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Contributions of Cell Growth and Biochemical Reactions to Nongenetic
Variability of Cells
Anne Schwabe and Frank J. Bruggeman*
Systems Bioinformatics, VU University, Amsterdam, The Netherlands
ABSTRACT Cell-to-cell variability in themolecular composition of isogenic, steady-state growing cells arises spontaneously from
the inherent stochasticity of intracellular biochemical reactions and cell growth. Here, we present a general decomposition of the
total variance in the copynumber per cell of a particularmolecule. It quantifies the individual contributionsmadebyprocesses asso-
ciated with cell growth, biochemical reactions, and their control. We decompose the growth contribution further into variance con-
tributions of randompartitioning ofmolecules at cell division,mother-cell heterogeneity, and variation in cell-cycle progression. The
contributionmadebybiochemical reactions is expressed in variancegenerated bymolecule synthesis, degradation, and their regu-
lation.Weuse this theory tostudy the influenceofdifferentgrowthand reaction-relatedprocesses, suchasDNAreplication, variable
molecule-partitioning probability, and synthesis bursts, on stochastic cell-to-cell variability. Using simulations, we characterize the
impact of noise in the generation-time on cell-to-cell variability. This article offers a widely-applicable theory on the influence of
biochemical reactions and cellular growth on the phenotypic variability of growing, isogenic cells. The theory aids the design and
interpretation of experiments involving single-molecule counting or real-time imaging of fluorescent reporter constructs.
INTRODUCTION
Single-cell experiments show that isogenic cells generally
differ markedly in the copy numbers of mRNA and protein
molecules (1,2) and a multitude of other system properties,
such as cell volume, growth rate, and phenotypic state (3–5).
These experiments exploit single-molecule counting methods
(6) or fluorescent reporter constructs (7) to quantify the levels
of specificmolecules in single cells.Awide range of processes
have been shown to contribute to nongenetic cell-to-cell vari-
ability (8): e.g., fluctuation-induced imbalances in molecule
synthesis and degradation (9,10), synthesis control (10), syn-
thesis bursts (11), partitioning of molecules at cell division
(12), bistable switching (13), and noise propagation (14).

In most single-cell studies, stochastic models are used to
explain experimental findings. However, often those models
highlight only a particular aspect of cellular stochasticity
and they are highly simplified to overcome the problem of
kinetic parameter uncertainty. As a consequence, it often
remains unclear to what extent a particular stochastic phe-
nomenon contributes to the total cell-to-cell variability
because it is only one out of several and possibly many.
Thus, the variance in the copy number of a molecule across
a population of isogenic cells, growing in a balanced, expo-
nential manner, results from several sources of stochasticity.
For instance, cells that have just divided tend to have fewer
molecules than cells that have progressed further along the
cell cycle, because at the end of the cell cycle the volume
of the cell and its molecular content should have doubled.
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Cells that have progressed in the cell cycle equally far can
also differ in molecular content, because the number of
molecules produced and degraded until this moment in
time varies between cells, due to biochemical reaction sto-
chasticity. In addition, two daughter cells that derive from
the same mother cell can vary in molecular content due
to partitioning stochasticity. Moreover, two daughter cells
from different mother cells can vary because their two
mother cells differed in molecule content at the time of
division. Thus, the net variance of a molecule copy number
is the result of the accumulation of various stochastic effects.

Different stochastic processes, associated with either bio-
chemical reactions or cellular growth, contribute to total mo-
lecular noise. The relative sizes of those contributions will
generally depend on the organism. For instance, Escherichia
coli and Saccharomyces cerevisiae have completely different
division statistics;E. coli divides symmetrically and S. cerevi-
siae asymmetrically. Genes encoded on plasmids, rather than
genomes, may follow very different stochastic dynamics.
Thus, being able to disentangle stochastic contributions to
molecular noise allows for the identification, comparison,
and characterization of mechanisms for specific organisms.

We present a variance decomposition in terms of the contri-
butions of a wide range of cell growth and biochemical reac-
tion processes. Such variance decomposition methods have
recently been introduced to the field of stochastic cell biology
(8,15–20). Here we generalize this method for cells engaging
in exponential, steady-state growth. Our method offers a pow-
erful method to analyze the causes of cell-to-cell variability
without having toconsider complexmechanisticmodelsof un-
derlying molecular reactions and the cellular growth process.
http://dx.doi.org/10.1016/j.bpj.2014.05.004
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Variance decomposition methods offer great potential for the
analysis of experimental data and for experimental design.
RESULTS

Steady-state growth of a population of cells

In this work, we decompose the variability in the copy num-
ber of a particular molecule X—a protein or mRNA—
across a population of growing, isogenic cells in terms of
different processes. Generally, individual cells progress
through the cell cycle asynchronously. Therefore, we find
cells at different cell-cycle stages in a growing population;
some cells have just divided, others have divided some
time ago or are about to divide. The fraction of cells that
have reached a particular cell-cycle progression status, a,
is described by the probability distribution, u(a). Here a de-
notes the time that has passed since the last cell division. In
balanced growth, this distribution, u(a), is completely deter-
mined by the interdivision time distribution (21), a probabil-
ity distribution for the interdivision (or generation) time. T is
the time period between subsequent cell divisions, which
sets the population growth rate, denoted by m (¼(ln 2)/T).

Molecule turnover is a basic feature of a growing cell
population (Fig. 1 A). While cells grow in volume and
divide, new molecules need to be synthesized to compensate
for their losses due to partitioning into daughter cells and
their degradation. The entire molecular content of a just
divided (daughter) cell needs to be doubled during the cell
FIGURE 1 Overview of the biochemical reaction and cell-growth processes c

ical reactions, i.e., fluctuations in rate of molecule synthesis and its regulation, a

ability in molecule content of mother cells, and (iii) variability in partitioning

synthesized molecules in bright red. (B) Heterogeneity due to the balanced gro
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cycle (on average) before it has become a mature mother
cell ready for cell division.

We consider the steady-state growth of the cell popula-
tion, so-called balanced growth. Balanced growth requires
that the intrinsic variables of the system—those expressed
per unit cell mass or volume—follow a constant probability
distribution (independent of time). Examples of such
intrinsic variables are: the cell-cycle stage, the generation
time, the molecule copy number per cell at a given stage,
and the cell volume distribution.

Fig. 1 illustrates the key processes associated with cell
growth and biochemical reactions that contribute together
to variance in the molecule copy number across a population
of isogenic cells at balanced growth. Fig. 1 A takes a single-
cell perspective and emphasizes the processes at this level
contributing to cell-to-cell heterogeneity. In this figure,
four stochastic contributions are distinguished:

1. Molecular partitioning at cell division,
2. Cell volume growth,
3. Net molecule synthesis, and
4. Variability of mother cell volume and molecule copy

number before division.

Fig. 1 B addresses the two main stochastic contributions
arising at the population level, i.e.:

1. Cells at the same cell-cycle stage have differences in
molecule content, and

2. The averagemolecule content varieswith cell-cycle stage.
ontributing to cell-to-cell variability. (A) Heterogeneity due to (i) biochem-

nd (ii) due to binomial partitioning of molecules at cell division, i.e., vari-

. Molecules inherited from the mother cell are shown in faded red, newly

wth process. At a specific cell-cycle stage, the molecule copy numbers of

n probability of occurrence. The net distribution of molecule copy number

nalizing the conditional copy number distribution over the cell-cycle stage
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Those two sources are a direct consequence of the single-
cell stochasticity mechanisms described in Fig. 1 A. Another
source derives from the fact that cells pass through the cell
cycle asynchronously and that different cell-cycle stages
coexist at any moment in time. The resultant variability in
molecule content across the population emerges from those
two cell-cycle stage-dependent stochasticity contributions
at the population level weighted by the probability distribu-
tion for the cell-cycle stage. Hence, decomposing the net
variance into its causal components tells us how a certain
degree of molecular noise is achieved for a given cell type
at particular conditions.
Decomposition of molecule copy number
variance into biochemical reaction and cell
growth contributions

The mathematical notations that we use throughout this
article are summarized in Table 1. The number of molecules
at a certain cell-cycle stage, a, can be expressed as the sum
of the number of molecules that have survived until stage a
and that were either inherited from the mother cell or newly
synthesized. Accordingly, the average copy number at stage
a then equals

hxai ¼ pðaÞhx0i þ hXai; (1)

where p(a) denotes the survival probability up to cell-cycle
stage a for a molecule that was inherited from the mother
cell. For independent first-order degradation with rate
constant kd, this probability equals e�kda and decays with
cell-cycle progression. On average, hx0i molecules were
obtained from the mother. As cells progress through the
TABLE 1 Notations

Notation Explanation

h,i, hd2,i Mean and variance

h,j,i, hd2,j,i Mean and variance of a random variable conditional

on a second random variable

T Generation time

a Cell-cycle stage (0 % a % T)

xa ¼ xja Copy number per cell of molecule X at

cell-cycle stage a

x0 Number of molecules that were inherited from

the mother cell and not yet degraded

up to cell-cycle stage a

Xa ¼ Xja Number of newly synthesized X molecules because

the last division up to cell-cycle stage a that

have not been degraded.

u(a) Cell-cycle stage distribution; uðaÞ ¼ ln 2=T21�
a
T

for deterministic interdivision times

m Specific growth rate of the population; m ¼ ln2/T

for deterministic interdivision times

p(a) ¼ e�kda Survival probability of molecule X

1/kd Intrinsic lifetime of molecule X

q Probability that a molecule of X at cell division will

be inherited by a particular daughter cell
cell cycle, the average copy number of any molecule dou-
bles from cell birth to cell division: hxTi ¼ 2hx0i. From
this we can conclude that short-lived proteins require
more synthesis, i.e., at most hXTi ¼ hxTi, whereas stable
molecules (kd ¼ 0) require less; hXTi ¼ 1/2 hxTi, because
the molecules obtained at division are not degraded.

Because cells at different cell-cycle stages have different
molecule content, the variance in the molecule copy number
has a contribution due to differences in cell-cycle stage
and to differences in molecules content at a specific cycle
stage (Fig. 1 B). Using the law of total variance, we can
decompose the variance in the molecule copy number as�

d2x
� ¼ �

d2hxai
�

|fflfflfflfflffl{zfflfflfflfflffl}
variance due to differences in cell cycle stage

þ��
d2xa

��
: (2)

Here hd2hxaii is the variance in x due to fact that the average

number of molecules increases with cell-cycle stage. We
emphasize that hd2hxaii is not indicating cell-to-cell vari-
ability due to stochastic fluctuations, rather it arises solely
from molecule synthesis accompanying the growth process.
The second variance term captures functional stochasticity,
the variance in the copy number at a cell-cycle stage aver-
aged over all possible stages. This term includes bio-
chemical noise (contributions from molecule turnover) and
partitioning at cell division.

We consider only systems without feedback, i.e., the
number of newly synthesized molecules does not depend
on currently available or past numbers of molecules. We
limit ourselves to first-order, independent degradation of
molecules. The synthesis process is completely general
and can include bursts, cell-cycle-dependent synthesis rates,
and sources of extrinsic noise. Regulation by upstream
factors, multistep, or bursting synthesis is accounted for
through the synthesis statistics of the molecule of interest
(discussed in more detail below).
Derivation of the complete variance
decomposition relation

The number of molecules at cell-cycle stage a equals the
sum of molecules that were either obtained from the mother
cell or newly synthesized and that have not yet been
degraded. Accordingly, the variance in the number of mole-
cules at cell-cycle stage a equals the variance of the sum of
those random variables and their covariance,

�
d2xa

� ¼ �
d2x0

�þ 2covðx0;XaÞ þ
�
d2Xa

�
: (3)

We note that even without feedback the covariance term

need not be zero: the synthesis rate of new molecules and
the number of molecules at birth can both depend on a
hidden variable, e.g., an upstream regulatory factor.

The first term in Eq. 3 can be further decomposed. We
assume independent degradation of molecules such that
Biophysical Journal 107(2) 301–313
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for a given number of molecules at cell birth the number of
inherited molecules that survive at least up to cell-cycle
stage a is distributed according to a binomial distribution
with mean p(a)x0 and variance p(a)(1 – p(a))x0. Application
of the law of total variance to hd2x0i yields�

d2xa
� ¼ pðaÞ2�d2x0�þ pðaÞð1� pðaÞÞhx0i

þ 2pðaÞcovðx0;XaÞ þ
�
d2Xa

�
: (4)

The variance in the number of inherited molecules,
hd2x0i, can be decomposed into a contribution from variance
in the molecular composition of mother cells and variance
deriving from the partitioning process:�

d2x0
� ¼ ��

d2x0
��xT��|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

partitioning variance

þ �
d2hx0jxTi

�
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

variance due to mother cell variability

: (5)

Combining Eqs. 2, 4, and 5 yields the complete variance
decomposition relation,
�
d2x

� ¼ �
pðaÞ2���d2x0��xT��|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

partitioning variance

þ �
pðaÞ2���d2x0��xT��|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

variance due to mother cell variability

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Decayed variance of molecules at cell birth; hpðaÞ2ihd2x0i
þ �

d2hxai
�

|fflfflfflfflffl{zfflfflfflfflffl}
variance due to differences in cell cycle stage

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Growth-induced variance

þ hpðaÞð1� pðaÞÞihx0i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
variance in the degradation of

molecules obtained at division

þ ��
d2Xa

��
|fflfflfflfflffl{zfflfflfflfflffl}

variance in synthesis and extrinsic noise in

newly synthesized molecules ðnetworkingÞ

þ 2hpðaÞcovðx0;XaÞi|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
covariance due to dependence

on extrinsic factors|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Reaction�induced variance

: (6)
The averages hp(a)2i and hp(a)(1� (a))i can be expressed in
terms of the dimensionless parameter ratio kd/m. This ratio
describes the rate of loss of the memory of cell division vari-
ance and variance in the survived number of molecules ob-
tained at division (see the Supporting Material). If this ratio
is large, the molecule lives much shorter than the generation
time and hp(a)2iz 0 and hp(a)(1� p(a))iz 0. In this limit,
the variance in x is determined only by the variance intro-
duced during the synthesis of new X molecules and due to
differences in cell-cycle progression.

We noted earlier that most of the theory developed in the
field of stochastic cell biology concerned the analysis of
noise creation and propagation in different biochemical cir-
cuits, independent of the growth process of cells. Those
studies all concern the exact value of hhd2Xaii and express
this in terms of biochemical kinetics. All the other terms
either are due to the growth process alone or concern a
coupling between biochemical reactions and the growth pro-
cess and are not considered in most studies. In the following
paragraphs, we will further discuss each of these contribu-
Biophysical Journal 107(2) 301–313
tions separately, and introduce several mechanisms relevant
for cell biology.

Note that the terms hhd2x0jxTii, hd2hx0jxTii, hd2hxaii, and
hx0i can all be determined directly from time-lapse micro-
scopy images with a fluorescent reporter construct. In com-
bination with a separate measurement of the degradation
rate, the first four terms on the right-hand side of Eq. 6
can therefore be determined. If using a stable protein,
i.e., kd z 0, the last two terms can also be directly deter-
mined from time-lapse images: after background correction
and possibly a correction for photobleaching, the newly
accumulated fluorescence of a growing cell is due to new
synthesis events. The variance at cell-cycle stage a equals
the sum of the variance at cell birth, the variance in new
synthesis, and twice their covariance. By conditioning on
the amount of reporter protein at cell birth, x0, the last
two terms in Eq. 6 can be separated. If active degradation
of the reporter construct is nonnegligible, these two terms
can still be determined experimentally by bleaching all ex-
isting fluorescent molecules and then recording time-lapse
images that should only show the net new synthesis. Con-
ditioning on x0 again allows for a separation of hd2Xai and
p(a)cov(x0,Xa).

Cell-division variance

One contribution to the variance in the copy number of a
molecule stems from the variance introduced during cell di-
vision (discussed in detail by Huh and Paulsson (12)) and
the extent by which this has decayed during the generation
time of a cell. We found that this decay depends on the
parameter ratio kd/m. Next, we will express the variance
term in a newborn daughter cell, hd2x0i, in terms of the
mother cell variance and the mechanism of cell division.
Here we limit ourselves to independent (binomial) partition-
ing of molecules but allow the partition probability, q (i.e.,
the probability for each molecule to end up in one daughter
cell) to have a distribution by itself, denoted by g(q) (with
hqi ¼ 1/2).

The condition of balanced growth together with a parti-
tioning mechanism leads to equations for the moments of
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the copy number distributions at cell birth and at cell divi-
sion (see the Supporting Material). For the mean, we have
hx0i ¼ hxTi/2 and to obtain the variance hd2x0i, we apply
the law of total variance twice (assuming that q and xT are
independent; see the Supporting Material):
�
d2x0

� ¼ �
d2q

�hxTi2|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
hd2hx0jqii; variance due to q fluctuations

þ �
1=4� �

d2q
��hxTizfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{partitioning variance

þ �
1=4þ �

d2q
���

d2xT
�zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{variance due to mother cell heterogeneity

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
hhd2x0jqii cell-division variance

: (7)
We note that rearrangement of this equation leads to the
same result as given in Huh and Paulsson (12). This equation
indicates that fluctuations in the partitioning probability, for
instance because of different volumes of two sister cells or
intracellular organization (12), enhance hd2x0i. For a mole-
cule that is degraded rapidly (its half-life is short in compar-
ison to the generation time; kd/m is high), the variance at cell
division, hd2xTi, is mainly determined by the variance of
molecules that were newly synthesized during the last cell
cycle. In contrast, for stable molecules (kdeg z 0) hd2xTi ¼
hd2x0i þ hd2XTi, i.e., the variance at cell division has a sig-
nificant contribution from the variance at cell birth and
therefore also from the fluctuations in q during previous
divisions. Therefore, for a stable molecule, fluctuations in
q are a significant contribution to the copy number noise.
The population level copy number noise for a stable mole-
cule that is synthesized by a zero-order reaction can be writ-
ten as (see the Supporting Material for a derivation)

�
d2x

�
hxi2 ¼ 1

hxi þ 1� 2lnð2Þ2|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
noise due to distribution

of cell cycle stages

ðsee following paragraphÞ

þ 16lnð2Þ2�d2q�
3� 4

�
d2q

�
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

noise due to

fluctuations in q

: (8)

For many microorganisms, the coefficient of variation of q is
2

FIGURE 2 Cell-stage-dependent and independent noise contributions.

(Thick gray line) Average copy number as function of cell-cycle stage;

(blue and green) results of individual stochastic simulations. (Dashed black

line) Population average copy number. Differences between the blue and

gray lines at a fixed cell-cycle stage (xa � hxai) lead to functional noise,

whereas the differences between the cell-cycle stage-dependent average

and the total average (hxai � hxi) derive from the growth process alone.

The distribution of the cell-cycle stage-dependent averages is shown on

the right. To see this figure in color, go online.
in the range of 3–7% (22,23) (i.e., hd qi ¼ 0.0075–0.0175)).
As a result, the last term in this equation lies between 0.019
and 0.046. For a molecule with high copy numbers, where
intrinsic noise (1/hxi)) is low, this contribution can become
quite significant.

Variance due to the distribution of cell-cycle stages

The third variance term in Eq. 6, hd2hxaii, quantifies the dif-
ferences in the average copy numbers at different cell-cycle
stages. Due to binary divisions, the average copy number
per cell needs to double during a generation time (Fig. 2).
Therefore, cells in an asynchronous population have
different cell-cycle progression stages and older cells will,
on average, have a higher copy number than younger cells.
The variance deriving from these differences, hd2hxaii, does
in general not constitute a source of functional noise and de-
rives solely from the growth process. It does, however, make
a serious contribution to copy number noise as we shall
show in this section. This contribution becomes negligible
when noises in molecular concentration are considered
(shown in a later section).
If the synthesis rate is constant throughout the cell cycle,
the average copy number of produced molecules at a certain
cell-cycle stage can for a simple model be written as

hXai ¼ ks
kd

�
1� e�kda

�
; (9)

hxai ¼ pðaÞhx0i þ hXai; (10)
where ks denotes the effective synthesis rate. These equa-
tions can, for instance, apply to mRNA but are equally valid

for most proteins provided that the lifetime of their mRNA
is short relative to the cell-cycle duration. Given these equa-
tions, the contribution of differences in cell-cycle stage to
the variance in copy numbers equals

�
d2hxai

� ¼
ZT

0

uðaÞðhxai � hxiÞ2da ¼ hxi2f
�
kd
m

	
; (11)

where f(kd/m) is a monotonically decreasing function of kd/m
(see the Supporting Material for complete expression;

see Fig. S1 A in the Supporting Material). As we found
earlier, the ratio kd/m is an essential parameter. In the limit
of kd/m / 0, when the molecule is only diluted by growth,
hd2hxaii simplifies to
Biophysical Journal 107(2) 301–313
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�
d2hxai

� ¼ k2s
�
1� 2lnð2Þ2�

m2

¼ hxi2�1� 2lnð2Þ2�z0:04hxi2; (12)

with hxi ¼ ks/m as the population-average copy number (and
m¼ ln(2)/T). For a stable molecule, differences in cell-cycle
stage contribute 0.04 to the noise in copy numbers across a
population of cells. This contribution can be expected to be
very significant for moderately to highly expressed proteins
while becoming negligible as compared to hhd2xjaii for
molecules with low copy numbers because the intrinsic
noise contribution 1/hxi dominates.

If the synthesis rate changes during the course of the cell
cycle, e.g., because the gene encoding the protein of interest
is replicated, the cell-cycle stage noise contribution hd2hxaii
changes. Assuming again a stable molecule (kd/m / 0) and
�
d2x

� ¼ hxi2�1� 2lnð2Þ2�zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{variance due to cell cycle stage distribution

þð1=ln2� 1ÞksT
��
d2b

�þ hbi2�zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{variance due to synthesis

þ ksT
�hbið2þ hbiÞ þ �

d2b
�þ 4

�hbið � 2þ hbi þ 4hbiksTÞ þ
�
d2b

���
d2q

��
3� 4

�
d2q

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

hd2x0i variance at cell birth

;

(13)
synthesis with rate ks up to time tr (time of replication) and a
doubled synthesis rate between tr and division at time T, the
cell-cycle-dependent variance becomes a function of the
ratio tr/T (see the Supporting Material for complete expres-
sion; see Fig S1 B). It can take values in the range of
z0.035hxi2 and z0.046hxi2, as was determined before
numerically by Marathe et al. (24). In the limit of tr /
0 or tr / T, it reduces to hxi2 (1�2ln(2)2), as we found
earlier.

Variance due to the biochemical reactions and (extrinsic)
noise propagation

The term hd2Xai in the variance decomposition (Eq. 6) cap-
tures contributions from the synthesis of new molecules
because of the last cell division event. This comprises con-
tributions from intrinsic as well as extrinsic noise (15). We
focus here on the variance decomposition for a single
molecule and therefore consider all effects from upstream
regulators to be part of the extrinsic noise. For a large num-
ber of models (considering various sources of extrinsic
noise, as well as bursting) the variance of the net number
of newly synthesized molecules (i.e., the number of newly
made molecules that survive up to the time of interest) can
be described by queuing theory. A very general bursting
model with nonexponential waiting times between bursts
and general distributions for burst size is described by a
Biophysical Journal 107(2) 301–313
GIX/M/N queue for which the transient moments can be
calculated from recursive equations (25,26). Transient mo-
ments for two- and three-state models of gene expression
have been solved in the Iyer-Biswas et al. (27) and Shahre-
zaei and Swain (28). Extrinsic noise can be modeled by us-
ing queues with input correlations (29,30). Here we
demonstrate the use of queuing theory to describe the vari-
ance contribution from biochemical reactions with a simple
model of bursting synthesis where the times between bursts
are exponentially distributed and burst sizes have a general
distribution (31). For simplicity we take the molecule to be
stable, i.e., kd ¼ 0.

We denote the average burst size hbi and its variance
hd2bi. With average time between bursts equal to 1/ks the
variance at cell-cycle stage a is given by hd2Xai ¼ ks
a(hd2bi þ hbi2). With this, Eq. 6 becomes (for a derivation,
see the Supporting Material)
with hxi ¼ ksThbi/ln(2) as the average copy number. This
equation indicates that synthesis bursts enhance copy num-
ber variance and that variations in the burst size, hd2bi, and
in the partition function, hd2qi, have a multiplicative contri-
bution to overall copy number noise. If we remove the bursts
by setting hbi ¼ 1 and hd2bi ¼ 0, we recover Eq. 8. When we
set the average burst size to five molecules (as has been
measured for the lac promoter in E. coli (32,33)) and its
variance to 20 (assuming a geometric burst size distribu-
tion), then the copy number variance increases 3.75-fold
due to bursts only (hd2qi ¼ 0) compared to a model with
the same average copy number but without bursts. When
hd2qi ¼ 0.01 (a typical value for many microorganisms),
we find an increase in variance of 4.05-fold.

Extrinsic noise in the synthesis rate shapes the expres-
sions for hd2Xai as well as cov(p(a)x0jXa): their dependence
on the cell-cycle stage is a function of the lifetime of the
molecule X under consideration as well as the lifetime
and shape of the autocorrelation function of the extrinsic
noise. If either lifetime is short, the covariance term quickly
decreases to zero, because the number of molecules that
were inherited from the mother cell and survived until
cell-cycle stage a is small or because the synthesis rate at
a is uncorrelated with the one during the previous cell cycle
such that the number of newly synthesized molecules is
independent of the number of inherited molecules. The
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variance of the net new synthesis as a function of the cell-cy-
cle stage can be calculated from the average synthesis rate
and its autocorrelation function as (30)

�
d2Xa

�¼
Za

t¼ 0

pða�tÞð1�pða�tÞÞhksðtÞidt þ
Za

t1 ¼ 0

Za

t2 ¼ 0

pða�t1Þ

� pða�t2Þcovðksðt1Þ; ksðt2ÞÞdt1dt2;
(14)

where ks(t) denotes the synthesis rate at time t. For a
modulated Poisson process the covariance term always
Gðx;aÞðzÞ ¼ FðX;aÞðzÞ
zfflfflfflffl}|fflfflfflffl{net new synthesisYN

i¼ 0

FðX;TÞ
�
1� ð1=2pðaÞÞð1=2pðTÞÞið1� zÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

molecules that were synthesized iþ1 generations ago and ended up in the cell of interest

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{molecules remaining from previous cell cycles

; (15)
equals a sum of a Dirac-delta function accounting for the
shot noise of the synthesis process and the autocorrelation
function of the upstream regulator (see the Supporting Ma-
terial). The covariance term in Eq. 4, 2p(a)cov(x0, Xa), de-
rives from correlations in the synthesis rate that span more
than one generation. Usually it is unclear from which exact
factors the extrinsic noise derives and how those factors
are themselves affected by the cell division. If there is
no variance in the division fraction q, the cell-cycle
stage-dependent copy number variance and the covariance
term can be calculated as a function of the synthesis
covariance during and across generations (see the Support-
ing Material).
The full copy number distribution for zero-order
synthesis and first-order degradation
(the Poisson limit)

If the partitioning probability q is fixed and equal to 1/2, the
full copy number distribution at a cell-cycle progression
stage a can be derived using probability generating func-
tions (see the Supporting Material). The number of mole-
cules at a equals the sum of the net synthesized molecules
because the last division and those inherited from the
mother cell that have not yet been degraded. To obtain the
probability distribution of such a sum of independent
random variables, one needs to calculate the convolution
of the two associated probability distributions. This step
simplifies when instead of these distributions their probabil-
ity generating functions (PGFs) are considered, because
the PGF of a sum of two independent random variables
equals the product of the two associated generating func-
tions. Moreover, the binomial partitioning at division as
well as first-order degradation can be expressed in simple
terms for generating functions: with Fx(z) as the generating
function of some random variable x, the distribution of
a binomial partitioning of x over two daughter cells is
given by Fx(1�1/2 (1 � z)). Equivalently, the PGF for the
number of molecules that remains after a period of time a,
where each molecule has a probability (1 – p(a)) to be
degraded, equals Fx(1 – p(a)(1 – z)). With this, we obtain
an equation for the PGF of the number of molecules at
cell-cycle stage a,
whereF(X,a)(z) denotes the generating function of the number
of newly synthesized molecules at cell-cycle stage a. The
probability that a molecule that was present in the mother
cell is inherited and not yet degraded at a is accounted for
by p(a)/2, whereas (p(T)/2)i reflects the probability that a
molecule that was synthesized i generations ago is not yet
degraded and ended up in a particular daughter cell. The pop-
ulation wide copy number distribution can be obtained by
marginalizing out the cell-cycle stage distribution:

GxðzÞ ¼
ZT

0

uðaÞGðx;aÞðzÞda: (16)

As an example, we consider a model with zero-order syn-
thesis and first-order degradation: the classical Poisson
model. To solve the generating function given in Eq. 15
we only need to determine the generating function
F(X,a)(z) for the number of produced molecules that have
not yet been degraded. F(X,a)(z) is the generating function
of the time-dependent probability distribution of the
following stochastic process, starting from the initial condi-
tion with 0 molecules:

[!ks X!kd [: (17)

The associated master equation can be solved analytically
(34) and gives the following distribution for the number of
molecules:

Xa � PoissonðkðaÞÞwith kðaÞ ¼ ks=kd
�
1� e�kda

�
: (18)
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F(X,a)(z) then equals F(X,a)(z) ¼ ek(a)(z�1). Substituting this
into Eq. 15 yields

Gðx;aÞðzÞ ¼ ekðaÞðz�1Þ YN
i¼ 0

ekðTÞðð1�ð1�zÞpðaÞ1=2ðpðTÞ1=2ÞiÞ�1Þ

¼ e
ðz�1Þ

�
kðaÞþpðaÞ1=2kðTÞ

1�pðTÞ1=2

�
:

(19)

This indicates that the copy number distribution at cell-cycle
stage a is given by a Poisson distribution with average
kðaÞ þ pðaÞ1=2kðTÞ
1� pðTÞ1=2;

where the first term equals hXai and the second hx0ip(a).
�
pðaÞ2���d2x0��xT��þ �

pðaÞ2��d2hx0jxTi�þ hpðaÞ½1� pðaÞ�ihx0i
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{decay of memory of cell division variance

¼ pðaÞ�d2x0� ¼ pðaÞhx0i: (22)
For a stable molecule, i.e., kd ¼ 0, marginalizing out the
cell-cycle stage distribution and taking appropriate limits
yields

pðxÞ¼
ZT

0

uðaÞpðxjaÞda

¼
ZT

0

uðaÞ e
�ksðaþ TÞðksðaþ TÞÞx

x!
da

¼4ðksTÞxðG½1þ x; ksT þ lnð2Þ� � G½1þ x; 2ksT þ lnð4Þ�Þ
x!

� lnð2ÞðksT þ lnð2ÞÞ�1�x

x!
;

(20)

where G[,] denotes the incomplete gamma function (Fig. 3).
Under these conditions, the variance decomposition as
given in Eq. 6 takes a simple form and gives the variance
decomposition of the classical Poisson model,

�
d2x

� ¼ ��
d2x0

��xT��|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
¼ 1=2lnð2Þhxi

þ �
d2hx0jxTi

�
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
¼ 1=2lnð2Þhxi

þ ��
d2Xa

��
|fflfflfflfflffl{zfflfflfflfflffl}
¼ ½1�lnð2Þ�hxi|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼hxi

þ �
d2hxai

�
|fflfflfflfflffl{zfflfflfflfflffl}
½1�2lnð2Þ2�hxi2

;

(21)

showing that under these conditions the variance contribu-

tions from partitioning, from variance in the mother cell,
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and from intrinsic noise in the synthesis process, are of com-
parable magnitude. The relative magnitude of the last term
(variance deriving from the cell-cycle stage distribution)
in comparison to the other three depends on the average
copy number. Typically we associate with the Poisson
model the result that hd2xi ¼ 1/hxi, and here we see that,
in fact, the growth process also makes a contribution to
this variance due to the cell-cycle dependency of x.

For the case that active degradation of molecules is on a
comparable or faster timescale as the generation time,
the Poisson model gives insight into how the different
variance contributions change during the cell cycle. Because
the copy number distribution at any cell-cycle stage is given
by a Poisson distribution, the variance at a equals the
average copy number at that cell-cycle stage. With this,
we obtain
Combining this with Eq. 4 yields the following expression
for the variance at a:�
d2xa

� ¼ �
d2Xa

�þ pðaÞ�d2x0�
¼ ks=kd

�
1� e�kda

�
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
variance from newly

synthesized molecules

þ e�kda
�
d2x0

�
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

decay of memory of

cell division variance

¼ hxai: (23)

This illustrates that the contribution of the variance at cell
birth decays exponentially with cell-cycle stage but that
this decrease is balanced by the increasing variance from
newly synthesized molecules.
Variance decomposition for concentrations

The results derived in the previous sections can be trans-
ferred to variance decompositions for concentrations
directly if a fixed volume-age relationship is assumed.
When volume, V, is expressed as a function of cell stage,
the concentration variance at stage a can be expressed
as hd2cai ¼ hd2xai/Va2 and the total variance can be ex-
pressed as �

d2c
� ¼ ��

d2ca
��þ �

d2hcai
�

¼

�

d2xa
�

V2
a

�
þ


d2


xa
Va

��
:

(24)

The first term can now be decomposed in an analogous

manner as for copy numbers. The second term, denoting



FIGURE 3 Extrinsic noise can shape the distributions of concentrations

and copy numbers. The distributions of concentrations (black) and copy

numbers (gray) are shown for a stable molecule synthesized by a zero order
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variance in concentrations from changes in concentration
during the cell cycle, will in most cases be much smaller
than the corresponding term for copy numbers: while the
copy number inevitably doubles on average between subse-
quent divisions, the average concentration at stage 0 must
equal that at stage T. For the case of a constant synthesis
rate throughout the cell cycle and no active degradation,
there is a linear increase in the average copy number with
cell-cycle stage. Therefore, if volumes also increase line-
arly, stage hd2hcaii will become zero, while with exponen-
tial volume growth hd2hcaii z 0.0003hci2.

For the simple model with zero-order synthesis and no
active degradation, Fig. 3 compares the resulting distribu-
tions of copy numbers and concentrations. The difference
in the magnitude of the cell-cycle stage distribution-depen-
dent noise is also reflected in the distributions: whereas con-
centration distributions for this model have relatively small
noise (close to the inverse of the mean copy number if the
average volume is set to 1 unit) and can be fit reasonably
by normal, log-normal, or gamma distributions, copy num-
ber distributions have a larger spread and can be fit with
neither of those distributions (especially if the copy number
average is >z15). The shape of the copy number distribu-
tions is different from what has been reported in the litera-
ture based on FACS experiments with cells expressing a
fluorescent protein. To illustrate the effect that extrinsic
noise can have on the shapes of those distributions, we
also show distributions for a stable protein with extrinsic
noise in the synthesis rate. For extrinsic noise with log-
normal distribution (35), squared coefficient of variation
of 0.1, and a large autocorrelation time, the resulting copy
number and concentration distributions are both best fit
with gamma distributions in agreement with experiments
(36,37).
reaction for different values of the synthesis rate ks (Eq. 20). (A) Distribu-

tions without extrinsic noise. (B) Extrinsic noise in the synthesis rate, ks.

Extrinsic noise was modeled with a log-normal distribution of k with

squared coefficient of variation of 0.1 and an autocorrelation time that

much exceeds one generation time such that the resulting distributions

are mixture distributions of the distributions obtained for different values

of ks drawn from the log-normal distribution. (Insets) Fits of the concentra-

tion and copy number distributions with intermediate ks to normal (green),

log-normal (blue), and gamma (red) distributions with the same average

and variance. To see this figure in color, go online.
Variability in interdivision times

In the previous sections, we assumed the interdivision times
to be deterministic. However, in reality, the times between
subsequent divisions would be better described by a random
variable. For a number of symmetrically dividing microor-
ganisms, the distributions of interdivision times have been
measured, and were found to have coefficients of variation
between 12 and 35% (38–45). However, few studies inves-
tigate how this variability in the generation time affects
distributions of molecule copy numbers and concentrations
(24,46–48).

With interdivision time heterogeneity, the analytical
approach taken in the previous sections has only limited
applicability. The reason for this is that three different types
of population samples now need to be distinguished: extant
cells (all cells that exist at a given moment in time), baby
cells (all cells that were born during the same time interval),
and mother cells (all cells that divide within the same
interval). Those three types of samples differ in their inter-
division time statistics, as well as the distributions of copy
numbers at birth and division. With deterministic interdivi-
sion times, all three types of samples become identical,
which allows the combination of Eqs. 4 and 7 to estimate
the total variance. Denoting those different types of samples
with subscripts of e (extant), b (baby), and m (mother) we
obtain:

�
d2xafeg

� ¼ pðaÞ2�d2x0feg�þ pðaÞð1� pðaÞÞhx0fegi
þ �

d2Xa

�þ 2pðaÞcovðx0feg;XaÞ; (25)
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�
d2x

� ¼ �
d2q

�hx i2 þ �
1=4� �

d2q
���

x
�

0fbg Tfmg Tfmg

þ �
1=4þ �

d2q
���

d2xTfmg
�
:

(26)

This means that the variance decomposition remains the
same (as applied to a sample of extant cells) but the variance

at cell birth of a sample of extant cells can no longer be ex-
pressed in a straightforward way as a function of the copy
number variance at the time of division. An alternative
approach to calculate the copy number noise for a model
with interdivision time heterogeneity is by use of cell pop-
ulation balance models (48–51). The disadvantage of the
population balance equation is that it does not allow decom-
position of variance into its different sources and that it can
usually only be solved numerically.

Next, we use simulations to study the effect of interdivi-
sion time heterogeneity on copy number and concentration
variations. There are different mechanisms that can cause
heterogeneities in interdivision times:

1. Asymmetric or imprecise division,
2. A distribution of volumes at which cells divide, and
3. Variation in the rate of volume increase between cells.

Although living organisms will have contributions to inter-
division time heterogeneity from all three sources, we first
explore their effects separately by simulating production
and degradation of a molecule for a population of cells
Biophysical Journal 107(2) 301–313
that have only one of the above-mentioned sources of het-
erogeneity in interdivision time. To make those results com-
parable we determine distributions of division fraction,
volume at division, and rate of volume increase such that
the resulting interdivision time distribution remains approx-
imately the same. For the first mechanism we choose a dis-
tribution of the division fraction that is peaked at q ¼ 1/2
(symmetric but imprecise division). Simulation of these
models (Fig. 4; for description of the simulation algorithm,
see the Supporting Material) show that the effects on copy
number and concentration distributions are rather small
for the first two mechanisms whereas heterogeneity in the
rate of volume increase changes the distribution of concen-
trations appreciably. This effect becomes more pronounced
for high average concentrations when intrinsic noise is
smaller.

If contributions of these different mechanisms that gene-
rate heterogeneity in interdivision times were independent,
one would expect the squared coefficient of variation of
the molecule concentrations to be a sum of noise terms:

�
d2c

�
hci2 ¼

�
d2c

�
hci2 deterministic cell cycle

þ
Xn

i¼ 1

�
d2c

�
hci2 noise caused by mechanism i

: (27)
FIGURE 4 Variations in interdivision times

have small effects on variability of copy numbers

while fluctuations in rate of volume increase do

change distributions of concentrations. (A) Sche-

matic of the simulated scenarios for cell divisions:

deterministic cell cycle (gray), variability in the di-

vision fraction (magenta), variability in the volume

at which a cell divides (green), or variability in the

rate of volume increase (blue). For the last three

scenarios, the distributions of division fraction,

volume at division, and rate of volume increase

are depicted at the right and were chosen to yield

the approximately same interdivision time distri-

bution that is depicted at the bottom panel together

with the resulting cell-cycle stage distribution. For

comparison, the cell-cycle stage distribution for

the scenario with deterministic interdivision times

is shown (dashed gray). (B–E) Distributions of

copy numbers and concentrations for molecule X

produced through a zero order and degraded with

first-order reaction for the four scenarios with the

production rate set to give averages of 50 mole-

cules per cell. (B and D) Simulations where kd ¼
0; (C and E) where kd ¼ 20ln(2)/m. To see this

figure in color, go online.
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However, simulations with all three mechanisms combined
show that the total noise is lower than this sum. This is not
too surprising because the noise in the interdivision time
distribution is less than three times that of the distribution
used for the simulations with only one source of interdivi-
sion time heterogeneity.

If variations in the rate of volume increase persist over
multiple generations, the squared coefficient of variation
in concentrations can be expected to be the sum of intrinsic
terms and the noise in the distribution of interdivision times:
for the case in which heterogeneity in the rates of volume-
increase is the only source of variation in interdivision
times, the distribution of interdivision times can be derived
from the distribution of rates of volume increase using the
change-of-variable technique: with g(k) as the distribution
of rates, f(t) the distribution of times, and t ¼ 1/k as

f ðtÞ ¼ gð1=tÞ 1
t2

(28)

For deterministic interdivision times, the average protein
FIGURE 5 The squared coefficient of variation for copy numbers (A) and

concentrations (B) increases with the correlation time of the rate of volume

increase. Simulations were run for a stable protein (no degradation),

average concentration of 50 molecules per average cell volume, with rates

of volume increase sampled from a Gaussian distribution with CV ¼ 0.15

and an exponentially decaying autocorrelation function. The specific

growth rate of the population increases with increasing correlation because

faster growth rates are overrepresented in a populations of extant cells.
concentration depends linearly on the interdivision time
(c ¼ kshti); according to the law of total variance for long
autocorrelation times of the fluctuations in k (and therefore
also in t), the total noise in protein concentration equals the
sum of noise in interdivision times and the average noise for
a model with deterministic interdivision times. That this is
indeed the case is shown in Fig. 5 for a Gaussian distribution
of rates of volume increase. Here the rates were correlated
over time with an exponentially decaying autocorrelation
function. (Because the Gaussian distribution of rates in vol-
ume increase was applied to a sample of baby cells, enforc-
ing the correlation leads to a slight increase in specific
growth rate with increasing autocorrelation time; however,
the effect of this on the squared coefficient of variation is
small (<5%).)
DISCUSSION

We provided a theory that integrates intrinsic and extrinsic
noise of biochemical reactions with noise introduced during
cell division and growth. Regarding the biochemical synthe-
sis processes and its regulators, the model is completely
general. Results from queuing theory can be used to
describe various synthesis processes, including those regu-
lated by upstream factors. Different levels of coarse graining
can then be considered, such as descriptions solely charac-
terized by a waiting-time and burst-size distribution (31),
and involving extrinsic noise following different statistics.
To allow for analytical results, the degradation mechanism
is assumed to be first order without extrinsic noise. We
note that nonexponential lifetimes have been observed
experimentally (52), indicating more complex mechanisms.
Application of this theory would therefore require testing
whether degradation is indeed first-order.
The noise decomposition given in Eq. 6 remains valid
when the assumption of deterministic interdivision times
is relaxed. We emphasize that, in such a case, the copy-num-
ber noise can no longer be calculated as was done above (for
a more detailed discussion, see the Supporting Material).
Once the degradation rate of the molecule of interest has
been measured, all terms in Eq. 6 can be quantified from
time-lapse microscopy with fluorescent reporter constructs.

We decided to focus on the variance decomposition for a
single molecule, considering regulatory factors only through
their effect on the synthesis rate. As has been pointed out
before (53), this alone does not allow for a distinction be-
tween different mechanisms that cause the variabilities in
synthesis rate, such as noise in the copy number of an up-
stream regulator. We note that the way that the variance in
newly synthesis molecules changes over the cell cycle,
and how net synthesis correlates with the amount that is pre-
sent at cell birth, can be used for model selection (54–58). A
more detailed understanding of the mechanistic causes of
variability in synthesis rates will require experiments using
multiple (fluorescent) reporters.

The mathematical decomposition techniques used here
can be applied to systems when more than one variable is
monitored, although the equations then do quickly become
Biophysical Journal 107(2) 301–313
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lengthy. In such cases, regulatory interactions result in
cross-correlations between net new synthesis of one mole-
cule and the abundance of others. In addition, dependencies
occur in the partitioning process, quantified as correlations
in the molecule numbers at cell birth for given amounts of
both species in the mother cell.

Another extension of the approach presented here is usage
of higher moments. This can be advantageous because aver-
ages and variances are often poor discriminators of different
noise sources, as they capture only part of the information
contained in the full distribution (17,59). As shown in Eq.
15, the full distribution can be derived if partitioning is
assumed to be binomial with probability q ¼ 1/2. If this
assumption does not apply, the moments of the distribution
can be calculated from differentiation of Eq. S47 (see the
Supporting Material). Higher moments can be obtained by
using the equivalent of the law of total variance for higher
moments: the law of total cumulance. However, the resulting
decomposition terms no longer have intuitive interpretations.

Nongenetic heterogeneity in the molecular composition
of cells in a growing population is a basic feature of cell
biology. We have shown that this heterogeneity arises out
of different processes and their relations, and they can be
disentangled. The heterogeneity contributions of those pro-
cesses likely vary among organisms, cell types, and across
conditions; for instance, we would expect variations in the
noise in cell volume at a given cell-cycle stage, the partition-
ing probability, and the reaction-induced noise. With this
article, we presented a theoretical framework for quanti-
fying and disentangling noise contributions, applicable to
experimental data obtained with real-time fluorescent imag-
ing of gene reporters and cell growth.
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