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Abstract Disorders of speech and language arise out of a
complex interaction of genetic, environmental, and neural
factors. Little is understood about the neural bases of these
disorders. Here we systematically reviewed neuroimaging
findings in Speech disorders (SD) and Language disorders
(LD) over the last five years (2008-2013; 10 articles). In
participants with SD, structural and functional anomalies in
the left supramarginal gyrus suggest a possible deficit in
sensory feedback or integration. In LD, cortical and subcorti-
cal anomalies were reported in a widespread language net-
work, with little consistency across studies except in the
superior temporal gyri. In summary, both functional and
structural anomalies are associated with LD and SD, including
greater activity and volumes relative to controls. The variabil-
ity in neuroimaging approach and heterogeneity within and
across participant samples restricts our full understanding of
the neurobiology of these conditions— reducing the potential
for devising novel interventions targeted at the underlying
pathology.
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Introduction

Developmental communication disorders are prevalent, af-
fecting over 10 % of school aged children [1]. Here we focus
on two common subtypes, namely Language (LD) and Speech
(SD) disorders. Whilst some symptoms may “resolve” or be
compensated for into adolescence [2], there is increasing
evidence for persistent life-long negative impacts of SD and
LD on literacy, educational, employment, and psychosocial
outcomes [3-5, 6¢, 7]. Traditionally, both LD and SD have
been defined as idiopathic (of unknown origin). Clearly the
term idiopathic implies that the disorders cannot be explained
by neurological or sensory deficits, nor are they associated
with frank brain abnormalities on clinical MRI. Advances in
neuroimaging methods over past decades however, have un-
covered both functional and sub-macroscopic structural brain
anomalies associated with these disorders.

Language Disorders (LDs) are defined as a failure to de-
velop age appropriate language skills despite normal sensory
abilities and environmental exposure, and affect between 7 %
and 20 % of pre-schoolers [8, 9]. A spectrum of LD profiles
exists, dependent upon which aspect of language processing is
most impaired (e.g., syntax, semantics) [10]. LDs have in the
past also been termed “Specific Language Impairments” or
SLI, but the “specific” aspect of the disorder remains contro-
versial [11¢]. Speech Disorders (SDs) is also an umbrella term,
encompassing numerous subtypes of developmental speech
disorder. Several classification methods have been proposed
for SDs [12¢, 13]. Here we consider studies that focus on
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subtypes of articulation disorder (phonetic based or motor
execution errors), phonological disorder (phonemic based or
cognitive-linguistic errors), and childhood apraxia of speech
(CAS, motor planning and programming errors), as well as
those that use the less explicit diagnostic terms of speech
errors and speech delay. Although behavioral assessments of
deficits are crucial, neuroimaging studies can provide us with
a different level of explanation of symptoms, and may offer a
novel way of classifying subtypes of SDs and LDs.

To date, the most extensive neuroimaging studies of a de-
velopmental speech and language disorder have been carried
out in the affected members of the KE family, who have a rare
mutation in the FOXP2 gene, with a seminal imaging study
published on this family in 1998 [14]. Affected members of the
KE family present with both speech (verbal and orofacial praxis
and dysarthria) and language impairments, affecting speech
intelligibility as well as the use of morphosyntax and the
comprehension of complex grammatical structures [15, 16]. It
is critical to note that the phenotypic marker, co-segregating
affected and unaffected family members, is a diagnosis of CAS.
Since the early KE studies, examination of the neural basis of
SD and LD has been limited and is still an emerging field.

Here we systematically reviewed all articles published
between 2008 and 2013 in individuals (adults or children)
diagnosed with developmental forms of SD or LD.! We
present functional and structural MRI findings to ask whether
we are any closer to answering the following question: which
brain anomalies are associated with atypical development of
speech and language?

Methods
Search Strategy

A computerized systematic search was conducted of relevant
databases: EMBASE (1996 to August 2013), OVID
MEDLINE (1996 to August 2013), PubMed (searched Au-
gust 2013). The following MeSH terms were used to identify
SD and LD papers of interest: (speech disorder OR articula-
tion disorder OR phonetic disorder OR speech delay OR
phonological impairment OR language disorder OR language
development disorder) AND (magnetic resonance imaging
OR diffusion magnetic resonance imaging OR echo planer
imaging OR computerized positron emission tomography OR
single photon OR brain) NOT (dyslexia OR Asperger syn-
drome OR autistic disorder OR aphasia OR Broca’s aphasia
OR Wernicke’s aphasia OR primary progressive aphasia OR
conduction primary progressive non fluent aphasia OR

! Authors were requested to review literature in this field over the past
12 months. Given the scarcity of literature, the authors extended the
search to encompass the past 5 years.
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electroencephalography). Of note, the MeSH terms for SDs
and LDs were kept broad to encompass all relevant terminol-
ogy (e.g., speech delay, speech sound disorder, SLI). Searches
were limited to papers written in English between 2008 and
present (August 2013) with human participants. Manual
searches were completed in relevant journals publishing
brain-behavior relationships in this field (i.e., Brain and Lan-
guage, Brain Topography).

Inclusion Criteria

Studies were included if they reported results of individuals
with either SD or LD, together with a MRI neuroimaging
method to investigate brain structure or function. Full text
articles were required to be available and published in English.
Failure to meet one of the above criteria resulted in exclusion.

Data Extraction

A total of 2,602 abstracts were identified. An additional four
were located in a manual search. Two stages of exclusion were
conducted (Supplementary Fig. 1). Firstly, papers were excluded
based on title only, including any duplicates (n=2,573) by one
author (A. Mayes). Secondly, papers were excluded based on
independent review of the abstract and/or full text article (n=23)
by all three authors, using the following criteria: Participant
selection criteria (excluding studies with children who have
brain injury); imaging methods (excluding studies without im-
aging); analysis method (excluding studies with no quantitative
analysis). Disagreements were resolved by discussion (one arti-
cle). All three authors manually searched for additional publica-
tions relevant to the field published between 2008 and 2013 and
listed within the reference list of each selected paper.

Critical Appraisal

To examine the level of evidence provided, we used the
NHMRC (National Health and Medical Research Council,
Australia) classification (http:/sydney.edu.au/medicine/21st-
century/presentations/2013/NHMR C-hierarchy-of-evidence.
pdfref/Appendix) [17]. This classification system allows a
grading from the poorest level of evidence (Grade IV, Cases
series studies) to the highest (e.g., Grade I, systematic review
of randomized controlled trials).

Results

Overview of Articles: Methodological Considerations
and Critical appraisal

Ten articles (see Supplementary Fig. 1) were included, five on
SD and five on LD. All were case-control studies (NHMRC
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evidence level I11-2) [17]. Effect sizes for group comparisons
were available for two studies (Preston et al., [18], Table 1;
Lee et al., [19], Table 2) and could not be calculated for the
remainder as standard deviations were not provided. Age
bands were relatively narrow (1-3 years) for studies on chil-
dren with SD, but wider in studies on children with LD, where
three out of four studies reported on groups spanning nine
years or greater. Only Verhoeven et al., [20] focused on a
narrow age band (all cases were 10 year olds).

Another observation is that the recruitment samples in both
SD and LD studies were heterogeneous with regard to diag-
nosis. Liegeois et al., [21] and Kadis et al., [22] focused on
CAS, although the former was focused on FOXP2 associated
CAS in adults and the latter included young idiopathic cases.

Tkach et al., [23] considered both phonetic (articulatory)
and phonemic (phonological process analysis) level errors.
Preston et al., [18, 24] report on phonetic level errors only,
using largely the same sample of children with persistent SD
(17 of the 23 in 2014 were from the original study [24]).
Phonological process analysis was not reported in either Pres-
ton et al., study, however CTOPP results were reported, i.e., a
measure of phonological awareness, rather than production
per se. No group differences were reported on the CTOPP as a
whole in Preston et al., [24], but moderate effect sizes were
reported on CTOPP subtests of Elision and Blending words in
the later study [18]. Hence, it is challenging to interpret the
level of phonological deficit, if any, in these participants who
are denoted as having “Speech Sound Errors” (SSE). All
studies included participants with persistent SD, with the
exception of Tkach et al., [23], who focused on a sample with
a history of SD. Only one of the six cases in Tkach et al., had
persistent SD.

Thus, overall, across the five SSD studies, it appears that
one focused on persistent speech motor programming deficits
(CAS) [22]; one on persistent speech programming and exe-
cution deficits associated with FOXP2 mutation (CAS and
dysarthria) [21]; two on persistent phonetic level (i.e., articu-
latory) deficits [18, 24]; and one on a history of phonetic and/
or phonemic level (i.e., articulatory/phonological) deficits
[23].

Similarly, for the LD studies, inclusion criteria and diagno-
ses were highly varied. Some even included several subtypes
of impairment within LD groups. Verhoeven et al., [20],
included children with a history of language delay and who
scored <10™ percentile on at least one of three language tests
beyond the age of four. At the time of testing, the SLI group
scored more than one standard deviation below the normative
mean on both receptive and expressive subtests of the Dutch
CELF. The study by Soriano-Mas et al., [25] included children
with speech programming, phonological-syntactic, lexical, or
mixed deficits according to the Rapin criteria [26]. At the time
of testing, the SLI group scored more than one standard
deviation below the normative population mean on three

language measures. The notable exception is the study by de
Guibert et al., [27], which claims to focus exclusively on
young people with “structural” language impairment. Partic-
ipants with LD showed deficits in phonology (assessed using
unfamiliar word repetition, which is arguably not a pure test of
phonological ability), morphosyntax (tested using a sentence
completion test), or both. Finally, the study on adults [19]
included participants diagnosed with LI as children, and who
as an adult group scored 1.5 standard deviation below the
normative mean on a composite language score. It is notewor-
thy that the classification of LD is still a matter of debate, with
the question of a continuum vs. discrete entities still unan-
swered [11e, 28].

Neuroimaging Findings in SD (Table 1)
Structural imaging (Fig. 1b)

Two structural imaging articles on SD met inclusion criteria;
one investigating cortical thickness measurements in children
diagnosed with CAS [22], and the other using a whole brain
approach (Voxel Brain Morphometry-VBM) in children with
speech sound errors (SSE) [18]. Interestingly, both studies
reported on greater grey matter within the left supramarginal
gyrus (SMGQ) for the groups with SD. Unlike Kadis et al., [22],
Preston et al., [18] additionally reported increases in the right
SMG and bilaterally in the planum temporale and Heschl
gyrus in children with SSE.

Functional Imaging

Two of the three functional MRI studies included examined
adults with persistent SDs, and both used overt non-word
repetition tasks. The first focused on the affected members
of the KE family with persistent CAS [21], while the other
[23] focused on adults with a history of SSD. Perhaps not
surprisingly, results were inconsistent, one reporting left sided
hypo-activation in a wide articulatory network (rolandic oper-
culum, primary motor cortex, cerebellum, and putamen); the
other reporting hypo-activation in the right hemisphere, name-
ly the middle temporal and inferior frontal gyri (IFG,
Brodmanns’ area 45-46). The study by Tkach et al., [23] also
reported widespread hyper-activation mainly in the left hemi-
sphere including in the putamen, IFG, SMG, and superior
temporal gyri (STG).

The third study [24] used a range of fMRI tasks requiring
participants to press a button to signal a match or mismatch
between a picture cue and a subsequent stimulus. Stimuli were
words or pseudo words and were presented in auditory or
visual (print) modalities (see Table 1). A widespread network
of regions was over or under-activated in the group with SSE,
some located within the typical language network (i.e., over-
active STG and SMG for auditory presentation); and others
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Fig. 1 Morphological grey matter (GM) differences in individuals with
(a), Language Disorder (LD) and (b), Speech Disorder (SD), relative to
typically developing participants Colour code: GM volume decreases in
LD: Badcock et al., [29] = blue; GM increases in LD: Badcock et al., [29]
= green; Lee et al. [19], relative volumes) = yellow; Soriano Mas et al.,

external to this network (e.g., underactive orbital gyri, over-
active middle frontal gyrus and posterior cingulate for audito-
ry presentation). Of note, participants with SSE showed more
activation in the left inferior/middle frontal gyrus when pre-
sented with words rather than with pseudo-words, while the
control group showed the opposite trend.

Neuroimaging Findings in LD (Table 2)
Structural Imaging (Fig. 1a)

Of the four structural studies included [19, 20, 25, 29], all but
one focused on child participants [19]. Two VBM studies
reported abnormalities in LD participants within the temporal
region, with some degree of anatomical inconsistency. One
reported reduced grey matter in the right posterior superior
and middle temporal gyri and left posterior superior temporal
sulcus [29]. The other, on the contrary, reported increased
regional volumes within a right posterior “perisylvian” area
extending from the posterior STG to the angular and SMG [25].

Subcortical structures were also found to develop atypical-
ly in participants with LD, with again contrasting findings for
the caudate nucleus (reductions in two papers [19, 29]; and
increases in one [25]). Of note, reductions were also found in
LD participants’ unaffected siblings [29]. The same study also
found that caudate nucleus volume was negatively correlated
with non-word repetition scores in children with LD [29].
Larger relative volumes (i.e., corrected for intracranial vol-
ume) were reported bilaterally in the putamen for children

@ Springer

[25]= purple; GM increases in SD: Kadis et al. 2013 = light blue, Preston
etal., [18]=red. GM decreases in SD: Preston et al., [18] = orange. Note:
Fractional anisotropy (F4) differences (Lee et al.) are not illustrated here
as changes were observed across the whole brain (Table 2)

with LD in one study, with a larger putamen associated with
poorer language performance [19].

Soriano-Mas et al., [25] examined white matter using
VBM. They reported morphological increases in white matter
bilaterally in the middle temporal gyrus and an anterior cluster
in the medial frontal lobe for the younger SLI group. Two
studies used diffusion-weighted MRI to examine microstruc-
tural abnormalities in LD. Verhoeven et al., [20] focused on
the superior longitudinal fasciculus, and reported reduced
fractional anisotropy (FA) values (a measure of white matter
microstructure) for children with LD. Additionally, FA values
were negatively correlated with language measures including
word class receptive and expressive sub tests. In contrast, the
study by Lee et al., [19] focused on grey matter. They reported
volumetric reductions in most of the subcortical and cortical
ROIs examined, and FA reductions in the cortex, but no FA
reductions in the caudate or putamen. Poor language perfor-
mance was only associated with FA reductions across the
whole brain.

Functional Imaging

Two fMRI studies of children with LD were included. One
employed covert lexical semantic and phonological tasks [27],
and the other a covert auditory response naming task [29]; and
both reported hypo-activation of the posterior STG. In one
study, right sided hyper-activation was seen within the right
insula extending to IFG -pars opercularis/pars triangularis,
and caudate head for children with LD in response to a
phonological difference task (i.e., where the children see a
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picture and silently generate names of three objects, each with
a different initial phoneme) [27].
Discussion

All studies reported significant developmental anomalies of
brain structure or function in relatively small groups of chil-

Increases in study
group (effect size)

S dren with SD and LD as revealed by quantitative imaging.
ET Here we discuss the most consistent findings, but emphasize
P L. . ) .
LS the need for caution in interpretation given methodological
—_= g . ge .
£3&E variability across studies.
>~ | =8
=g | =& Neural Basis of SD
22 | TdT
28 = o
238
S o I g . .
g2 == Morphological Anomalies
A &

Converging evidence for abnormal increases in the left SMG
was noted in two studies. The authors hypothesized that
increases in this region reflect “immaturity or altered devel-
opment” [22] or “reduced synaptic pruning” [18]. In addition,
this similar finding points to possible commonalities between
the aetiology of speech sound disorders of articulation and
phonology and CAS, despite these conditions being tradition-
ally viewed as distinct clinical diagnoses. There may also have
been overlap of symptoms between participants from these
two studies. In adult neuroanatomical models, the SMG is
assumed to play a crucial role in auditory motor and sensori-
motor [30] integration. This is a critical region in the somato-
sensory feedback loop in both the DIVA [31] and HSFC [32]
computational models of speech production. Further, a recent
repetitive TMS study highlighted the importance of this infe-
rior parietal region and its connections to frontal and motor
output areas, in learning and adapting sensorimotor patterns
for speech [33]. Structural anomalies in the left SMG are
therefore consistent with the hypothesis that SDs arise from
abnormal somatosensory feedback or dysfunctional integra-
tion between sensory and auditory motor systems.
Morphological anomalies in the STG, a region traditionally
involved in auditory processing [30, 34] were reported bilat-
erally in children with SD [24], but not in the CAS study [22].
In adult models [31, 32], these superior temporal regions are
part of the auditory feedback control subsystem. Preston and
colleagues argue that children with SD may therefore suffer
from abnormal auditory perceptual networks. The observed
correlation between speech sound production accuracy and
STG volumes in the whole sample (but not the SD subgroup)

Brain behaviour correlation

Methods

in years

Sample size (males) Mean age (range)

Study group and
selection criteria
diffusion tensor imaging, FA fractional anisotropy, GM grey matter, /CV intracranial volume, /FG inferior frontal gyrus, ITPA Illinois test of psycholinguistic abilities, MOG middle occipital gyrus, MTG

middle temporal gyrus, NEPSY NEuroPSY chology, PIQ performance intelligence quotient, pMTG posterior middle temporal gyrus, PPVT Peabody picture vocabulary test, pSTG posterior superior
temporal gyrus, pSTS posterior superior temporal sulcus, ROI region of interest, SFL superior longitudinal fasciculus, SIB sibling, SLI specific language impairment, STG superior temporal gyrus, 7D

typically developing, TOWRE Test of Word Reading Efficiency, TROG-2 Test for Reception of Grammar-2, TTFC token test for children, VBM voxel based morphometry, WALS Wechsler Adult
Intelligence Scales, WAST Wechsler Abbreviated Scales of Intelligence, WCE word classes expressive (CELF subtest), WCR word classes receptive(CELF subtest), WISC Wechsler Intelligence Scales for

Abbreviations: alPS anterior inferior parietal sulcus, CC-2 Children’s communication checklist version 2, CC-4 Communication checklist for adults, DL/ developmental language impairment, D7/

Study group here refers to SLI or DLI. Note that diagnoses were made by the authors themselves

=) was seen to support this hypothesis. Yet no data were available
é on participants’ speech processing performance.

§ Altogether, the limited structural imaging findings on chil-
: g dren with SD converge toward a tendency for atypical in-
2|3 % creases of grey matter in regions crucial to the system of
gl 2 O feedback control during speech production. If confirmed in
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larger future studies, these findings may indicate that SDs,
other than CAS, are associated with both auditory and so-
matosensory feedback, whereas CAS occurs mainly due to
somatosensory feedback deficits. This conclusion remains
speculative given that the two groups studied here differed
on age and seemingly severity, which may also account for
these differences.

In CAS [22], the lack of evidence for morphological anom-
alies within the typical planning regions (e.g., Broca’s area,
insula, ventral premotor cortex) contrasts with both findings
on adults with apraxia of speech after stroke [35, 36], and
models suggesting these regions play a crucial role in storing
motor programs [31, 32]. These neuroanatomical differences
could indicate that CAS and Apraxia of Speech are distinct,
despite sharing some symptomatology (although see [37] for
further discussion of developmental and acquired apraxia).
Alternatively, one could argue that the regions involved in
speech planning/programming early in speech acquisition and
in adulthood differ. Finally, the differences seen between adult
and child studies with apraxia of speech may reflect differ-
ences in compensation strategies, functional, or structural
reorganization patterns. To our knowledge, only Terband
and colleagues [38¢¢] have attempted to model childhood
motor speech disorders and have begun to predict the possible
effects of auditory vs. motor processing deficits on speech
errors based on assumptions underlying the DIVA model.

Functional Anomalies

There was little consistency, and even contrasting findings,
between the fMRI studies that used nonsense word repetition
[21, 23]. The discrepancies could arise from several causes,
the most important being the different phenotype. The study
by Liegeois et al., focused on individuals with severe and
persistent CAS concomitant with dysarthria and oral
dyspraxia; while the other examined individuals with a history
of moderate—severe articulation/phonological disorder (where
only one individual made speech errors at the time of testing)
[23]. Therefore, the hyper-activity of the left hemisphere
found in the case of a milder phenotype may be explained
by efficient compensatory mechanisms. The authors them-
selves conclude that adults with “speech sound disorders” rely
more on dorsal speech regions [23]. Given that little is known
on the exact type of speech errors made by participants (e.g.,
articulation vs. phonological), generalization of findings to
other SD populations remains difficult.

Finally, there was also little agreement on functional anom-
alies within the cortico-striatal circuits, with both hypo-
activity and hyper-activity in the putamen and inferior frontal
regions across the three fMRI studies reviewed here— again
possibly as a result of different speech symptoms (between
and within studies), or different fMRI tasks used.

Neural basis of LD
Morphological Anomalies

Discussion of results remains speculative given the heteroge-
neity in studies reviewed here. Nevertheless, converging evi-
dence of morphological reductions in the STG/superior tem-
poral sulcus (STS) in either hemisphere suggests an important
role for intact auditory processing during typical language
development. In the Dual Stream model developed by Hickok
and Poeppel [39], the STG and STS are at the interface
between the dorsal and ventral routes. A significant body of
literature has focused on the hypothesis that language disor-
ders may be born from auditory processing deficits or differ-
ences [40¢¢]. The auditory system is obviously critical to
healthy speech and language processing, but the exact rela-
tionship between language impairment and auditory process-
ing is far from clear [40+¢]. None of the imaging studies
reported here measured auditory processing skills using
straight behavioral measures or electrophysiological ap-
proaches, making it challenging to interpret the relationship
between morphological anomalies of the auditory system and
SD or LD any further.

Volumetric reductions in the caudate nucleus [19, 29] (but
see [25] for an increase) are consistent with previous findings
in the affected members of the KE family [15, 41], where
negative correlations with non-word repetition [15] have been
reported. Another striatal structure, the putamen, was also
found to be enlarged in one study [19], as in the affected KE
family members [15] (but see [41]), with larger putamen
volumes correlating with poorer language performance. Sev-
eral models do consider the basal ganglia as crucial to lan-
guage acquisition given its role in procedural learning [42,
43], but little consensus is evident regarding the specificity of
the basal ganglia for language related functions (e.g., grammar
learning) [44] vs. more general cognitive development [45]. In
addition, although cortico-cortical interaction may be crucial
to language acquisition (see section “Commonalities between
LD and SD” for further discussion on the basal ganglia),
whether cortical or subcortical abnormalities are the primary
biomarkers of LD remains unknown.

In addition to whole-brain analyses such as VBM, ad-
vances in diffusion weighted imaging and tractography
methods now allow us to identify tracts important to the
typical development of language. The reductions in FA in
the SLF [20] for LD children is noteworthy, and points to
atypical development of the dorsal stream [39]; possibly con-
sistent with increased volume in the middle temporal white
matter in young children with LD using VBM [25]. It is
difficult to conclude whether the relationship between the
SLF and language outcome is specific in the tractography
study [20], as no other tracts were examined and no correla-
tion with other cognitive functions were conducted. This
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approach is promising however, as it allows examination of
language functions at the network level [462¢].

Functional Anomalies

The most consistent findings of reduced brain activity in the
left posterior STG points to both functional and morphologi-
cal anomalies in this region for people with LD. As mentioned
above, this finding would be consistent with abnormal audi-
tory processing in people with SD, although the fact that this
region is at the interface between ventral and dorsal streams
could explain a wide range of language deficits.

One study also reported hypo-activity in the right putamen
and right inferior frontal gyrus— a finding similar to that
reported in the left hemisphere of affected KE members
[47]. In contrast, increased fMRI activation was noted in the
right IFG and caudate in another study [27] (but see [24] for
increases in the left IFG). As seen for SD, the inconsistency in
fMRI results concerning basal ganglia and inferior frontal
activity therefore makes it difficult to disentangle findings
associated with compensatory vs. deficit-related brain re-
sponses in LD.

Commonalities and Differences Between LD and SD

The discrepancy in study designs and findings across studies
allows us to draw only preliminary conclusions that must be
considered with caution.

Although activation in the STG was reported to be abnor-
mally increased in the SD focused studies, reductions were
reported in the LD literature. These contrasting findings could
imply distinct mechanisms of atypical cortical development in
the two conditions. One common finding between LD and SD
was the limited evidence for structural abnormalities IFG-
pars opercularis or triangularis, alongside an important role
for the temporo-parietal junction in SD and LD. However,
again discrepant findings were reported across studies exam-
ined here, such as increased grey matter volume in the right
hemisphere in LD [25] vs. a left increase in CAS [22].

Findings relating to subcortical structures were also incon-
sistent between LD and SD populations. Although striatal
morphological and functional anomalies were reported across
a handful of LD studies, the putamen and caudate nucleus
were either not examined or not reported as abnormal in the
studies that focused on SD, except in the affected KE family
members [21]. Paradoxically, given the putative role of striatal
structures in motor learning, more evidence is therefore avail-
able for subcortical abnormalities in LD than in SD. Drawing
parallels with the KE family findings remains difficult, as the
affected members have both SD (primarily childhood apraxia
of speech) and LD. In 2005, Ullman & Pierpont [42] sug-
gested that SLI is associated with impaired procedural learn-
ing. Reaction time experiments seem to indicate that people

@ Springer

with LD have poorer procedural learning skills than their
peers (see [48] for a meta-analysis), and that grammatical
skills correlate strongly with long-term consolidation of learn-
ing [49]. The neuroimaging studies reviewed here present
inconsistent results regarding basal ganglia abnormalities,
with puzzling negative correlations with language perfor-
mance. We cannot rule out that subcortical structural abnor-
malities may be linked to atypical language development, but
a causal relationship remains difficult to establish.

In summary, perhaps as predicted from the low co-
occurrence of SD and LD, at least in middle childhood
[50], the recent neuroimaging evidence does not point to-
wards an obvious common causal pathway for these two
conditions.

General Considerations

The diversity of neuroimaging methods is likely to increase
our understanding of developmental SDs and LDs and, in the
long term, hopefully provide some answers relevant to the
pathways leading from genes to brain to symptomatology.
Each method has limitations however, e.g., task-based func-
tional imaging findings are heavily dependent on the task
used, and regions of hyper-activation remain difficult to inter-
pret. In VBM analyses, a recurrent question is whether to
correct for global volumetric differences or not. Finally, our
understanding of both SD and LD is hampered by a lack of
developmental models relating how speech and language
functions are established between early childhood and into
adulthood. Neuroimaging studies have suggested for instance
that language processing shifts from an inter-hemispheric to
an intra-hemispheric network during development [51], and
have revealed asynchrony between the development of ventral
and dorsal pathways [52¢]. Practically, this means that focus-
ing on left hemisphere regions or tracts may be misleading,
especially in younger age groups (see [53] for further evidence
of developmental changes in language networks).

Future Directions

Only large scale prospective longitudinal studies of well-
defined clinical subtypes will lead to a more informed picture
of'the neural bases of LD and SD. Given the change in clinical
presentation throughout development [54, 55, 56¢], discrimi-
nant analyses may also be useful. In addition, functional and
effective connectivity approaches have not been used in these
populations (yet see [57, 58] for examples in Dyslexia re-
search). These approaches may shed some light on possible
network property abnormalities in SD and LD.
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Conclusion

Structural anomalies in SD and LD include a combination of
atypical progressive (e.g., “pathologically” larger or thicker
grey matter structures) and regressive (e.g., FA and volumetric
reductions) processes relative to individuals with typical
speech development. Unfortunately, the current lack of con-
sistency in approaches, selection criteria, and age bands make
it difficult to extract a consistent developmental trajectory for
these conditions.
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