties (includ-
ing dynamical ones) to a reference integrator with holonomic

constraints. The last test is concerned with the reversible fold-
ing of an α-helical peptide. We use this system to establish
thermodynamic correctness for conformational equilibria of
polymers by comparison to MC data. We also investigate the
impact of integrator-related choices on kinetics of conforma-
tional transitions.

A. Absence of MMT artifacts

Panels (a)–(c) of Fig. 1 show that a polymer of 15 di-
hedral angles does not exhibit conformational biases in the
constant temperature ensemble and using Eq. (11) if the po-
tential energy is zero. The reasoning presented in Sec. II D
appears justified based on these data. The absence of MMT
artifacts is achieved by construction. We emphasize that we
use a longer polymer for two reasons. First, the range of MMT
artifacts increases with increasing size.31 Second, the standard
test case of n-butane may mask biases incurred by Eqs. (8)–
(11). The latter is because the action of the bias torques is
unidirectional, i.e., degrees of freedom with constant Ikk such
as all terminal dihedral angles (closest to the tips) experience
no bias contributions at all. Conversely, panel (d) of Fig. 1
and Fig. S1(a) in the supplementary material21 demonstrate
the expected MMT artifacts for canonically transformed vari-
ables. These also depend on the chosen distribution of atomic
masses. Lastly, panel (f) demonstrates that neighboring dihe-
dral angles fulfill the flatness criterion independently of one
another despite the bias torque introducing an explicit cou-
pling between the position of the angle closer to the tip and
the velocity of the one closer to the base.

B. Integrator stability

We performed 20 independent 1 ns simulations of a sys-
tem consisting of two long polypeptides (capped (GS)50) in
the excluded volume limit (including all hydrogen atoms).
The only terms in U are a 12th power repulsion between
all atoms (cut off at 10 Å) and potentials keeping the dihe-
dral angles corresponding to the amide bonds roughly planar.
Aside from φ/ψ /ω backbone degrees of freedom, the serine
residues have two χ -angles, the second of which merely cor-
responds to the rotation of a single hydrogen atom around
the C–O bond. The chains predominantly sample coil-like,
self-avoiding conformations. We choose this system because
it gives rise to large-scale thrashing motions of chain ends,
because it involves both inter- and intramolecular collisions,
and because it mixes very fast with very slow degrees of free-
dom. The elements of ID are not expected to vary rapidly, and
the dependence on 
 is weak.

Our treatment theoretically offers free choices for the
base of internal motion for every flexible molecule. This de-
pends on the structure of operator A−1 as explained in Ap-
pendix A. Rigid-body motion is dealt with separately and not
affected by this choice. For a polymer of sufficient length, the
resultant dynamics are expected to be affected significantly,
i.e., torsional motion will be slowest at the base and fastest at
the tip(s). For both cases examined here, the base is formed
by the atom listed and all atoms which are connected to it
rigidly:
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1. The carbonyl carbon atom of the N-terminal acetyl caps
(N-base).

2. The “central” backbone atoms (M-base), here the car-
bonyl carbon of Ser50.

We expect that M-base should produce more “natural”
dynamics than N-base, in particular for long and flexible poly-
mers. We do not also place the base at the C-terminus (this is
explored for the helical peptide below) due to the similarity
of this approach to N-base for a nearly symmetric sequence.

Fig. 2(a) shows that simulations in the constant energy
ensemble with accurate masses are limited to time steps of
up to 6 fs at a temperature of ∼340 K. Beyond this limit,
the majority of simulations diverge on the 1 ns time scale.
Due to the nature of the system, integrator error is stochastic,
i.e., the total energy does not drift linearly, but jumps on ac-
count of rare events. The differences between N- and M-base
are not significant in light of the variations seen between the
20 identical runs for each case. Fig. 2(b) shows that relative
fluctuations are small for those simulations not violating the
threshold within 1 ns (the chosen threshold corresponds to a
net drift of ∼6.5 kcal mol−1 ns−1).

It is of course expected that the time step is limited if we
include very fast degrees of freedom (viz., the χ2-angle in ser-
ine). Similar to work by others,37 we therefore test whether
stability is improved if we redistribute the total mass of the
hydroxyl group to be 8.5 Da for both oxygen and hydrogen
atoms. This choice is meant to render the impact on other de-
grees of freedom negligible. Fig. 2(a) clearly confirms that the
χ2-angle of serine is the primary source of integrator error
for the original set of simulations. With the adjusted masses,
the majority of simulations will finish without substantial er-
rors for time steps of up to 16 fs. The relative fluctuations
continue to be small throughout (panel (b) in Fig. 2). Stabil-
ities and fluctuation measures agree favorably with literature
values.15, 37

C. Liquid water

Simulations of liquid Tip4p provide a stringent test of in-
tegrator stability for rigid-body integrators.34, 35 Using holo-
nomic constraints enforced via SETTLE50 and correct atomic
masses, the integration time step can be pushed to about 7 fs
at most.36, 53 Here, we test different variants of our proposed
integrators against SETTLE at time steps of both 2 fs and
5 fs. A thermodynamic characterization of this system in-
volves liquid structure properties (pair correlation functions)
as well as an analysis of energetics.

Table I shows mean potential energies per molecule,
mean temperatures, and fluctuation measures. We distin-
guish the “Cartesian” temperature, 〈Tc〉 = [kB(6Nmol−3)]−1

〈pTM− 1p〉 from the one given by Eq. (5), 〈T〉 = [kB(6Nmol
− 3)]−1〈ωTIDω〉. These data show that for δt = 2 fs the in-
tegrators according to Eq. (11) with 
 being 1, 2, or 4 per-
form equally well. The single systematic and probably sig-
nificant effect that can be identified is that the fluctuations,
abbreviated as σ (X), measured for Tc are larger than those
for T by about 0.15 K for Eq. (11). Importantly, this does
not coincide with a similar shift in averages (mean values
are within ∼0.025% of one another). The ideal fluctuations
in temperature for a system of this size are 5.23 K at 300
K, and this is close to the values appropriate for compari-
son in all cases. The heat capacity at constant volume, Cv ,
was estimated from the individual fluctuations to obtain val-
ues comparable to the MC-derived one given by Jorgensen
and Madura of 20.0 kcal/mol.54 No systematic deviations are
observed.

Equipartition artifacts can result from different suscepti-
bilities of different types of degrees of freedom to integrator
error. For rigid water, the most likely error is a difference in
average temperatures for rotation and translation due to the
former being much faster. To measure it, we compute 〈�T〉
= 2[3kBNmol]

−1(〈Krot〉 − 〈Ktrans〉), where Krot and Ktrans are

FIG. 2. Integrator stability for simulations of two capped chains of (GS)50. (a) For a given δt, the average time from 20 runs of length 1 ns to remain within
100.5% of the initial total energy is plotted. A similar picture is obtained by plotting the fraction of runs to remain within the threshold for the entire simulation
length (not shown). Results for the case with adjusted masses (see text) are indicated by darker colors. (b) For those runs staying within the threshold for the
entire simulation length, we plot the ratio of the standard deviations of U+ωTIDω/2 vs. ωTIDω/2 for individual runs (separate symbols). This quantity increases
more or less linearly with δt. Outliers at small time steps are caused by small jumps of the total energy to values below the threshold, i.e., they correspond to
bimodal distributions of the total energy rather than normal distributions of increased width.
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TABLE I. Thermal variables for simulations of Tip4p from 5 × 106 (2 fs) and 2 × 106 (5 fs) samples, respectively. Differences in 〈U〉 at 5 fs are all significant.
Temperatures carry statistical errors around 0.2 K, whereas differences in fluctuation-derived quantities cannot be ascertained to be significant.

δt = 2 fs 〈T〉 (K) 〈Tc〉 (K) σ (T) (K) σ (Tc) (K) 〈U〉a (Nmol) C
v

b 〈�T〉c (K)


 = 1 300.05 299.97 5.27 5.40 −9.900 20.4 1.26

 = 2 300.16 300.08 5.23 5.36 −9.898 19.8 1.39

 = 4 300.10 300.01 5.25 5.38 −9.898 20.0 1.28
SETTLE N/A 300.13 N/A 5.26 −9.899 20.5 1.40
δt = 5 fs

 = 1 304.40 304.79 5.34 5.49 −9.854 20.0 8.54

 = 2 300.95 301.28 5.26 5.41 −9.900 19.9 7.15

 = 4 300.58 300.89 5.25 5.40 −9.906 19.9 6.96
SETTLE N/A 300.19 N/A 5.26 −9.919 19.8 8.14

aThe mean per-particle energy is given in kcal/mol and has not been corrected for long-range Lennard-Jones contributions.
bAn estimate of the heat capacity is derived from the sum of the fluctuations of potential and kinetic energies with SETTLE using pTM−1p/2 for the latter and ωTIDω/2 otherwise.
Values are in cal mol−1K−1 (per molecule). Comparison to the heat capacity derived from the variances of the total energies indicates that these data are noisy with deviations of up
to 0.7 kcal mol−1.
cFor SETTLE, this is estimated from just 1.05 × 106 (2 fs) and 3 × 105 (5 fs) samples.

the distinct contributions to the total kinetic energy for rigid
rotation and translation, respectively. Krot and Ktrans are com-
puted without difficulty for Eq. (11) due to the diagonal na-
ture of ID. For SETTLE, the displacement at each time step
is described by a translation vector and a quaternion for the
rotation. The rotational displacement is computed as the arc-
sin of the vector component of the quaternion. After division
of the vectors by δt to yield velocities, the kinetic energy is
computed separately as 1

2Mk �v2
k and 1

2 �ωT
k Ixyz �ωk for Ktrans and

Krot, respectively. Here, k gives the molecule index, and Ixyz is
the (nondiagonal) inertia tensor for molecule k. Table I (last
column) shows that all integrators even at small time step pro-
duce nonzero values for 〈�T〉.

Table I suggests that our approach samples the same ther-
modynamic ensemble as the reference integrator. This is made
explicit by Fig. 3(a), which shows all possible atom-atom pair
correlation functions for liquid water. It is obvious that the av-
erage ensembles do not differ structurally. Fig. 3(b) highlights
that this is still the case for δt = 5 fs.

The data in Table I for the larger time step provide the
following results. First, the rigid-body integrators are less sta-
ble, and stability increases with increasing 
. Both of these
effects are manifested as expected in 〈T〉. Second, energetic
fluctuations are only weakly affected, and the aforementioned
difference for the fluctuations of 〈T〉 and 〈Tc〉 is preserved.
Third, the SETTLE simulation also shows discretization er-
rors relative to δt = 2 fs, i.e., the mean potential energy drops,
and 〈�T〉 is large. These errors have been studied in detail
by Davidchack53 for the same system and a variety of inte-
grators based on the scheme by Miller et al.35 The data in
Table I suggest that discretization affects 〈�T〉 and 〈U〉 less
for the integrators studied here than most of those tested by
Davidchack. For Eq. (11), we note a small difference between
〈T〉 and 〈Tc〉 of up to 0.2%. The dependency of this small mis-
match on integration time step suggests that it itself is tied to
integrator error. Since it may also be system-dependent, we
suggest that deviations of this type should be monitored as a
sanity check when using our approach.

As a final point of analysis, Table II lists translational dif-
fusion coefficients, D, rotational autocorrelation times, τ rot,

and relative dielectric constants, εr, computed from fluctu-
ations of the total dipole moment. For δt = 2 fs, there are
no significant differences among any of the rigid-body in-
tegrators when comparing to the SETTLE reference. For
δt = 5 fs, we again note discretization errors that are most
clearly seen for SETTLE, i.e., dynamics appear to be slowed
down slightly. The rigid-body integrators seem to exhibit sim-
ilar behavior for large 
, i.e., for cases where the mean en-
semble temperatures are comparable.

In summary, we find that the rigid-body integrators re-
produce the results obtained with the reference integrator ex-
ceptionally well for small time steps. For large time steps,
the recursive scheme of Eq. (11) becomes essential to main-
tain reasonable integrator stability. This is consistent with the
drift observed in constant energy simulations (panel (c) in
Fig. 3). Equation (11) does not offer the same stability as ded-
icated rigid body integrators found in the literature.34–36, 53 It
is important to realize that discretization errors are manifested
manifold,3, 4, 7 and that stability alone should not be confused
with correctness.

D. FS peptide

Since our main interest lies in confirming the thermody-
namic correctness of our approach, we pursued simulations of
flexible peptides to obtain a stringent test of our approxima-
tions. The FS peptide is a 21-residue, capped polypeptide rich
in alanine, which undergoes a well-defined helix-coil transi-
tion as a function of temperature.51 We have previously sim-
ulated this peptide in different contexts18 including an eval-
uation of the impact of constraints.16 It can be sampled effi-
ciently with Monte Carlo methods for exactly the same set of
degrees freedom that we want to explore here. The availability
of unbiased reference data is therefore crucial for an assess-
ment of the thermodynamic correctness of our simulations.

In analogy to the stability test, we compare results from
runs with different choices of base. Here, we explore three
variants. Again, the base is formed by the atom listed and all
atoms which are connected to it rigidly:
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FIG. 3. Analysis of simulations of liquid Tip4p. (a) Atomic pair correlation
functions are plotted for all simulations shown in Table I from 1000 snapshots
each. The differences between data sets are too small to be resolved at this
resolution. The horizontal, gray dashed line indicates ideal behavior. The ver-
tical dashed lines highlight the cutoff distance and half the box length (L/2)
of the cubic simulation cell, respectively. Typical reaction-field artifacts49 are
found at the cutoff distance. Site-site correlation functions not corresponding
to molecular centers of mass incur an additional artifact at L/2 due to image
shift vectors being computed at the molecule level. (b) We show differences
for the O-O correlation function relative to the SETTLE integrator at 2fs.
Note the scale of the �g(r) values. (c) We monitored the drift of the total
energy, U + ωTIDω/2, in constant energy simulations at δt = 4 fs. Linear fits
to the first 100 ps of the data give values of 13.3, 2.5, 1.6, and 1.6 kcal mol−1

ps−1 for Eq. (11) with 
 being 1, 2, 4, and 8, respectively. The reference
value for the drift of U + pTM−1p/2 for SETTLE is 0.5 kcal mol−1 ps−1.

TABLE II. Further properties of Tip4p estimated from ∼2 × 104 samples
using GROMACS6 utilities along with average temperatures (see Table I).

δt = 2 fs 〈T〉 (K) 〈Tc〉 (K) Da in 10−5 cm2/s εr
b τ rot

c (ps)


 = 1 300.05 299.97 3.47 52.24 2.23

 = 2 300.16 300.08 3.45 53.78 2.22

 = 4 300.10 300.01 3.46 52.93 2.22
SETTLE N/A 300.13 3.48 52.48 2.20
δt = 5fs

 = 1 304.40 304.79 3.53 51.65 2.16

 = 2 300.95 301.28 3.37 53.56 2.30

 = 4 300.58 300.89 3.34 53.52 2.33
SETTLE N/A 300.19 3.27 53.19 2.34

aDiffusion coefficients are obtained from linear fits over 100 ps intervals of the mean-
squared displacement using restart points spaced 10 ps apart (global drift removed).
Errors are roughly 0.05 × 10−5 cm2/s.
bThese data are noisy and none of the differences is expected to be significant.
cThe integral of the autocorrelation function of rigid-body rotation over an interval of
50 ps is used to extract the correlation time yielding errors of ∼0.02 ps.

1. The carbonyl carbon atom of the N-terminal acetyl cap
(N-base).

2. The amide nitrogen atom of the C-terminal N-
methylamide cap (C-base).

3. The amide nitrogen atom of Ala13 (M-base).

Because the simulations contain explicit counterions
(i.e., there are multiple “molecules”) and a physical boundary,
the different choices cannot be mapped to transformations of
the global reference frame.

1. Integrator stability and equipartition

Fig. 4 plots average temperatures for individual degrees
of freedom from at least 500 ns of simulation using Eq. (11)
and 
 = 4 at different target temperatures. The constant tem-
perature ensemble was maintained by the Andersen thermo-
stat with τ T = 10 ps. We first note that the target temperatures
are usually exceeded indicating that the thermostat absorbs
some integrator error.8 This is not surprising given that the
time steps are large, and that U(r) still contains stiff terms
(e.g., 12th power repulsion, harmonic boundary interactions,
and torsional terms on peptide bonds) and noise (discontinu-
ities in atomic forces due to cutoffs and the solvation model).

At a target temperature of 360 K (panel (c) of Fig. 4),
there are no significant differences between choices of base
or between types of degrees freedom, and the error is small
(δt is also smallest). At the two lower temperatures displayed
(panels (a) and (b) of Fig. 4), we observe larger overall er-
rors and minor equipartition issues. The latter are mostly as
expected in that the degrees of freedom that are only weakly
coupled energetically (rigid-body motion and χ angles) tend
to accumulate kinetic energy akin to the so-called “flying ice
cube” phenomenon.55

We also find equipartition problems for Cl− vs. Na+ ions
that depend on the choice of base. At temperatures similar
to Fig. 4(a), it is generally observed that Cl− ions are hotter
than Na+ ions and that the difference is largest for C-base
and smallest for N-base. Most likely, this signature results
from the asymmetry of the peptide sequence. Because the
positively charged arginine residues are in positions 9, 14, and
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FIG. 4. Analysis of simulation temperatures for the FS peptide resolved by
degree of freedom. (a) For simulations with a target temperature of 227 K
(gray dashed line), we plot 〈T〉 computed over 7.2 × 106 samples. The
system-wide values for 〈T〉 are shown as colored, dashed lines. To improve
readability, values for the rigid translation of ions are plotted per ion and not
individually for x/y/z. Dihedral angles are sorted from N- to C-terminus (left
to right), and “RB” stands for the 6 rigid-body degrees of freedom of the
peptide. The legends in (a) apply to all panels. (b) The same as (a) for 288 K.
(c) The same as (a) for 360 K.

19 (not counting caps), they undergo the largest motions in
absolute terms for N-base followed by M- and C-base. This
presumably disrupts correlated rigid-body motion of peptide
and Cl− ions maximally for N-base. The relevance of this ef-
fect is restricted to cases when the peptide itself remains in a
similar conformation for long periods of time (i.e., it disap-
pears at high T as in panel (c) of Fig. 4). Importantly, Fig. 4
establishes that the issues addressed above become negligi-
ble as δt decreases and integrator stability increases. This as-
sertion holds for all thermodynamic properties quantified for
different choices of base.

2. Thermodynamics of the helix-coil transition

The temperature-dependent helix-coil transition is
analyzed by statistics on segments with consecutive residues
in α-helical conformation (see Sec. II). This requires a
definition of “α-helical” by residue. We have previously used
classifications based on dihedral angles or hydrogen bonds.16

For simplicity, we employ only the former here (see Fig. S2
in the supplementary material).21 The quantities inferred
are the average numbers of α-helical hydrogen bonds, 〈Nh〉,
of α-helical segments, 〈Ns〉, and of isolated residues in the
helical basin, 〈N1〉. Taken together, these simple readouts
characterize the helix-coil transition comprehensively at the
level of the whole peptide.

We compare all data to reference data obtained by MC
sampling. MC simulations use replica exchange (REX) to
minimize statistical errors, whereas the dynamics runs are in-
dependent canonical simulations. This is because we want to
analyze transition rates and sampling efficiencies between the
three cases, which would be hindered by a REX setup.

Fig. 5(a) shows results for both 〈Nh〉 and 〈N1〉 as a func-
tion of 〈T〉. All T-dependent transitions overlap with the same
apparent melting temperatures (within error). For the dynam-
ics results, errors are large at low T and also all throughout
the transition region (high T). Large deviations from the MC
reference, which has small errors throughout, generally coin-
cide with poor statistical precision. It is difficult to identify
statistically significant differences between any of the data
sets. Errors are larger for N-base and C-base than for M-base,
and this is expected because of the unnaturally slow dynam-
ics toward the respective bases for the former. The peptide
appears to form slightly more hydrogen bonds for C-base at
low T, which coincides with a lowered value for 〈N1〉, but
the effect is marginal given that the errors are most likely
underestimated.

Fig. 5(b) shows analogous results for 〈Ns〉. The number of
helix segments is a particularly sensitive readout and it sug-
gests that there may be small but systematic differences be-
tween MC and dynamics data in regions where the straight
helix dominates (250–320 K). We believe that this is a sam-
pling problem of converting between straight helices and par-
tially collapsed structures for the dynamics data. Fig. S3 in
the supplementary material21 analyzes this at the level of the
radius of gyration. Low likelihood metastable states are asso-
ciated with large errors in general. Fig. S3(c) shows that the
long-lived, collapsed structures encountered in different sim-
ulations rarely correspond to the same topology.21



034105-13 A. Vitalis and R. V. Pappu J. Chem. Phys. 141, 034105 (2014)

FIG. 5. Thermodynamics of the helix-coil transition of the FS peptide.
(a) We plot both 〈Nh〉 (left y-axis) and 〈N1〉 (right y-axis) inferred from tor-
sional statistics (see Sec. II) as a function of the mean ensemble temperature.
Min/max errors are shown for data from 5 blocks of 1.8 × 107 simulation
steps (collecting data every 100th step) for the dynamics data. The MC com-
parison uses 4 blocks of 4.3 × 107 elementary steps. (b) The same as (a) for
the mean number of helical segments, 〈Ns〉. (c) Net probabilities for being
in the α-helical basin are plotted for individual residues and at 2 different
temperatures. Errors are defined in the same way as in (a).

In terms of sequence specificity, N- and C-base are most
likely to introduce bias errors at the N- and C-termini, respec-
tively. To address this, Fig. 5(c) shows total probabilities for
being in the α-basin resolved by residue. It is easy to see that
there are no systematic or significant differences in the aver-
age values between all data sets at 278 K. As expected, the
data show larger variability at the N-terminus for N-base and
at the C-terminus for C-base. In the transition region at 347 K,
the same signature is still visible, but the overall errors are
larger and more random. For this particular temperature, the
N-base trajectory seems to deviate somewhat, and this is con-
sistent with the large apparent errors for residues 1 to 13.
Fig. 5(c) clearly points toward the ensembles being kineti-
cally, but not thermodynamically distinct, and this is analyzed
next.

3. Fluctuations and kinetics

Fig. 6(a) plots the total number of transitions from any
defined stated not neighboring the α-basin directly into the α-
basin or vice versa (see Sec. II and Fig. S2 in the supplemen-
tary material).21 The reduction in the number of transitions at
the N-terminus for N-base and at the C-terminus for C-base is
apparent (logarithmic scale). M-base quantitatively recovers
the transition rates at either terminus for the faster case. This
is to be expected because the recursive computations of Fφ

and ID are equivalent for the N-terminal ends of M-base and
C-base and for the C-terminal ends of M-base and N-base.

One may expect that energetic fluctuations are controlled
by the choice of base. Fig. 6(b) demonstrates that this is not
the case for the potential energy. There does appear to be a
small overestimation of fluctuations with respect to the MC
data. However, this result comes with two caveats. First, in the
MC simulations, 40% of all rigid-body moves pick a random
position within the simulation droplet for a given molecule’s
center of mass. This introduces bias given that the bound-
ary is soft, and it leads to a systematic reduction of the mean
boundary potential. As a result, the dynamics simulations are
affected more strongly by the boundary, and this is most rel-
evant when the peptide undergoes substantial internal rear-
rangements, i.e., at high T. Second, due to the use of an im-
plicit model, the distributions of U(r) are not well-described
by Gaussians in the transition region (not shown), and the re-
sults in Fig. 6(b) may become overly sensitive to tails of the
distributions. We emphasize that the agreement is still non-
trivial and satisfying given the fundamental differences in the
sampling protocols.

Kinetic energy fluctuations are analyzed next, but can-
not be compared to MC data. The values for pTM−1p rely on
Cartesian velocities, which all depend explicitly on the choice
of base. Indeed, the peptide’s contributions to pTM−1p re-
solved by residue are strongly dependent on the proximity to
the base (not shown). This a general hallmark of constrained
dynamics that is exacerbated by the choice of base. Fig. 6(c)
examines whether this has an impact on the global average or
fluctuations of pTM−1p. The data clearly show that the en-
sembles all agree in both 〈pTM−1p〉 and 〈ωTIDω〉. This is
encouraging and again nontrivial given that we observed a
slight bias in this regard for the water system at large time step
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FIG. 6. Impact of choice of base on simulations of the FS peptide. (a) At
278 K ensembles are dominated by the straight α-helix, and a simple anal-
ysis of local kinetics is obtained by monitoring transitions in and out of the
α-basin. The time resolution was 1.8 ps. (b) Standard deviations of the total
potential energies are shown as a function of 〈T〉 (related to the nonideal con-
tribution to the heat capacity). The peak corresponds roughly to the melting
temperature. Errors are the same as in Fig. 5. (c) Mean signed error, mean
unsigned errors, and differences in fluctuations of ωTIDω/2 vs. pTM−1p/2
are plotted as a function of 〈T〉. Errors are defined as in Fig. 5.

(Table I). It may be surprising that it is possible to achieve mu-
tually consistent averages at this level of precision. We point
out that this covers cases where the peptide is mostly disor-
dered, where it samples partially helical states, and where it
essentially behaves like a rigid body (in order of decreasing
temperature). Of course, the use of ID is an approximation,
and the mean unsigned error shown in Fig. 6(c) is large. As
expected, it is smaller for M-base than for the other two cases.
Similarly, the fluctuations in pTM−1p are always larger than
those in ωTIDω. Only the latter are consistent with the ideal
part of the heat capacity for this system, viz.:

K

2
kB ≈

〈(
ωTIDω

)2〉 − 〈ωTIDω〉2

4kB〈T 〉2

<
〈(pTM−1p)2〉 − 〈pTM−1p〉2

4kB〈T 〉2
. (21)

Here, K is the total number of degrees of freedom for the con-
strained system as before.

As a final point of analysis, we examine the folding/
unfolding dynamics in the transition region. By computing
autocorrelation functions for root mean square deviations
(RMSD) to the straight helix, we obtain qualitative informa-
tion on the folding dynamics, which does, however, allow
quantitative comparisons between the choices of base. We
choose this analysis mostly for its simplicity.

Fig. 7 demonstrates that the kinetics of complex tran-
sitions follow the same patterns as suggested by Fig. 6(a).
Specifically, by computing subset RMSD values for either the
two halves or the center portion of the peptide, we can gather
that the folding dynamics for N-base are significantly slower
in the N-terminal half than for M- or C-base. In fact, they are
slower than the dynamics for the central portion of the chain.
An analogous conclusion holds for C-base. M-base exhibits
the behavior one would expect, viz., faster reconfiguration at
the termini.

FIG. 7. Kinetics of helix folding and unfolding by RMSD autocorrelation
times. For different choices of base and different subsets of the peptide, in-
stantaneous values for RMSD values of sets comprising backbone nitrogen
and oxygen atoms and C

γ
atoms of arginine were computed. These data yield

the various autocorrelation functions as shown.



034105-15 A. Vitalis and R. V. Pappu J. Chem. Phys. 141, 034105 (2014)

IV. DISCUSSION AND CONCLUSIONS

The results presented in Sec. III support the assertion
that our approach to dynamics in mixed dihedral angles and
rigid-body coordinate space provides ensembles that are ther-
modynamically appropriate. Before giving a concluding sum-
mary, we want to add a few additional remarks regarding our
approach.

For general considerations of long time behavior, an
important aspect to note is that the chosen constraints on
molecular topology (i.e., frozen bond lengths and angles) im-
ply that the Ikk are quantities with well-defined upper and
lower bounds. This means that the bias torques are an un-
likely source of instability (Fig. 2) beyond their inherent rate
of change, which we analyze in Fig. 3 and Tables I and
II for liquid water. For the reasoning in Sec. II D to hold,
equipartition, Eq. (13), must hold approximately, and this
motivates the analyses in Fig. 4 and in Table I. This is of
course a fundamental caveat for all molecular dynamics sim-
ulations. By virtue of � and φ being the independent dy-
namical variables (panel (c) of Fig. S1 in the supplementary
material),21 it is implied that even a minimally coupled sys-
tem (U is zero) will experience cross-correlations in ω that
are mediated by the bias torques seen in Eqs. (8)–(11). Con-
versely, we expect weak correlations between elements i �= j
of φ and ω within a molecule of appreciable complexity.
Equation (20) predicts and the results in Figs. S1,21 1, 3, and
5 support the notion that systematic biases in φ are avoided
by our integrator. This comes at the cost of not preserving
total angular momentum, of introducing artificial dynamics
(Figs. 6(a) and 7), and of not preserving the phase space vol-
ume in terms of Cartesian momenta (Table I and panel (c) of
Fig. 6). Importantly, none of our tests have revealed issues of
a magnitude as seen with typical MMT artifacts24 (panel (a)
of Fig. S1)21 or similar effects reported in the literature.38 We
do emphasize that the rate of convergence may be reduced
considerably, and that this rate is dependent on the choice of
base for flexible molecules, which is to be expected.

Given the lack of volume conservation for Cartesian mo-
menta, the approximate agreement 〈ωTIDω〉 ≈ 〈pTM−1p〉
may be surprising. It is restated as〈∑K

i

∑K

j �=i
GS,ijωiωj

〉
≈ 0. (22)

Here, GS is the MMT for the free subsystem. Equation (22)
can be approximately or rigorously true because of various
conditions. Trivially, all GS,ij are zero for uncoupled degrees
of freedom, e.g., dihedral angles in separate branches, which
are connected to the base of a molecule independently. The
second condition is that the long time average of each off-
diagonal element is very small in comparison to that of diag-
onal elements. The GS,ij for i �= j can assume positive and neg-
ative values, and velocity cross correlations (related to 〈ωiωj〉)
are expected to be weak for long enough simulations. The use
of dihedral angles as generalized coordinates may be advan-
tageous for Eq. (22) because their velocities can be expected
to be correlated less than those of, e.g., interatomic distances.
As a third condition, different terms in the sum could cancel.
The latter two arguments do not extend to the inequality in
Eq. (21), and we consequently observe that the fluctuations

are unmatched. We emphasize that the fluctuations measured
for pTM−1p during simulations are quantities of theoreti-
cal interest only, i.e., they do not control the dynamics, but
provide a gauge for their abnormality in comparison to a
treatment using accurate bias terms and preserving angular
momentum.

In conclusion, we have presented a simplified way of
performing molecular dynamics in a mixed space of dihe-
dral angle and rigid body degrees of freedom. Our goals
were to obtain a stable integrator free of MMT artifacts that
samples thermodynamically appropriate ensembles in a sim-
ple framework applicable to diverse systems. Throughout we
have been careful to emphasize the caveats associated with
our approach, such as the loss of an accurate description of dy-
namics. The diagonal assumption in Eq. (5) achieves a struc-
tural similarity with the Cartesian case that makes the inte-
grator extremely efficient. Explicit timing information is pro-
vided in Appendix C and reveals that the additional cost com-
pared to Cartesian reference integrators is negligible for all
but trivial cases. The algorithm uses a few simple recursion
formulas (Appendix B) to achieve this goal. Section II D ex-
plains why our approach is explicitly free of MMT artifacts
by construction, and this is analyzed specifically in Figs. 1
and S1 in the supplementary material.21

Our choice of coordinates can alter the intrinsic stability
of the numerical integration,33 and Fig. 2 is promising in
this regard. Stability caveats as highlighted in panel (c) of
Fig. 3 should be kept in mind for systems with rapidly
changing inertia. The reduction53 or removal of discretization
errors a posteriori7, 56 is an active field of research, and
we will explore applicable concepts in the future. Aside
from the treatment of flexible rings, our approach handles
any mixture of polymers and/or small molecules within the
same framework. The method aims and is demonstrated
to reproduce thermodynamically accurate results for chal-
lenging systems compared to reference integrators (MD
with holonomic constraints and MC, respectively). The
detailed testing establishes the utility of our approach for
general purpose molecular simulations and applications such
as NMR57 and crystallographic modelling and refinement
software.58 We have used a simplified and explicit version
of Eq. (8) in prior work59 by allowing the Ikk to lag by δt/2.
There, the focus lay equally on equilibrium sampling, and
short MC simulations were spliced into the trajectory. The
benefit of such hybrid approaches emerges also from the
present work. Specifically, the use of the blocking potential
for the FS peptide (Fig. S2 in the supplementary material)21

is necessary for the incremental dynamics propagator, but
would be obviated by the synergistic benefit of combining it
with an MC propagator capable of “jumping” in φ. Ongoing
work is concerned with the derivation of a proper Langevin
integrator and the further development of a unified sampling
engine for internal coordinates of the type investigated here.
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APPENDIX A: COORDINATE OPERATIONS

Recall the notation that three-dimensional atomic posi-
tion vectors, �ri , constitute the state vector r in the original
space of size 3Nat. Equation (4) refers to an operator, A, for
the coordinate transformation between Z-matrix variables and
Cartesian space. Constructing the Cartesian coordinates im-
plies a straightforward backward dependency for �ri on three
reference atoms built previously: �rj , �rl , and �rm. We treat the
first three atoms in each molecule separately by storing their
coordinates explicitly, which implies that their relative orien-
tation must be rigid. This ensures that the backward depen-
dency can always be satisfied.37 Coordinates can be computed
as

�ri = �rj + |�ri − �rj | · [(�c1 × �ak) sin α cos φ

+ �c1 sin α sin φ − �ak cos α],

�c1 = (�rl − �rm) × (�rj − �rl)

|(�rl − �rm) × (�rj − �rl)|
and �ak = �rj − �rl

|�rj − �rl|
. (A1)

Here, the bond length |�ri − �rj |, the bond angle α across �ri , �rj ,
and �rl , and the dihedral angle φ across �ri , �rj , �rl , and �rm are the
Z-matrix variables, which unequivocally determine the posi-
tion �ri . If the dihedral angle corresponds to a rotatable one,
the φk in question is part of the set of degrees of freedom,
and �ak is its unit length bond vector as in Eq. (3). In this case,
�rj , �rl , and �rm must not be collinear (zero inertia). Hierarchi-
cal application of Eq. (A1) yields the operator A−1 in Eq. (4)
directly.

In order to change the effective building direction of the
chain, it would be possible to derive different versions of A−1.
This is important in the context of the integrator allowing for
different choices for the base of motion (explored in Figs. 1, 2,
and 4–7, and S3 in the supplementary material).21 To achieve
this, we pursue an alternative approach that uses a single op-
erator, but applies compensatory rotations to the first three
atoms before A−1 is used. The quaternions representing these
rotations are straightforward to construct from the increments
defined by Eq. (10) for the dihedral angles in question.

The matrix J used throughout in the main text describes
the coordinate transformation differentially. We define Y as
the reduced matrix of covariant base vectors corresponding to
flexible degrees of freedom. The matrix has size 3Nat × K.
Identical to Eq. (3) in the main text, we have for the kth angu-
lar degree of freedom:

( Y3i−2,k Y3i−1,k Y3i,k ) = ∂�ri

∂φk

= �ak × (�ri − �bk). (A2)

The analog of Eq. (A2) for rigid translation is trivial. Y is ad-
justed explicitly for different bases of motion by changes in
the sign of �ak and by which terms are zero. It is used in the
computation of the effective force, Eq. (2), and in the calcula-

tion of instantaneous Cartesian velocities as

d�ri

dt
=

∑
k

∂�ri

∂φk

ωk. (A3)

In Eq. (A3), the sum runs over all the molecule’s degrees
of freedom, which are further toward the base in the same
branch as atom i (including the relevant portions of all parent
branches). This includes rigid-body motion. Note that the ref-
erence frame in Eq. (A2) for the case of rigid rotation is set by
the center of mass (for �bk) and the base vectors of the labora-
tory frame (for �ak). Cartesian velocities derived by Eq. (A3)
are used to compute the correct kinetic energy as 1

2 pTM−1p
for the derived integrators.

APPENDIX B: RECURSION FORMULAS

Both ID and Fφ are computed in the same inward recur-
sion. We restrict the description to the nontrivial case of an-
gular variables. The projected force41 is given by

Fφ,k = �ak ·
∑

i

�ri × �Fr,i − �ak ·
(

�bk ×
∑

i

�Fr,i

)
. (B1)

The calculation proceeds inward (tip(s)-to-base) with the
added difficulty that values from different branches must be
combined for the point at which they merge. The sum runs
over all atoms in the branch further toward the tip (including
all sub-branches). The complexity of O(Nat) is obtained be-
cause the sums contain no terms specific to a given degree of
freedom, i.e., they can be incremented successively. Rigid ro-
tation forms the last step in this recursion, and here the sums
run over all atoms in the molecule.

Similarly

Ikk =
∑

i

mi�r2
i + [�b2

k − (�ak · �bk)2]
∑

i

mi

+ [2(�ak · �bk)�ak − 2�bk] ·
∑

i

mi�ri

−
(

(�ak ⊗ �ak),
∑

i

mi(�ri ⊗ �ri)

)
F

. (B2)

In Eq. (B2), the last term indicates the Frobenius inner prod-
uct of the two outer product matrices. Again, the sums contain
no terms specific to a given degree of freedom.

Cartesian velocities are determined for individual atoms
in an outward recursion:

d�ri

dt
= −�ri ×

∑
k

ωk�ak +
∑

k

�bk × ωk�ak. (B3)

In Eq. (B3), the sums run over degrees of freedom to-
ward the base, see Eq. (A3), and contain no atom-specific
terms thereby allowing a recursive computation in O(Nat)
time.

APPENDIX C: NUMERICAL IMPLEMENTATION

Neglecting initial condition issues, we assume knowl-
edge of conformations at time t1.5 (the current conformation).
In memory, we have ID at time t0.5 and velocities at time t1.
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In addition we have stored a prior guess of ID at time t1. The
integration time step, δt, is the difference in time from tj to
tj+1, and we mandate that there can be at most one evaluation
of U(r) and its gradient per time step. Then, the iteration cycle
is as follows:

1. Store ID at time t0.5 in a separate array and initialize vari-
ables to hold new values of Fφ and ID.

2. Compute U(r), �∇U (r), Fφ , and ID at time t1.5. For the
latter two terms, this uses only recursive operations.

3. Compute the time derivative of r using joint information
from times t1.5 (Y) and t1 (ω).

4. Handle thermostat:
a. If velocity rescaling:45 Infer the current ensemble

temperature from ω and ID at time t1 and apply the
algorithm as published to derive a global rescaling
factor, αT.

b. If Andersen:43 For each degree of freedom k, draw
a uniform random number on the unit interval and
compare it to δt/τ T. If the number is smaller, reassign
ωk at t1 from a pseudo-Boltzmann distribution using
Ikk at time t1.5. Set αT to 1.0.

5. Back up coordinates at time t1.5.
6. Use Eq. (8) in the main text with the substitutions ωk(t1)

= αTωk(t1), δt = δt/2, and Ikk(t2) = Ikk(t1.5). Do not store
the resultant guess for ω at time t1.5, but compute incre-
ments directly as φk(t2) − φk(t1.5) = 0.5δtωk(t1.5).

7. Update coordinates based on increments, back up the
prior guess of ID at time t1, and compute a guess for ID
at time t2. Do not compute any other coordinate-based
quantities.

8. Restore coordinates to those at time t1.5.
9. Perform the velocity iteration in Eq. (11) with the sub-

stitution ωk(t1) = αTωk(t1) by using information on ID at
times t1, t1.5, and t2. This yields ω at time t2.

10. Derive increments from Eq. (10) and update coordinates
to time t2.5.

11. For every molecule, compute an updated center of mass
(elements of ω corresponding to rigid translation are un-
altered irrespective of whether the new center of mass is
not the same as the one provided by the increments in
the previous step).

12. Compute and accumulate properties of interest (using
dynamic information at time t2 and structural informa-
tion at time t2.5).

13. Return to step 1.

Note that the coordinate update steps (7 and 10) involve
the required pre-rotation of the 3 reference atoms in every
molecule if the choice of base of motion does not coincide
with the natural structure of operator A−1. There are two pos-
sible modifications to the above scheme that we have not yet
analyzed or explored. The first is to use ID at time t1 in step
4b, which would be more appropriate for the method, but rely
on a less robust value. The second is to modify step 6 to use an
analog of Eq. (11), but we do not anticipate that this will af-
ford higher accuracy without additional coordinate perturba-
tions and computations of ID at intermediate, fractional time
steps.

While it is generally expected that the evaluation of
Cartesian forces becomes the time-limiting factor in simula-
tions for large enough systems, we provide some timing in-
formation for the numerical scheme outlined above. For com-
parison, Jain et al.26 cite that “each time step in a GNEIMO-
Fixman simulation with full force fields costs about 2.24 times
(instead of 2 times for TORSIONAL) the cost of FLEXIBLE
simulation time steps.” This is for the torsion angle dynam-
ics utilizing spatial operator algebra of a medium-sized pro-
tein using compensating terms for MMT artifacts. Our tim-
ings on a single core of an Intel Xeon E5410 CPU are as fol-
lows. For the water system, at 5 fs integration time step, the
reference integrator (Cartesian dynamics with SETTLE) and
our most expensive integrator (
 = 4) both produce ∼1.6 ns
per day (evaluations of the Cartesian force are strictly iden-
tical). For the FS-peptide system, with exactly matched ther-
mostat and potential energy settings and a time step of 2 fs
in both cases, the internal coordinate space integrator with

 = 4 and a leapfrog Cartesian integrator using SHAKE to
constrain all bond lengths produce ∼40 ns/day and ∼41 ns/
day, respectively (short simulations started from the
exact same conformation and using identical evalua-
tions of the Cartesian force). Even for the system
of Fig. S1 in the supplementary material21 (Cartesian
force is insignificant), we obtain similar numbers with
11.4 μs/day and 9.5 μs/day for Langevin sampling in Carte-
sian space with SHAKE and Eq. (11), respectively. These tim-
ings clearly demonstrate that there is no significant cost in-
curred by the auxiliary computations.
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