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Abstract

Genome-wide association studies have identified many variants that each affects multiple traits,

particularly across autoimmune diseases, cancers and neuropsychiatric disorders, suggesting that

pleiotropic effects on human complex traits may be widespread. However, systematic detection of

such effects is challenging and requires new methodologies and frameworks for interpreting cross-

phenotype results. In this Review, we discuss the evidence for pleiotropy in contemporary genetic

mapping studies, new and established analytical approaches to identifying pleiotropic effects,

sources of spurious cross-phenotype effects and study design considerations. We also outline the

molecular and clinical implications of such findings and discuss future directions of research.
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In the past 7 years, a wave of genome-wide association studies (GWASs) has

identified more than 8,500 genome-wide-significant associations with more than 350

human complex traits, including susceptibility to a wide variety of diseases1. An

interesting observation has been that many genetic loci appear to harbour variants that are

associated with multiple, sometimes seemingly distinct traits, and such associations are

termed cross-phenotype (CP) associations. CP associations have been identified in several

disease areas. Examples include: protein tyrosine phosphatase non-receptor type 22

(PTPN22) for immune-related disorders, such as rheumatoid arthritis2, Crohn’s disease3,

systemic lupus erythematosus4 and type 1 diabetes5; the telomerase reverse transcriptase

(TERT)–CLPTM1-like (CLPTM1L) locus for glioma, bladder and lung cancers6; and

calcium channel, voltage-dependent, L-type, alpha 1C subunit (CACNA1C) for bipolar

disorder and schizophrenia7. These CP associations highlight that these traits share common

genetic pathways and underscore the relevance of pleiotropy8,9 in human complex

disease. The distinction between a CP association and pleiotropy is important to define. A

CP association occurs when a genetic locus is associated with more than one trait in a study,

regardless of the underlying cause for the observed association. Pleiotropy occurs when a

genetic locus truly affects more than one trait and is one possible underlying cause for an

observed CP association (others are discussed below).

CP effects in GWASs mirror epidemiological observations of shared heritability and

comorbidity. For example, twin and family studies have long provided evidence for genetic

correlations among diseases (such as major depressive disorder and generalized anxiety

disorder10, or rheumatoid arthritis and systemic lupus erythematosus11), suggesting a role

for pleiotropic genetic effects. In addition, the co-occurrence of multiple diseases in the

same individual (for example, type 1 diabetes and autoimmune thyroid disease12) also point

to shared genetic causes.

In some cases, the same variants show association with multiple traits; in other cases,

although the same overall region is implicated, distinct nearby markers show signals of

association with different traits. Distinguishing the associations that represent genuinely

shared effects of single variants from those that represent the effects of colocalizing but

independent variants is crucial, as they imply different notions of pleiotropy and mechanistic

models of shared function. In this article, we define three types of such CP genetic effects

that occur when a genetic variant or gene is correlated with more than one trait: biological

pleiotropy, mediated pleiotropy and spurious pleiotropy. In brief, biological pleiotropy refers

to a genetic variant or gene that has a direct biological influence on more than one

phenotypic trait. Mediated pleiotropy occurs when one phenotype is itself causally related to

a second phenotype so that a variant associated with the first phenotype is indirectly

associated with the second. Spurious pleiotropy encompasses various sources of bias that

cause a genetic variant falsely to appear to be associated with multiple phenotypes.

Here, we first review evidence of CP associations in the literature and the underlying causal

models that they imply. We next outline the analytical strategies that are required for

detecting CP effects, particularly methods that can be readily applied to existing GWAS data

sets, and how the types of pleiotropy can be distinguished and functionally characterized.

Finally, we discuss the clinical implications of CP associations and visions for the future.
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Overall, we conclude that despite various conceptual and technical challenges, the

identification and characterization of this widespread pleiotropy is crucial for a

comprehensive biological understanding of complex traits and disease states.

Cross-phenotype effects in GWASs

The results of GWASs have highlighted numerous CP effects, particularly across

autoimmune diseases and psychiatric traits (TABLE 1). Such observations have usually

been incidental, and studies of different traits have independently led to discoveries of

associations with the same marker or region. As the power of most GWASs is sufficient to

detect only a subset of the many true associations, the chance of two independent studies

both detecting a true association at the same locus is correspondingly low. Estimates of

overlaps are thus likely to be conservative. Nonetheless, a startling level of overlap has been

observed.

A recent evaluation of genome-wide-significant single-nucleotide polymorphisms

(SNPs) listed in the National Human Genome Research Institute (NHGRI) Catalogue of

Published Genome-Wide Association Studies found that 4.6% of SNPs and 16.9% of genes

have CP effects13. These are underestimates as they rely on highly conservative criteria (for

example, an association of genome-wide significance for each trait) and were limited by the

incomplete database of GWAS-associated SNPs at the start of 2011. The first examples of

cross-disease metaanalyses (using methods described later) have discovered even higher

levels of overlap: Cotsapas et al.14 estimate that at least 44% of SNPs associated with one

autoimmune disease are associated with another. Interestingly, Sirota et al.15 show that

opposite effects — in which an allele appears to increase the risk of one disease trait and

decrease the risk of another disease trait — are also frequent. Recently, a large meta-analysis

of Crohn’s disease and ulcerative colitis identified 110 SNPs that are associated with both

disorders and found that 70% of SNPs were shared across other immune-mediated

diseases16.

A CP association can be observed for an individual SNP or at the level of a gene or region

(including in noncoding DNA), in which different independent variants in the same gene or

region affect multiple phenotypes. Both SNP-level and gene- or region-level CP effects can

be considered to be real forms of pleiotropy and provide insight into the shared underlying

biology. For example, variants in intron 1 of fat mass and obesity associated (FTO) have

been robustly associated with body mass index (BMI)17. Recently, variants elsewhere in the

gene (and not in apparent linkage disequilibrium with the obesity-associated SNPs)

have been associated with melanoma and not with BMI18. CP effects outside protein-coding

genes include the 9q21.3 locus19–22 and rs6983267 (REFS 23,24; TABLE 1) and point to

possible cisregulatory effects on gene expression25. In fact, the 88% of SNPs reported in the

NGHRI catalogue are intronic or intergenic1. GWASs and other genomic analyses have also

identified rare structural variations that have CP effects. For example, rare copy number

variants (CNVs) in multiple chromosomal regions have been found to increase the risk of

a range of neurodevelopmental disorders26,27. Distinguishing between biological and

spurious pleiotropy for CNVs is particularly challenging because it is unclear whether the
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same gene affects multiple traits (for biological pleiotropy) or whether different genes

within the region affect different traits (for spurious pleiotropy).

Finally, studies using aggregate measures of genetic variation (such as polygenic genetic

risk scores) have been used to demonstrate genetic covariation between two or more

disorders. For example, using molecular genetic data, Purcell et al.28 showed that a

substantial proportion of heritability is shared between schizophrenia and bipolar disorder,

which is consistent with family-based epidemiological studies29.

Biological pleiotropy

Characterizing the underlying biological mechanism of a pleiotropic effect is a major

challenge in the field as many alternative models for an apparent CP effect can fit the

observed data (FIG. 1). Pleiotropy can occur at the allelic level, where a single causal

variant is related to multiple phenotypes (FIG. 1a), or at the gene (or region) level, at which

multiple variants in the same gene (or region) are associated with different phenotypes (FIG.

1b,c). For example, the common coding variant in PTPN22 described above seems to

influence the function of various subpopulations of T cells30 but also interferes with the

removal of auto-reactive B cells31. The equivalent variant in mice promotes degradation of

LYP (also known as PEP), which is the protein encoded by PTPN22. This suggests that this

is a loss-of-function allele32, although much more work is required to demonstrate the causal

mechanism33. This variant decreases the risk of Crohn’s disease but increases the risk of

rheumatoid arthritis and type 1 diabetes34, prompting questions about whether the opposite

effects correspond to functional changes in different cells or whether the overall homeostatic

changes to T and/or B cell populations are responsible for risk versus protective states. At

first glance, several scenarios fit these observations: distinct effects of the same allele in

different cell populations underlying associations with different diseases or disease groups; a

single molecular effect having multiple morphological or physiological consequences; or a

CP effect tagging two different causal variants within the same gene (FIG. 1b) that result in

different functions and affect different phenotypes.

An example of biological pleiotropy in an intergenic region is the rs6983267 SNP on

chromosome 8q24 that is a risk variant for prostate and colorectal cancer (TABLE 1). This

allele alters the ability of this region to act as an enhancer for the downstream MYC

oncogene in both colon and prostate tissue types35,36.

Mediated pleiotropy

CP effects can also occur when one phenotype is causal for a second phenotype and a

genetic variant is directly (or ‘more proximally’) associated with the first phenotype (FIG.

1d). In such cases of mediated pleiotropy, the genetic variant will be associated with both

phenotypes if tested separately. Mediated pleiotropy is a real form of pleiotropy, in contrast

to spurious pleiotropy, but it is important to distinguish this category from what we call

biological pleiotropy in order to describe the underlying aetiology of the phenotypes

properly. For example, genetic variants have been found to be associated with both low-

density lipoprotein (LDL) levels and risk of myocardial infarction37. However, LDL levels

are themselves risk factors for myocardial infarction, so we must deconvolute whether a

Solovieff et al. Page 4

Nat Rev Genet. Author manuscript; available in PMC 2014 July 20.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



genetic variant influences myocardial infarction risk by altering LDL levels or whether it has

an additional effect that is independent of LDL levels. Another example includes the

observed association of 15q24–15q25.1 with lung cancer38 and nicotine dependence39,

which has spurred a debate about whether this region has a direct effect on lung cancer40.

Sources of spurious pleiotropy

There are several ways in which a spurious CP association can occur and falsely suggest

underlying pleiotropy. These include defects in the studies that identify CP effects, such as

ascertainment bias, phenotypic misclassification and shared controls (FIG. 1e). Further

details on these aspects and their minimization by careful study design are described in BOX

1.

Additionally, spurious associations can arise when there is ambiguity in mapping the true

underlying causal variant. There is currently limited evidence that the primary SNPs

identified in GWASs are causal variants; instead, they are often tag SNPs that typically

associate with the trait because they are in strong linkage disequilibrium (LD) with the

nearby causal variant. In regions of high LD, such a SNP could tag multiple causal variants

located in different genes with completely different functions and thus lead to a spurious CP

finding (FIG. 1f). This issue can be demonstrated by the major histocompatibility complex

region that has been implicated in many complex traits, including autoimmune diseases34.

This region contains more than 100 genes and has high levels of LD. A CP association in

this region will probably tag multiple genes, and thus it can be particularly challenging to

distinguish between biological and spurious pleiotropy.

Analytical strategies to identify CP effects

Many methods have been proposed to test the association between a genetic variant and

multiple phenotypes. These can be broadly classified into multivariate analyses and

univariate analyses, and the most suitable approach depends on the circumstances.

These methods facilitate the initial identification of CP effects, and details of study design

considerations to minimize spurious associations are discussed in BOX 1. The subsequent

approaches for classifying and characterizing the identified CP effects are discussed later.

Before searching for specific CP variants, it is possible first to implement a polygenic

approach that uses all or a large proportion of SNPs genome-wide to establish genetic

overlap between two traits. For example, common genetic variants were found to underlie

schizophrenia and bipolar disorder (as shown by polygenic scoring)28 and also type 2

diabetes and hypertension (as shown by a linear mixed-effect model)41. Note that

both approaches assess whether pleiotropy exists between phenotypes but do not point to

any particular variant or region of the genome.

Multivariate approaches

Multivariate analyses jointly analyse more than one phenotype in a unified framework and

test for the association of multiple phenotypes with a genetic variant. Because most

multivariate methods require that all phenotypes be measured on the same individual, they
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are only well suited for studies in which subjects are phenotyped across various diseases (for

example, large cohort studies or cross-sectional studies). This is usually not

feasible for diseases with a low prevalence, which are typically collected using a case–

control study design. However, if phenotyping individuals on all traits is possible, this

allows the investigation of the correlations between the traits themselves, rather than just

testing of associations between genetic variants and the traits. One complication of

multivariate methods is that they generally require pooling of individual-level data, and this

may not be possible without reacquiring patient consent, implementing privacy protection

measures and seeking additional ethical review board approval.

Numerous multivariate approaches have been proposed for testing the association between a

genetic variant and multiple phenotypes, particularly for correlated phenotypes. The choice

of method will largely depend on the types of traits (that is, continuous, categorical or

binary) included in the analysis. For continuous phenotypes, a multivariate regression

framework (such as a multivariate analysis of variance) can be used, but the approach

requires that the phenotypes are approximately normally distributed. Several methods extend

the regression framework, using variations of generalized estimating equations

(GEE), to allow non-normally distributed phenotypes42–44. To model multiple categorical

phenotypes (for example, multiple binary disease traits), a log-linear model45 and a

Bayesian network46 have been used. In addition, there are several approaches that can

accommodate a mixture of continuous and categorical phenotypes44,47,48. Ordinal

regression47 uses the genotype as the outcome variable and the set of phenotypes as the

predictors. A non-parametric approach has been developed for a mixture of

phenotypes but cannot incorporate additional predictors beyond the genetic variant48.

Other approaches include a dimension reduction technique on the phenotypes before testing

the association with the genetic variant. Principal components analysis (PCA)49–51

extracts linear combinations (that is, principal components) of the traits that can be used as

the phenotypes in a genetic association analysis. Canonical correlation analysis52 extracts a

linear combination of the phenotypes that explains the largest amount of covariation with the

genetic variant. The weights for the linear combination will differ for each genetic variant,

in contrast to PCA, and will provide information about which phenotypes are most strongly

related.

These and other multivariate methods have recently been reviewed, and we refer the reader

to those summaries53 for further details.

Univariate approaches

It is also possible to combine results from standard univariate analyses (such as GWAS

associations between variants and single phenotypes) by combining these associations

across various phenotypes to identify those variants that are associated with multiple

phenotypes (summarized in TABLE 2). Thus, univariate approaches are well suited to

analysing existing GWAS results, including the plethora of wellpowered GWASs

conducted54 by consortia already organizing themselves into cross-disease groups (such as

the Psychiatric Genomics Consortium7). This will be especially important for rare diseases,
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which are less likely to be ascertained in cohort studies. As the genetic effects for most

complex traits are small54, combining results across studies of different phenotypes can

improve the power of detecting CP associations. This improvement in power will generally

outweigh the advantages of using one study in which individuals are phenotyped on all

traits. Another advantage of univariate approaches is that, unlike multivariate approaches,

most of them are based on summary statistics, which do not divulge individual-level

data and thus maintain participant confidentiality.

The simplest univariate approach is to take the known genome-wide-significant associations

between variants and individual phenotypes and to compare the results across multiple

phenotypes. CP effects are then declared at markers that satisfy the significance threshold

for multiple traits. Alternatively, the set of genomewide-significant SNPs for one phenotype

can be tested for association with other phenotypes; in this case, the significance level for

multiple testing is adjusted only for the number of tested SNPs rather than for SNPs

genome-wide. Both of these approaches require robust discovery as a starting point: because

the known associations are probably only a subset of the true associations (even in traits for

which large sample sizes have been analysed28,55), these analyses are fairly underpowered

and will overlook SNPs that are only moderately associated across a set of phenotypes.

Variations on meta-analysis have also been adapted for CP effect detection. Traditional

meta-analysis approaches combine evidence for association with the same phenotype across

numerous studies; for discovering CP effects, the evidence for association is combined

across studies of multiple phenotypes. Meta-analytical approaches aggregate summary

statistics from individual studies into one statistic to test for CP effects and can be applied

genome-wide or on a pre-specified set of SNPs. Broadly speaking, these methods can be

split into two groups. First, those methods based on association P values ignore allelic effect

direction (a positive versus negative effect on the trait) and effect heterogeneity

(different effect sizes across traits). Second, methods based on the effect sizes are sensitive

to allelic effect direction and effect size. We note that in GWASs in which effect sizes are

generally very small, accounting for effect heterogeneity may be of less concern.

The simplest meta-analytical approach56 aggregates P values across phenotypes in different

studies to test the null hypothesis that the genetic variant is not associated with any

phenotype. Note that this approach (which is similar to most methods in this section) does

not explicitly test for CP effects, as a significant association could be driven by one

phenotype as opposed to two or more phenotypes.

The cross-phenotype meta-analysis (CPMA) statistic14 also uses association P values and

tests whether the observed P values deviate from the expected distribution of P values under

the null hypothesis of no additional associations beyond those already known. Because the

alternative hypothesis includes only models in which two or more of the phenotypes are

associated with the SNP, this approach explicitly tests for CP effects. It is also worth noting

that this approach benefits from increased numbers of phenotypes, making it particularly

well suited to broad phenotypic surveys.
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Standard meta-analysis based on effect estimates is commonly used to combine evidence of

association across multiple GWASs for the same phenotype54,57,58 and has also been used to

combine evidence across multiple phenotypes7. Fixed-effects meta-analysis assumes that the

genetic variant has the same effect on each phenotype, whereas random-effects meta-

analysis allows the genetic effect to differ across phenotypes. Although random-effects

meta-analysis incorporates a moderate level of effect heterogeneity, it is not well suited for

situations in which the genetic variant has opposite effects on different phenotypes. In

addition, both will have lower power when only a subset of analysed phenotypes is

associated.

The subset-based meta-analysis59 extends standard fixed-effects meta-analysis to allow for

opposite effects and to include situations in which association is only to a subset of traits.

This method exhaustively evaluates all possible combinations of non-null models for

association, selects the strongest association and then adjusts for the multiple comparisons

generated by the search. At present, this is the only method that identifies which traits a

variant influences (through the model selection step), but this advantage comes with a steep

multiple testing price: the number of possible non-null combinations to be adjusted for

exponentially increases with the number of traits selected so that detection power decreases

for even moderate phenotype counts.

Several groups have proposed extensions to O’Brien’s linear combination test60, which uses

a weighted sum of the univariate test statistics. The extensions61,62 account for effect

heterogeneity by allowing the weights to differ by phenotype and mainly differ in how they

arrive at those weights. These approaches were specifically developed for correlated traits

measured in the same individuals and simplify to standard meta-analysis if the underlying

data are taken from independent studies61. Similarly to the O’Brien’s test, the ‘Trait-based

Association Test that uses Extended Simes’ (TATES) procedure63 was developed to detect

effects across correlated traits measured in the same individuals but in contrast uses the P

value for each trait. For each variant, the approach takes the minimum P value across the set

of univariate tests carried out on each phenotype and then applies a weight to the P value to

account for the number phenotypes tested and their correlation.

The ‘Pleiotropy Regional Identification Method’ (PRIMe)64 searches for regions of the

genome that contain genetic variants associated with multiple traits but does not require that

the same genetic variant be associated with multiple phenotypes. For each region, the

approach calculates a pleiotropic index as the number of traits that have at least one SNP

with a univariate P value less than PS (which is a pre-defined threshold) and then assesses

the significance of the pleiotropic index. A related approach assesses whether expression

quantitative trait loci (eQTLs) overlap disease associations; identifying effects on

gene expression that result from variants in the identified region increases the confidence

that this region harbours causal molecular candidates underlying the trait65.

Overall, choosing the appropriate statistical approach for detecting a CP variant depends on

study design, the type of phenotype, assumptions on effect heterogeneity and other factors

that are summarized in TABLE 2. We will not enumerate all possible scenarios but aim to

provide some general guidelines. When focusing on a small number of phenotypes (such as

Solovieff et al. Page 8

Nat Rev Genet. Author manuscript; available in PMC 2014 July 20.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



five or less) that are of the same type (for example, all binary or all continuous), standard

meta-analysis can be used, but this has the disadvantage that SNPs with opposite effects on

the phenotypes will be missed. CPMA can accommodate opposite risk effects and different

types of phenotypic traits and is well suited for moderate to large numbers of phenotypes

(such as more than five). After conducting standard meta-analysis or CPMA genome-wide, a

model selection technique (for example, subset-based meta-analysis) can be applied to the

top selection of SNPs to refine the association and to identify which of the phenotypes is

driving the signal (BOX 2). When there are overlapping subjects (for example, shared

controls) across studies, the overlapping subjects can be split across the different studies,

and then univariate tests are carried out so that each subject is used only once. Then the tests

can be assumed to be uncorrelated. Alternatively, Lin et al.66 have provided an adjustment

for overlapping subjects for standard meta-analysis, and Bhattacharjee et al.59 have

proposed a similar extension to the subset-based metaanalysis. Finally, if the phentoypes are

measured on the same subjects, alternative methods can be used, including the extensions to

the O’Brien linear combination test, the TATES procedure or one of the many multivariate

approaches.

Distinguishing and characterizing CP effects

The forms of pleiotropy are important to distinguish because they imply distinct molecular

mechanisms and have different implications for disease risk and pathogenesis. Strategies to

achieve this are described below, and further functional characterization of CP-effect loci is

discussed in BOX 3.

Fine mapping to distinguish biological and spurious pleiotropy

Careful study design is required in order to minimize the identification of spurious

pleiotropy caused by artefactual CP associations (BOX 1); additionally, when feasible, fine

mapping of the region that surrounds a CP effect can help to discriminate spurious from

biological pleiotropy. Such mapping is used to locate the causal variant or variants that are

responsible for a CP effect. If a single variant or variants in the same gene are causal for the

diseases, this indicates biological pleiotropy (FIG. 1a–c), whereas causal variants in

different genes that are in LD is suggestive of spurious pleiotropy (FIG. 1f). Fine mapping

can also aid in distinguishing the different forms of biological pleiotropy and, in particular,

can identify whether the observed CP association is driven by one variant (FIG. 1a) or

multiple variants (FIG. 1b,c) in the same gene that is associated with different phenotypes.

This can be particularly challenging when two variants in the same gene are in strong LD

and may be related to different diseases (FIG. 1b), because these variants will typically co-

occur in individuals, such that the effects of each individual SNP will rarely be able to be

dissected. For common diseases that can co-occur in the same individual, variants for the

first disease can be mapped in the presence of the second disease and then in its absence to

establish which variant is related to the first disease (and vice versa).

Custom genotyping arrays have been designed to fine-map regions identified in GWASs for

immunemediated traits (Immunochip67) and for metabolic, cardiovascular and

anthropometric traits (Metabochip68). This provides a low-cost alternative to sequencing and

allows for fine mapping in large sample sizes.
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Finally, it is worth noting that in many cases, establishing whether a variant is truly causal

cannot be established by fine mapping alone and requires biological and animal studies to

determine the exact function of the variant (BOX 3).

Identifying mediated pleiotropy

In cases of potential mediated pleiotropy, the association between the genetic variant and the

second phenotype (that is, target phenotype) can be tested while adjusting or stratifying by

the first (that is, intermediate phenotype). If the association persists (that is, if the variant is

associated with the target phenotype even when the intermediate phenotype is not present),

then the CP effect is probably not fully mediated. However, this approach can produce

biased results when the phenotypes share a confounding factor that is influenced by the

genetic variant69. To address this shortcoming, approaches using causal inference

methodology have been developed to test whether a genetic variant influences the target

phenotype through a path that does not involve the intermediate phenotype69–71. Such an

approach demonstrates that the association between SNPs at 15q25.1 with both smoking and

lung cancer mostly reflects direct effects on each phenotype, rather than mediated

pleiotropy72.

More generally, identifying mediated pleiotropic genetic effects can provide a tool by which

causation and correlation can be teased apart under some conditions in an approach called

Mendelian randomization37,73,74 (BOX 4). This framework for causal inference tests

whether the intermediate phenotype causally affects the target phenotype. Specifically, if the

effect of a genetic variant can be taken as a proxy for the intermediate phenotype, this is

used to establish the causal relationship between the intermediate phenotype and the disease.

Using Mendelian randomization, Voight and colleagues37 found that LDL levels causally

affect myocardial infarction risk, whereas high-density lipoprotein (HDL) levels do not. This

counter-intuitive result suggests that low HDL may be a consequence rather than a cause of

myocardial infarction risk, thus challenging the established view that increasing the levels of

HDL cholesterol will uniformly lower the risk of myocardial infarction. However, we note

that the assumptions underlying Mendelian randomization are quite strong (BOX 4), and

thus extreme care needs to be taken in experimental design and data interpretation.

Clinical implications of CP effects

Characterizing the molecular mechanisms of CP effects (BOX 3) will undoubtedly expand

our understanding of the underlying biology of complex diseases and will have clinical

implications for drug discovery. First, characterizing CP effects may have clinically relevant

implications for the classification (nosology) of medical disorders. For example, psychiatric

disorders are currently defined as distinct syndromes on the basis of their constellations of

signs and symptoms. As noted earlier, however, recent GWASs7,28 have demonstrated

shared heritability among many of these disorders29,75,76. As further studies provide a more

comprehensive account of the distinct and overlapping genetic architecture of

psychiatric disorders, the goal of an aetiology-based classification may become more

feasible. Of note, imperfect nosology poses a challenge for teasing apart biological

pleiotropy from spurious pleiotropy (particularly the bias resulting from misdiagnosis) as the
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distinction between two disorders may not be aetiologically valid. In such cases, the

pleiotropy may be real, but the diagnostic categories are in fact spurious.

The growing catalogue of genetic variants with pleiotropic effects has important

implications for genetic testing and personal genomics. As genetic information is

increasingly integrated into medical practice, clinicians and medical genetics professionals

will need to be aware that genetic tests for one disease may have implications for risks of

other diseases. In some cases, discovery of these secondary risks may emerge well after the

original test information has been provided, thus complicating the process of genetic

counselling and raising complex ethical and ‘duty to warn’ issues. At the same time, the

growth of direct-to-consumer genetic tests will mean that an increasing number of

individuals will be confronted with CP risk information without the benefit of genetic

counselling. The case of APOE provides a familiar example of a common variant with well-

established CP effects. The APOE4 allele is a known risk factor for both atherosclerotic

heart disease and Alzheimer’s disease but has also been shown to exert a protective effect on

risk of age-related macular degeneration77. Very little research is available to evaluate the

psychological impact of such ‘competing risk’ information. In addition, accurately

characterizing CP effects and distinguishing between biological and mediated pleiotropy

will affect how this information is interpreted and used in clinical practice. For example, if a

patient carries a variant that directly affects myocardial infarction through LDL, the

mediated relationship provides clinicians with a more proximal target for the prevention of

myocardial infarction. Furthermore, distinguishing between CP effects caused by single

versus multiple variants can improve the accuracy of these genetic tests and the

interpretation of results. For example, although the same gene may be implicated in multiple

diseases, if distinct variants in that gene are differentially associated with alternative

diseases, then testing for both variants might provide separate risk information for each

disease.

In the realm of therapeutics, the existence of common pathological mechanisms in distinct

disorders may suggest new opportunities and challenges for drug development. Drugs

developed for one disorder could be repurposed to treat another disorder if the therapeutic

target is found to be common to the biology of both disorders. In such cases, a gene or

multiple genes in a pathway might be considered to be pleiotropic if they affect more than

one phenotype, regardless of whether the specific variants are shown to have CP effects. For

example, the finding that the L-type calcium channel subunit gene CACNA1C is a risk gene

for bipolar disorder78 has revived interest in trials of calcium channel antagonist

antihypertensive drugs as possible mood disorder treatments (R. H. Perlis, personal

communication). Alternatively, a drug targeting a shared pathway could be beneficial for

one disease and detrimental for others; this scenario could result in ‘off-target’ effects at the

disease level despite being on-target at the pharmacological level. For example, several

genes have opposing effects on autoimmune disorders79–81, suggesting that drugs

modulating these gene products to treat one disorder could have unintended adverse effects

on another. This is exemplified by the utility of treatments targeted to tumour necrosis factor

(TNF) in Crohn’s disease and rheumatoid arthritis but their counter-indication in multiple

sclerosis. The adverse effect on multiple sclerosis is also supported by evidence of a genetic
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variant identified in GWASs that increases the risk of disease and mimics the effect of TNF-

targeted treatments82.

Conclusions and future directions

An exciting picture is emerging of startling genetic overlap between seemingly unrelated

diseases and traits. The promise is twofold: using ever-larger sample sizes across genetic

cohorts will further increase discoveries of genetic association, and the patterns of sharing

will help to sort associations into discrete pathways, which will further our understanding of

biology and disease. In this Review, we have outlined analytical strategies to discover CP

effects systematically in existing GWAS data sets as the first step in this direction. Several

advances will be instrumental in allowing us to reap the full benefits of shared genetic

architecture across traits: analytical frameworks, such as those we describe, must be

developed, tested and implemented; multi-disease mega-consortia must be formed to pool

data across traits; and systems-level approaches must be developed to characterize the

molecular mechanisms perturbed by common CP associations of modest effect (BOX 3).

This Review has focused on the detection of CP effects, but functionally characterizing

identified variants and understanding the underlying mechanism remains a major challenge

in the field (BOX 3). Although many resources are available for characterizing protein-

coding variants, experiments in animal or cellular models are generally necessary to

establish causality. The Encyclopedia of DNA Elements (ENCODE) project provides a

valuable resource for characterizing nonprotein-coding variants and regulatory elements and

has found that most GWAS associations overlap a functional region25. In addition,

examining eQTLs in the relevant tissue for each phenotype of a CP effect can help to

elucidate the functional consequence and to distinguish between biological and spurious

pleiotropy. Finally, network- based approaches83,84 have highlighted the importance of

pleiotropy in human disease, and understanding CP effects in the context of these models

can provide insight into the mechanisms of shared pathophysiology. For example, proteins

involved in the same disease are more likely to interact with each other83, pathophenotypes

within the same disease class are more likely to share genes84, and increased comorbidity

has been identified among diseases that are metabolically linked85.

As the field moves towards sequencing-based association studies, we will have the

opportunity directly to identify the causal alleles underlying the CP effects identified in

GWASs and thus to distinguish between the different types of pleiotropy more accurately.

The current focus on whole-exome sequencing will probably bias findings towards gene-

centric pleiotropic effects, whereas whole-genome sequencing will provide a more robust

survey of the genomic landscape for CP effects. Sequencing will also allow us to interrogate

lower-frequency variants (which are typically not represented on SNP-genotyping

microarrays) for CP effects, and some of these variants are likely to have higher penetrance

than those found in GWASs. In addition, the observed comorbidity between mapped

Mendelian disorders and complex traits can be exploited by carrying out focused sequencing

of the mapped region. For example, comorbidity between Gaucher’s disease and

Parkinsonism led to the identification of risk alleles for Parkinson’s disease in GBA, which

is the gene implicated in Gaucher’s disease86.
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Extending observations of CP effects to a wider range of phenotypes is an emerging area.

Systematic and unbiased phenome-wide association studies (PheWASs) are now beginning

in which a SNP with an established association with a phenotype is tested for association

with hundreds of other phenotypes87,88. The Population Architecture using Genomics and

Epidemiology (PAGE) network89 is a large-scale collaboration for harmonizing phenotypes

across eight epidemiological studies and five ethnic groups for the purpose of conducting

PheWASs on replicated GWAS hits90. Other efforts aim to analyse a broad range of

phenotypes that are extracted from electronic medical records88,91. These approaches will

increase our understanding of the extent of shared genetics among traits and our global

understanding of phenotypes as a range of inter-related manifestations of biological

mechanisms rather than isolated events.
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Glossary

Genome-wide
association studies

(GWASs). Studies in which hundreds of thousands (or millions)

of genetic markers are tested for association with a phenotypic

trait; they are an unbiased approach to survey the entire genome

for disease-associated regions using common variation.

Genome-wide-
significant

A term describing the statistical significance threshold that

accounts for multiple testing in GWASs.

Complex traits Traits controlled by a combination of many genes and

environmental factors.

Pleiotropy A gene or genetic variant that affects more than one phenotypic

trait.

Heritability The proportion of phenotypic variance attributed to genetic

differences among individuals in a population.

Colocalizing Different genetic variants in high linkage disequilibrium located

in the same gene that affect different phenotypes.

Single-nucleotide
polymorphisms

Single-nucleotides in the genome that vary across individuals in

the population.

Linkage
disequilibrium

(LD). The correlation between genetic markers owing to limited

recombination.

Copy number
variants

Regions of the genome in which the copy number is polymorphic

(for example, deletions and duplications) across individuals.

Polygenic Controlled by many genes.

Solovieff et al. Page 13

Nat Rev Genet. Author manuscript; available in PMC 2014 July 20.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://www.pagestudy.org/
http://www.pagestudy.org/


Population
stratification

A source of bias in genome-wide association studies that occurs

when a phenotype and the allele frequency of a single-nucleotide

polymorphism vary owing to ancestral differences.

Batch effect Systematic biases in the data that arise from differences in sample

handling.

Genotype
imputation

Inference of missing genotypes or untyped single-nucleotide

polymorphisms using statistical techniques.

Ascertainment bias A consequence of collecting a nonrandom subsample with a

systematic bias so that results based on the subsample are not

representative of the entire sample.

Tag SNPs Single-nucleotide polymorphisms (SNPs) chosen to represent a

region of the genome owing to strong linkage disequilibrium.

Multivariate
analyses

The simultaneous inclusion of two or more phenotypes in one

analysis when testing the association with a genetic variant.

Univariate analyses Tests of association between one phenotype and a genetic variant.

Polygenic scoring A score that aggregates the number of risk alleles a subject carries

weighted by the effect size of the allele for a particular trait. The

risk allele and effect size for each single-nucleotide

polymorphism is generally taken from a genome-wide association

study of an independent study.

Linear mixed-effect
model

A linear model that contains both fixed and random effects. This

type of model can be used to estimate genetic correlation between

traits using a genome-wide set of single-nucleotide

polymorphisms.

Cohort studies Observational studies in which defined groups of people (the

cohorts) are followed over time and outcomes are compared in

subsets of the cohort who were exposed to different levels of

factors of interest. These studies can either be prospectively or

retrospectively carried out from historical records.

Cross-sectional
studies

Studies in which data are collected on subjects at one specific

point in time and subjects are not selected for a particular trait or

exposure.

Case–control study Compares cases (that is, a selected group of individuals: for

example, those diagnosed with a disorder) with controls (that is, a

comparison group of individuals: for example, those who are not

diagnosed with the disorder). Genome-wide association case–

control studies test whether genetic marker allele frequencies

differ between cases and controls.
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Generalized
estimating
equations

A statistical technique used to estimate regression parameters that

does not require the joint distribution of the variables to be fully

specified.

Log-linear model A statistical model that captures the dependence among a set of

categorical variables.

Bayesian network A network that captures relationships between variables or nodes

of interest (for example, phenotypes and SNPs). Bayesian

networks can incorporate prior information in establishing

relationships between variables.

Ordinal regression A regression model in which the outcome variable is ordinal.

Non-parametric
approach

A statistical analysis method that does not rely on specific

distributional assumptions (for example, normality) for the

variables being analysed.

Principal
components analysis

A statistical method used to simplify data sets by transforming a

series of correlated variables into a smaller number of

uncorrelated factors. It is also commonly used to infer continuous

axes of variation in genetic data, often representing genetic

ancestry.

Summary statistics A statistic that summarizes a set of observations. In the context of

genome-wide association studies, meta-analyses can be carried

out solely by using summary statistics and typically include

estimates of the effect size (for example, odds ratio) and standard

error.

Effect heterogeneity Different effect sizes across phenotypes.

Expression
quantitative trait
loci

Loci at which genetic allelic variation is associated with variation

in gene expression.

Fine mapping Extensively genotyping or sequencing a region of the genome that

was identified in genome-wide association studies to identify the

causal variant.

Confounding factor A variable (for example, batch effects or population structure) that

is associated with both the genotype and the phenotype of interest

and can give rise to a spurious association.

Genetic architecture A genetic model (that is, the number of single-nucleotide

polymorphisms, effect sizes, allele frequency, and so on)

underlying a phenotypic trait.
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Box 1 | Spurious CP associations and study design considerations

Ascertainment bias can induce spurious cross-phenotype (CP) effects and occurs when

the recruitment of individuals with one phenotype increases the prevalence of a second

unrelated phenotype92 in the cohort and thus the spurious correlation between them (FIG.

1e). Such ascertainment bias (for example, Berkson’s bias93) is common in clinically

ascertained samples, as patients suffering from two conditions are often more likely to

seek treatment than those suffering from one92. In addition, unaffected control

individuals are often shared across multiple studies, and a spurious CP association could

occur if an artefact (such as population stratification or batch effects)

systematically biases the shared controls and not the cases.

Spurious CP effects between two phenotypes can also occur when subjects with one

phenotype are systematically misclassified with a different phenotype (FIG. 1e). For

example, patients with schizophrenia can sometimes be misdiagnosed with bipolar

disorder and vice versa, and this could result in artefactual genetic correlation between

the traits and hence could generate spurious CP effects. However, the misclassification

rate must be quite high94 to have a substantial impact on the genetic correlation. In the

cases of schizophrenia and bipolar disorder, the misclassification rate would need to be

larger than 20% to generate the genetic correlation (0.60) observed between the traits if

the true genetic correlation were zero94. Although misclassification must be carefully

considered as a source of bias during the design of the study, it is unlikely, in our

opinion, that a substantial number of reported CP effects are caused by this type of bias.

These sources of bias are relevant for both multivariate and univariate analytical

approaches (see the main text) and can be avoided with careful study design. General

guidelines for study design of genome-wide association studies (GWASs) should be

followed, including appropriate control selection, adequate quality control and

adjustment for population stratification95,96. Population stratification is a major source of

confounding in GWASs, and established methods of population stratification adjustment

should be applied within studies97,98. In addition, appropriate adjustments for multiple

testing95 should be implemented to avoid false-positive CP associations, which could

inflate the observed genetic overlap between traits. When testing for CP effects across

different studies (which is particularly relevant for univariate approaches), similar

populations should be used, as the underlying linkage disequilibrium structure varies

across populations and the single-nucleotide polymorphism (SNP) of interest may

differentially tag the causal variant99. Additionally, as the same individuals (particularly

controls) might be used in multiple studies, the overlap across samples should be

minimized and appropriately accounted for in the analysis. If the participant overlap is

not accounted for, the estimates of effects can be biased, and the discovery power may be

reduced66. A further consideration is that when combining phenotypes across studies,

participants may have different sets of SNPs available owing to differences in genotyping

arrays; in this setting, genotype imputation100 can be used to obtain the same set of

SNPs for all individuals. Special considerations are needed when the proportion of cases
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differs across genotyping arrays, as differences in genotype quality can induce spurious

findings in this setting100.
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Box 2 | An analysis to identify CP effect loci for psychiatric disorders

To illustrate a realistic application of a meta-analysis of cross-phenotype (CP) effects, we

provide examples from a study of psychiatric disorders. The Psychiatric Genomics

Consortium (PGC) conducted a largescale meta-analysis in 61,220 cases and controls

across five psychiatric disorders7: autism spectrum disorder, attention-deficit

hyperactivity disorder, bipolar disorder, major depressive disorder and schizophrenia (see

part a of the figure). As data were collected across dozens of studies in over 19 countries

and were genotyped on different arrays, all individual-level raw data were subjected to

the same quality-control measures and followed the same protocol for imputation to

obtain a common set of single-nucleotide polymorphisms (SNPs). This step is essential

for reducing biases in the data that can lead to spurious CP associations (BOX 1). In
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addition, controls appearing in more than one study were randomly assigned to a control

group for one of the phenotypes.

Univariate genome-wide association studies (GWASs) were carried out for each

phenotype after combining individual-level data for each disorder. A fixed-effects meta-

analysis was carried out on the summary statistics from the univariate GWAS to test for

CP effects genome-wide and identified four genome-wide-significant SNPs: two are

shown in forest plots in part b of the figure. In each forest plot, the effect size and 95%

confidence interval are plotted for each individual phenotype and for the overall meta-

analysed results (‘all’ in the figure). Fixed-effects meta-analysis was chosen because the

power can be higher than random-effects analysis for situations in which effects are not

substantially different.

A significant CP result indicates that the SNP is associated with at least one of the

phenotypes but requires an additional step to identify which phenotypes are driving the

association (note that most meta-analytical approaches require this step (TABLE 2)). To

identify which of the five phenotypes were associated, the authors used a multinomial

logistic regression model developed by Lee et al.45 that allows comparisons between

multiple CP-specific disease models and uses a model selection step to identify the best-

fitting configuration of disorder-specific CP effects. The approach jointly models

multiple categorical phenotypes and requires the availability of individual-level genotype

data. The model selection technique found that the best-fit model indicated an effect on

all five phenotypes for rs11191454 and an effect limited to schizophrenia and bipolar

disorder for rs1024582.

In addition to identifying SNP-level CP effects, polygenic scoring analyses were

conducted to assess the overall evidence for pleiotropy among these disorders using

thousands of SNPs in aggregate. The results indicated significant genetic overlap among

schizophrenia, bipolar disorder and major depressive disorder and also between autism

spectrum disorders and schizophrenia, although to a lesser extent.
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Box 3 | Functional characterization of CP effects

For a functional understanding of how a cross-phenotype (CP)-effect locus contributes to

disease, various computational and experimental steps are carried out. The starting point

is typically a genetic variant that was initially identified by genome-wide association

studies (GWASs) and has subsequently satisfied CP-effect criteria across multiple traits.

Therefore, many characterization steps are common between standard GWAS variants

and CP-effect variants. These variants are typically not causal because they are usually

only tags of the true causal variant or variants.

Sequencing and fine mapping are necessary steps for identifying causal variants in the

region that affect more than one trait. After the causal variants have been identified,

investigators are faced with the challenge of functionally characterizing the variants.

Functional categories of the causal variants (such as missense or nonsense mutations in

protein-coding genes) can provide crucial clues for characterizing the CP effects of

genes. Various bioinformatics tools and databases101 are available for predicting the

deleterious, potentially disease-causing biomolecular effects of mutations on the basis of

the functional category (such as PolyPhen102 or SIFT103). Although most of these tools

focus on the functional effects of either protein-coding or splice-site variants, mutations

in non-protein-coding genes (such as microRNAs) or intergenic regulatory elements

(such as enhancers) can result in the dysregulation of hundreds of target proteins and thus

could have a major role (refer to the Encyclopedia of DNA Elements (ENCODE)

project). It is also noteworthy that regulatory variants may confer tissue-specific effects

on multiple genes104, some of which could occur on different chromosomes (trans-

effects105). Examination of expression quantitative trait locus (eQTL) data in a relevant

tissue type can help to identify the tissue-specific regulatory changes caused by

mutations106,107, as demonstrated in the Genotype-Tissue Expression (GTEx) eQTL

Project108. Thus, single variants can have distinct effects on different tissues.

The CP effect of a single variant can also occur when the gene is involved in multiple

pathways or when it is involved in the same pathway but has a different phenotypic effect

on the associated disorders. Public resources of canonical pathways, biological functions

or protein–protein interaction data can be used to compare and contrast diverse biological

roles of gene products as well as potential pathogenetic mechanisms underlying distinct

disorders (for example, Pathguide)109. It is often informative to use a statistical strategy,

such as multivariate pathway analysis, for identifying statistically enriched sets of

biologically related genes for single disorders and comparing the implicated pathways in

the functional characterization of the CP effect110.

Finally, it is essential to validate the predicted CP effects of genetic variation on cellular

physiology using experimental methods104. Typically, the molecular effects of a variant

can be demonstrated using cultured cells in vitro, a knock-in or knockout strategy in

animal models111–113 or, more recently, in vivo genome editing114,115. Changes in

protein expression, localization and mRNA transcription indicate the functional effects of

the mutation. However, it should be noted that unless the replacement with the variant

results in phenotypic changes that are directly related to the disorder, experimental

validation of the functional effects does not necessarily imply causality to the disease in
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humans116. Therefore, clarification of the CP effects requires that functional studies of

gene mutation be carried out separately in pathogenic cell types that are relevant to the

implicated disorders117. A successful example is a series of functional studies that

verified the CP effects of an endogenous β-galactoside-binding protein galectin 3; the

knockout mouse model of galectin 3 revealed that the deficiency of the protein leads to a

concanavalin-A-induced hepatitis in the liver118,119, whereas inhibition of galectin 3

expression suppresses tumour growth in human breast carcinoma cells120–123.
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Box 4 | Mendelian randomization

Mendelian randomization is a form of instrumental variable analysis — a common

approach in causal inference — that uses a genetic variable (G, the instrumental variable)

to test whether an intermediate phenotype (PA) causes another phenotype (PB; see the

figure)73,74. For example, Mendelian randomization was used to test whether the

relationship between high-density lipoprotein cholesterol and myocardial infarction is

causal37. To conduct a valid Mendelian randomization experiment, the following

assumptions must be met73,74:

• Assumption 1: G (which is a single-nucleotide polymorphism (SNP) or a

combination of multiple SNPs124) is robustly associated with PA.

• Assumption 2: G is unrelated to C, which are confounding factors that bias the

relationship between PA and PB. In other words, there are no common causes of

G and PB.

• Assumption 3: G is related to PB only through its association with PA.

If these assumptions are met, it is possible to test the hypothesis that PA causes PB and to

derive an estimate of this relationship (βIV) by using the regression coefficients for

testing the association of G and PB, and G and PA
73: βIV = βG,PB/βG,PA.

The assumptions of Mendelian randomization are quite strong and thus the instrumental

variable (G) must be carefully selected. Even small violations of the assumptions can

result in severe bias74. Assumption 1 can easily be verified by selecting a G that is

robustly associated with PA. Assumption 2 generally holds because G is randomized at

birth and thus is independent of non-genetic confounders and is not modified by the

course of disease. However, population stratification could violate this assumption if

ancestry is related both to G and to PB. Assumption 3 explicitly assumes that G is not

associated with PA and PB through biological pleiotropy, meaning that G is associated
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with PB only through PA (that is, the association instead involves mediated pleiotropy)

and that G is not associated with any unmeasured phenotype that is related to PB.

Knowledge about the causal nature of the association between G and PA can help to

verify this assumption74. Additionally, using multiple different instrumental variables for

different genes and showing consistent results can also help to rule out violations73,74.

Although assumptions 2 and 3 cannot be empirically proved, there are several additional

tests that can be used to try to falsify assumptions 2 and 3 and thus to minimize the

chance of bias74.
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Figure 1. Types of pleiotropy
In each scenario, the observed genetic variant (S) is associated with phenotypes 1 and 2 (P1

and P2). We assume that the observed genetic variant is in linkage disequilibrium (LD) with

a causal variant (red star) that affects one or more phenotypes. In some cases, the causal

variant may be identified directly and the figures can be simplified accordingly. The various

figures correspond to the unobserved underlying pleiotropic structure. a | Biological

pleiotropy at the allelic level: the causal variant affects both phenotypes. b | Colocalizing

association (biological pleiotropy): the observed genetic variant is in strong LD with two

causal variants in the same gene that affect different phenotypes. c | Biological pleiotropy at

the genic level: two independent causal variants in the same gene affect different

phenotypes. d | Mediated pleiotropy: the causal variant affects P1, which lies on the causal

path to P2, and thus an association occurs between the observed variant and both

phenotypes. e | Spurious pleiotropy: the causal variant affects only P1, but P2 is enriched for

P1 owing to misclassification or ascertainment bias, and a spurious association occurs

between the observed variant and the phenotype 2. f | Spurious pleiotropy: the observed

variant is in LD with two causal variants in different genes that affect different phenotypes.

GWAS, genome-wide association study.
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Table 1

CP associations in the literature

Type Locus Phenotypes Result Refs

SNP (same direction of
risk)

rs11209026 (IL23R) Crohn’s disease, ankylosing
spondylitis, ulcerative colitis,
psoriasis

The minor allele (A) of rs11209026 is
protective for Crohn’s disease,
ankylosing spondylitis, ulcerative
colitis and psoriasis

125–128

SNP (same direction of
risk)

rs6983267 (8q24) Prostate and colorectal cancer The G allele increases risk for prostate
cancer and colorectal cancer

23,24

SNP (different direction of
risk)

rs12720356 (TYK2) Crohn’s disease and psoriasis The G allele increases risk for
Crohn’s disease and decreases risk for
psoriasis

128,129

Gene (different SNPs) DNAH11 LDL cholesterol and multiple
myeloma

rs12670798 is associated with LDL
cholesterol and rs4487645 is
associated with multiple myeloma

130,131

Gene (different SNPs) FTO BMI and melanoma rs8050136 is associated with body
mass index and rs16953002 is
associated with melanoma

17,18

Region (different SNPs) 9q21.3 Coronary artery disease,
glioma, intracranial aneurysm

rs4977574 is associatied with
coronary artery disease, rs4977756
with glioma, rs1333040 with
intracranial aneurysm

19–22

Copy number variation 16p2.11 duplication Schizophrenia, autism,
intellectual disability,
developmental delay,
congenital malformations

CNV duplication increases risk for all
five disorders

26

Copy number variation 7q11.23 Autism and Williams–Beuren
syndrome

CNV deletion causes Williams–
Beuren syndrome and de novo CNV
duplication increases risk for autism

132,133

Pathway Immune cell signalling Autoimmune thyroid disease,
coeliac disease, Crohn’s
disease, rheumatoid arthritis,
systemic lupus erythematosus,
T1D

Genes in this pathway have been
implicated across six diseases

34

Polygenic scores – Schizophrenia and bipolar
disorder

Schizophrenia and bipolar disorder
share genetic factors that increase risk
to both disorders

28

Genetic correlation – T2D and hypertension Positive genetic correlation between
T2D and hypertension suggests that
shared genetic factors increase risk for
both traits

41

BMI, body mass index; CNV, copy number variant; CP, cross-phenotype; DNAH11, dynein, axonemal, heavy chain 11; FTO, fat mass and obesity
associated; IL23R, interleukin 23 receptor; LDL, low-density lipoprotein; SNP, single-nucleotide polymorphism; T1D, type 1 diabetes; T2D, type 2
diabetes; TYK2, tyrosine kinase 2. This table provides some examples of different types of observed CP effects. These are illustrative examples and
are not exhaustive; many additional CP associations have been published.
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