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Abstract

Osteoporosis alters bone mass and composition ultimately increasing the fragility of primarily

cancellous skeletal sites; however, effects of osteoporosis on tissue-level mechanical properties of

cancellous bone are unknown. Dual-energy x-ray absorptiometry (DXA) scans are the clinical

standard for diagnosing osteoporosis though changes in cancellous bone mass and mineralization

are difficult to separate using this method. The goal of this study was to investigate possible

difference in tissue-level properties with osteoporosis as defined by donor T-scores. Spine

segments from Caucasian female cadavers (58–92 yrs) were used. A T-score for each donor was

calculated from DXA scans to determine osteoporotic status. Tissue level composition and

mechanical properties of vertebrae adjacent to the scan region were measured using

nanoindentation and Raman spectroscopy. Based on T-scores, six samples were in the

Osteoporotic group (58–74 yrs) and four samples were in the Not Osteoporotic group (65–92 yrs).

The indentation modulus and mineral to matrix ratio (mineral:matrix) were lower in the

Osteoporotic group than the Not Osteoporotic group. Mineral:matrix ratio decreased with age (r2 =

0.35, p = 0.05), and the indentation modulus increased with a real bone mineral density (aBMD)

(r2 = 0.41, p = 0.04).

This study is the first to examine cancellous bone composition and mechanical properties from a

fracture prone location with osteoporosis. We found differences in tissue composition and
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mechanical properties with osteoporosis that could contribute to increased fragility in addition to

changes in trabecular architecture and bone volume.

Keywords

Nanoindentation; Raman spectroscopy; Osteoporosis; Human trabecular bone

Introduction

The skeleton is a dynamic organ with temporal and spatial variations in composition,

microarchitecture, and bone mass. In the healthy skeleton, variations in microarchitecture

and tissue-level properties contribute to toughness and efficient load bearing ability [1].

Metabolic bone diseases such as osteoporosis can negatively alter bone composition and

architecture. Changes due to osteoporosis are of particular interest because more than 2

million fragility fractures occur in men and women annually [2]. Osteoporosis was initially

characterized as a disease of reduced bone mass. However, osteoporosis is now known not

only to reduce bone mass, but also change trabecular architecture and alter bone tissue

composition, ultimately making the bone more susceptible to fracture [3–5].

Areal bone mineral density (aBMD) as measured by dual-energy x-ray absorptiometry

(DXA) is commonly used to assess fracture risk but has limited ability to predict fractures

[6–7]. The disconnect between fracture risk and aBMD suggests that changes at the material

level, in addition to the reduction in bone mass, could contribute to the increased fragility of

primarily cancellous skeletal sites. A variety of compositional changes in cancellous bone

have been previously associated with fragility-related fractures and osteoporosis. Cancellous

bone biopsies from donors with previous fragility fractures had different ratios of non-

reducible/reducible collagen cross-links compared with samples from donors without

fractures [8] and decreased mineralization and carbonate substitution heterogeneity [5].

Reduced bone mineralization [9] and increased carbonate substitution and crystallinity have

also been associated with osteoporosis [10–11]. The previously mentioned studies provided

key information about compositional changes in bone tissue with osteoporosis, and tissue

composition likely contributes to tissue-level mechanical properties; however, none of these

studies examined tissue-level mechanical properties or confirmed the relationship between

composition and material properties in osteoporotic tissue. In healthy and vitamin D

deficient rodents, tissue composition has been related to changes in tissue-level mechanical

properties [12–16]; however, a limited number of studies have looked at osteoporotic

cancellous bone from humans [17–18], a relevant application of clinical interest.

The goal of this study was to examine the effects of osteoporosis on cancellous bone

composition and mechanical properties at the tissue-level length scale and correlate changes

in mechanical properties with changes in tissue composition at a site prone to fracture

clinically. DXA scans of the L1–L4 vertebrae were performed on spine segments from

female cadavers ranging from age 58 to 92 years to determine osteoporotic status based on

T-scores. Due to the lack of age-matched samples the average age of the two groups were

not equal. Compositional parameters (mineral:matrix ratio, crystallinity, and B-type
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carbonate substitution) were measured using Raman microspectroscopy. Mechanical

parameters (indentation modulus and hardness) were measured on the same cores using

nanoindentation. Compositional and mechanical parameters were compared and correlated

as a function of T-score.

Materials and Methods

Spine segments were obtained from 11 Caucasian female donors aged from 58 to 92 years.

Ribs, additional vertebral levels that were outside T11-L4, and any portions of the pelvis

were removed to allow the spine to rest in a flat position for the DXA scan. The spines were

then refrozen. The frozen T11-L4 segments were secured in a curved Plexiglas® fixture,

immersed in a saline bath within a Plexiglas® box, and scanned with a clinical fan-beam

densitometer in lumbar spine array mode (Delphi QDR 4500A or QDR 4500W, Hologic

Inc., Bedford, MA). aBMD was computed using standard manufacturer software for the L1–

L4 region (n = 10). Based on the aBMD for each sample, the associated T-score was

computed [19]. Using the definition of osteoporosis from the World Health Organization,

the “Osteoporotic group” had 6 samples, all of which had T-scores of −2.5 or below. Four

samples with T-scores greater than -2.5 were in the “Not Osteoporotic group”. Donor ages

and T-scores for all samples are given in Table 1. The T-score, and osteoporotic status, for

one sample could not be calculated due to a missing L1 vertebra. This sample was still used

for tissue-level measurements and labeled as “N/A” in Figures 2 and 3. After scanning, a

cylindrical core (diameter = 8.25 mm) was drilled from the centrum of each T12 vertebra (n

= 11). The cores were dehydrated in a series of increasing ethanol concentrations and

embedded in polymethylmethacrylate (PMMA). A 3-mm thick longitudinal section was

removed from the central region of each core with a diamond saw and glued onto an atomic

force microscope (AFM) stub. The samples were polished anhydrously on silicon carbide

polishing paper lubricated with ethylene glycol and aluminum oxide-ethylene glycol slurries

until the RMS surface roughness measured by AFM (Dimension 3100 Ambient AFM,

Veeco, Plainview, NY) was less than 10 nm for a 5 μm by 5 μm region [20].

For each sample, three longitudinally oriented trabeculae were chosen for both

nanoindentation and Raman microspectroscopy. To reduce intra-sample variability surface

roughness was minimized by polishing the sample [20]. Care was taken to avoid trabeculae

with scalloped surfaces indicative of active remodeling. A scanning nanoindenter

(Triboindenter, Hysitron, Minneapolis, MN) with a Berkovich tip was used. Using the

surface imaging capabilities of the indenter, lines of indentations were made perpendicular

to the longitudinal axis of each trabecula, starting and ending 20 μm from the edges.

Indentations were made at ~10 μm intervals while avoiding lacunae and pores visible on the

surface. This sampling method resulted in at least 23 indentations per sample. Two loading

protocols yielded different indentation depths, one for indentation analysis and one for

visualization in Raman measurements. In 4 samples, small indents were created using a

single trapezoidal load function with a maximum load of 500 μN, load/unload rates of ±50

μN/s, and a hold time of 10 s. The remaining 7 samples were loaded twice in succession

with two trapezoidal load forms with peak loads of 500 followed by 1000 μN, both with load

rates of ±50 μN//s and 10 s hold times. The larger 1000 μN indents were performed to make

fiduciary markers on the sample for Raman spectroscopy. For all indents, indentation
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modulus (Ei) and hardness (H) values were calculated from the unloading portion of the 500

μN indent using the Oliver-Pharr method [21]. Indentation modulus and hardness values

were averaged, resulting in a single indentation modulus and hardness value for each

sample.

Raman spectra from 800 cm−1 to 1800 cm−1 were collected using an optical microscope

(inVia, Renishaw, Gloucestershire, UK) equipped with a 785-nm laser and a 50x, 0.75 N.A.

objective. The resulting spot size was ~2 μm. The small indents were not visible with the

microscope, so the laser was positioned at approximately the same location based on optical

images of the samples. The large indents were visible with the microscope and used to

position the laser such that the Raman spectra were collected from the exact same location

as the indent. After the background fluorescence was subtracted (WiRE V2.0, Renishaw),

the spectra were smoothed using a nine-point moving average, and peak heights were

identified using in-house code (Matlab V7.0, The Mathworks, Inc.). Tissue mineralization

was examined using the mineral-to-matrix ratio (mineral:matrix) calculated from the

phosphate ν1(~965 cm−1) and CH2 wag (~1450 cm−1) peak heights, respectively [22–23].

Crystallinity was measured based on the full width at half maximum value of the phosphate

ν1 peak, with broader peaks representing lower crystallinity[24]. B-Type carbonate

substitution was calculated from the peak height ratio of the carbonate peak (~1065 cm−1) to

phosphate ν1 peak [22–23, 25].

Relationships between mechanical properties, composition, and age were assessed using

simple and multiple linear regressions (JMP Pro 9, SAS, Cary, NC). Differences in

compositional and mechanical parameters between the Osteoporotic and Not Osteoporotic

groups were compared using the Wilcoxon Rank Sum test to account for non-normal

distributions. Due to small samples sizes, statistical tables were used to determine the critical

values for the Wilcoxon Rank Sum test. P-values less than or equal to 0.05 were considered

significant.

Results

Samples were divided into two groups based on T-score, Osteoporotic and Not

Osteoporotic, to compare differences in tissue-level properties with osteoporotic status

(Figure 1). The average age of the osteoporotic group (79.7 ±11 yrs) was higher than the Not

Osteoporotic group (66.5 ±8 yrs) (p = 0.05). The Osteoporotic group had a 14% lower

indentation modulus (p = 0.05) and 21% lower mineral:matrix ratio (p < 0.05) than the Not

Osteoporotic group. Hardness was not different between the two groups (p > 0.05).

Relationships between tissue-level composition and material properties were examined

using simple and multiple linear regressions (Tables 2–3). The indentation modulus

increased with rising mineral:matrix ratio (r2 = 0.47, p= 0.02), but hardness did not (Figure

2, Table 2). Although crystallinity and carbonate substitution were not significant predictors

of either nanoindentation outcome individually, crystallinity in addition to the

mineral:matrix ratio concurrently explained 56% of the variability in indentation modulus

(Adjusted R2 = 0.56, p = 0.06) (Table 3). Carbonate substitution in addition to the

mineral:matrix ratio explained 38% of the variability in hardness but was still not significant
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(Adjusted R2 = 0.38, p = 0.06) (Table 3). Combining all three compositional metrics did not

improve the prediction of indentation modulus compared with crystallinity and

mineral:matrix ratio.

Changes in age, aBMD, and tissue-level parameters were investigated using simple linear

regressions. Tissue-level mineralization as measured by Raman spectroscopy tended to

decrease with donor age (r2 = 0.35, p = 0.05) (Figure 3). aBMD, Crystallinity, carbonate

substitution, indentation modulus, and indentation hardness were not associated with age.

Finally, relationships between tissue-level outcome measures and aBMD were investigated

using simple linear regressions. The indentation modulus increased with rising aBMD (r2 =

0.41, p=0.04) (Figure 4). No other tissue-level outcome measures varied with aBMD.

Discussion

The two goals of this study were to (1) investigate changes in tissue-level composition and

mechanical properties with osteoporosis as defined by T-score and (2) determine the

relationship between composition and tissue-level mechanical properties in human

cancellous bone from a clinically relevant fracture site. Osteoporotic status was based on T-

scores from DXA scans, and tissue-level analyses were performed on samples from adjacent

vertebrae to those scanned using DXA. The T12 vertebra was chosen for material property

analysis, as osteoporotic vertebral fractures often occur in the lower thoracic and upper

lumbar spine regions [26–27]. The indentation modulus and mineral:matrix ratio of the

Osteoporotic group were lower than the Not Osteoporotic group. With respect to relating

compositional measures with mechanical properties, the mineral:matrix ratio best predicted

both the indentation modulus and hardness, and the addition of other compositional

measures, crystallinity and B-type carbonate substitution, improved the prediction for the

indentation modulus and hardness, respectively.

Animal studies of postmenopausal bone loss had mixed results regarding changes in

material properties as assessed by nanoindentation. One study found no difference in

indentation modulus or hardness of vertebral cancellous bone 20 weeks after ovariectomy

[28], and another found a decrease in indentation modulus and hardness 16 weeks after

ovariectomy [29], but these discrepancies could be due to differences in hydration of the test

samples.

Previous studies of human cancellous bone from the iliac crest found nanoindentation

outcome measures to be insensitive to fragility fracture [17] and menopause [18].

Composition of cancellous bone varies across skeletal sites in healthy bone [30–31], and

osteoporosis affects different skeletal sites at different rates [32]. Thus comparing changes in

tissue-level properties of cancellous bone from the iliac crest with cancellous bone from the

spine may not be suitable. A study examining human cortical bone from the femoral neck

found no differences in nanoindentation outcome measures between donors that suffered a

fragility fracture and age matched controls despite reduced mineralization values [33]. This

finding is unexpected because numerous studies have reported positive linear correlations

between mineralization and nanoindentation measures [12–16, 34]. Alternatively, the lack of
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difference in nanoindentation outcomes found by Fratzl-Zelman suggests other mechanical

properties such as fracture toughness or strength may better explain bone fragility.

Microindentation has also been used to measure the hardness of iliac crest bone from

osteoporotic men and women [34]. This study found lower Vicker’s microhardness and

degree of mineralization of bone (DMB) in samples from osteoporotic men than from

control men, but there were no differences between samples from control and osteoporotic

women. The coefficient of determination between mechanical properties (Vicker’s

Hardness) and mineralization (DMB) for men (r2 = 0.52) and women (r2 = 0.4) were similar

to the current study [34]. Previous studies and the current study have reported reduced

mineralization of samples from women with osteoporosis and fragility fractures [9, 33]. It is

not clear why the microhardness study did not have differences in mineralization with

osteoporosis in the samples from women.

Correlations between aBMD and tissue-level properties in the current study are particularly

interesting because aBMD is a clinically used criterion for diagnosing osteoporosis. Despite

the widespread clinical use and acceptance of DXA, aBMD does not always predict fracture

[35–36] and the use of urinary bone turnover markers and various risk factors in addition to

aBMD can improve fracture risk assessment in post-menopausal women [37–38]. To

extrapolate the relationships between material properties and aBMD found in this study to

implications for fracture risk, patient fracture history or bone turnover markers would be a

valuable supplement to aBMD data. However, such clinical information was not available

for the cadaver bone used in this study.

In addition to differences in indentation modulus and mineralization, the average age also

differed between the Osteoporotic and Not Osteoporotic groups. Though the use of age-

matched samples was not possible in this study, the linear regression analysis provides some

insight regarding the contribution of aging and osteoporosis to differences in mineralization

and indentation modulus between the two groups. In the current study a negative linear

relationship between mineralization and age was found (Figure 3), making it difficult to

distinguish if reduced mineralization was related to age or T-score. However for the

indentation modulus and T-score there was no correlation with age suggesting the difference

in indentation modulus between groups was likely not due to age.

An additional compositional parameter that may explain the changes in mechanical

properties is collagen cross-linking. Collagen cross-linking ratios change with osteoporosis

and are correlated to the mechanical behavior of bone tissue [8, 39–40]. Collagen cross-links

were not characterized in this study due to overlapping peaks from the embedding medium

and known changes in the Amide I and III regions with plastic deformation [41]. However,

the use of FTIR spectroscopy before indentation would allow for collagen cross-link

evaluation in the future.

This study is the first to examine osteoporotic cancellous bone composition and mechanical

properties from a site prone to osteoporotic fracture. The indentation modulus was reduced

in osteoporotic human cancellous bone from a lower thoracic vertebra. The reduced

indentation modulus coincided with decreased mineralization and increased crystallinity and
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carbonate substitution. Whole bone strength depends on bone mass, architecture and

material properties. Bone volume fraction, as measured by micro-computed tomography

scans, predicts 73–97% of the ultimate stress and Young’s Modulus of vertebral cancellous

bone [42–44]. Though cancellous architecture and bone mass are clearly important to whole

bone strength, the contribution of material properties should not be overlooked. Because

material properties are independent of bone mass and architecture metrics, the differences in

material properties between osteoporotic and non-osteoporotic bone tissue could contribute

to the remaining 3–27% of the variability in apparent level strength and stiffness. Future

work examining cancellous architecture and apparent-level mechanical properties

concurrently with tissue-level properties will provide a complete quantitative assessment of

the influence of material properties on apparent level mechanical properties. Future

therapies designed not only to increase bone mass but also optimize tissue material

properties could offer even more effective therapies for osteoporosis and fracture risk

prevention.
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Figure 1.
Box-and-whisker plots for a) Age, b) mineral:matrix ratio, c) indentation modulus, and d)

hardness for the Not Osteoporotic and Osteoporotic groups.*indicates different from Not

Osteoporotic, p ≤ 0.05.
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Figure 2.
Linear regressions of a) indentation modulus and b) hardness with tissue mineralization.

Changes in hardness were not associated with changes in the mineral:matrix ratio, but the

indentation modulus increased with increasing mineralization.
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Figure 3.
Linear regression of tissue-level mineralization as measured by Raman spectroscopy with

age.
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Figure 4.
Linear regression of the indentation modulus with mineralization as measured by DXA.
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Table 1

Age and T-score for all samples.

Sample Age (Years) L1–L4 T-score

4 61 Not Available

7 87 −3.8

9 87 −3.5

11 61 −1.9

15 92 −2.6

20 74 −0.8

24 58 −1.5

30 73 0.5

31 79 −5.2

36 68 −3.9

37 65 −4.4
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Table 2

Correlation coefficients, coefficients of determination, and p-values for simple linear regression of tissue-level

properties and aBMD.

Predictor Response r r2 p

Mineral:Matrix Age −0.60 0.35 0.053

Ei (GPa) aBMD L1–L4 0.64 0.41 0.044

Ei (GPa) Mineral:Matrix 0.69 0.47 0.020

H (GPa) Mineral:Matrix 0.36 0.13 0.27

H (GPa) Ei 0.63 0.40 0.036
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Table 3

Adjusted coefficients of determination and associated p-values for multiple linear regressions to predict tissue-

level mechanical properties (Indentation modulus (Ei) and Hardness (H)).

Dependent Variable Independent Variable R2 p

Mineral:Matrix, Crystallinity 0.56 0.015

H Mineral:Matrix, Carbonate Substitution 0.38 0.062
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