Skip to main content
. Author manuscript; available in PMC: 2015 Aug 1.
Published in final edited form as: Exp Gerontol. 2014 Apr 1;56:221–233. doi: 10.1016/j.exger.2014.03.016

Table 1.

C. elegans gene Human
Ortholog
Life
Extension *
Method of
Knockdown
Reference **
COMPLEX I

K09A9.5 (gas-1) NDUFS2 decrease genetic [1, 2, 3]
ZK973.10 (lpd-5) NDUFS4
T26A5.3 (nduf-2.2) NDUFS2 RNAi [4]
Y54E10BL.5 (nduf-5) NDUFS5
F22D6.4 (nduf-6) NDUFS6
W10D5.2 (nduf-7) NDUFS7
C09H10.3 (nuo-1) NDUFV1 genetic & RNAi [5, 6, 7, 8]
T10E9.7 (nuo-2) NDUFS3 RNAi [9, 10, 11]
Y57G11C.12 (nuo-3) NDUFA6 RNAi [4, 7, 10]
K04G7.4 (nuo-4) NDUFA10 RNAi [4, 10, 12]
Y45G12B.1 (nuo-5) NDUFS1 RNAi [10]
W01A8.4 (nuo-6) NDUFB4 genetic & RNAi [13]
C16A3.5 NDUFB9
C18E9.4 NDUFB3 RNAi [7]
C25H3.9 NDUFB5 RNAi [7]
C33A12.1 NDUFA5 RNAi [4, 7]
C34B2.8 NDUFA13
D2030.4 NDUFB7 RNAi [12, 14]
F31D4.9 NDUFA1
F37C12.3 NDUFAB1
F42G8.10 NDUFB11
F44G4.2 NDUFB2
F45H10.3 NDUFA7
F53F4.10 NDUFV2
F59C6.5 NDUFB10 RNAi [5]
T20H4.5 NDUFS8 RNAi [4, 12]
Y51H1A.3 NDUFB8
Y53G8AL.2 NDUFA9 RNAi [4]
Y54F10AM.5 NDUFA8
Y56A3A.19 NDUFAB1 RNAi [4, 5]
Y63D3A.7 NDUFA2
Y71H2AM.4 NDUFC2 RNAi [4]
Y94H6A.8 NDUFA12
ZK809.3 NDUFB6 RNAi [4]

COMPLEX II

C03G5.1 (sdha-1) SDHA no effect RNAi [2, 15]
C34B2.7 (sdha-2) SDHA no effect RNAi [2, 15]
F42A8.2 (sdhb-1) SDHB no effect RNAi [2, 7, 15]
T07C4.7 (mev-1) SDHC decrease genetic & RNAi [2, 11, 15, 16]
F33A8.5 (sdhd-1) SDHD no effect RNAi [2, 15]

COMPLEX III

C54G4.8 (cyc-1) CYC1 RNAi [7, 9, 10, 17]
E04A4.7 (cyc-2.1) CYCS (cytochrome c) RNAi [4]
ZC116.2 (cyc-2.2) CYCS (cytochrome c)
F42G8.12 (isp-1) UQCRFS1 genetic & RNAi [11, 17]
F56D2.1 (ucr-1) UQCRC1 RNAi [4, 7]
VW06B3R.1 (ucr-2.1) UQCR2
T10B10.2 (ucr-2.2) UQCR2 no effect RNAi [7]
T24C4.1 (ucr-2.3) UQCR2 decrease genetic & RNAi [7, 18]
F45H10.2 UQCRQ RNAi [4]
F57B10.14 UQCR11
R07E4.3 UQCRQ RNAi [7]
T02H6.11 UQCRB RNAi [7, 14]
T27E9.2 UQCRH RNAi [7]

COMPLEX IV

F26E4.9 (cco-1) COX5B RNAi [4, 7, 9, 10, 11, 12, 14, 17]
Y37D8A.14 (cco-2) COX5A RNAi [7, 10, 19]
F26E4.6 (cco-4) COX7C RNAi [5, 7, 12, 14]
F29C4.2 COX6C RNAi [4, 7]
F40G9.2 COX17
F54D8.2 COX6A1 RNAi [4, 7]
JC8.5 COX11
T06D8.5 COX15 RNAi [14]
W09C5.8 COX4 RNAi [4, 7, 12, 14]
Y46G5A.2 COX10
Y71H2AM.5 COX6B RNAi [7]

COMPLEX V

F35G12.10 (asb-1) ATP5F1 (b)
F02E8.1 (asb-2) ATP5F1 (b) RNAi [10]
K07A12.3 (asg-1) ATP5L (g)
C53B7.4 (asg-2) ATP5L (g) RNAi [12]
C34E10.6 (atp-2) ATP5B (β) genetic & RNAi [5, 6]
F27C1.7 (atp-3) ATP5O (OSCP) RNAi [9, 10, 11]
T05H4.12 (atp-4) ATP5J (F6) RNAi [10]
C06H2.1 (atp-5) ATP5H (d) RNAi [10]
F32D1.2 (hpo-18) ATP5E (ε)
F58F12.1 ATP5D (δ)
H28O16.1 ATP5A1 (α) RNAi [5]
R04F11.2 ATP5I (e)
R05D3.6 ATP5E (ε)
R53.4 ATP5J2 (f)
T26E3.7 ATP5A1 (α)
Y69A2AR.18 ATP5C1 (γ)
Y82E9BR.3 ATP5G3 (c)
ZC262.5 ATP5E (ε)

OTHER ±

T06D8.6 (cchl-1) HCCS RNAi [4]
ZC395.2 (clk-1) COQ7 genetic [20]
F59G1.7 (frh-1) FXN genetic & RNAi [11, 21, 22]
ZC395.6 (gro-1) TRIT1 genetic [23]
C37H5.8 (hsp-6) mtHSP70 RNAi [22]
ZK524.3 (lrs-2) LARS2 genetic [14]
T21C9.1 (mics-1) OMP25 genetic & RNAi [24]
F56B3.8 (mrpl-2) MRPL2 RNAi [25]
W09D10.3 (mrpl-12) MRPL12 RNAi [4]
Y48E1B.5 (mrpl-37) MRPL37 RNAi [25]
B0261.4 (mrpl-47) MRPL47 RNAi [14]
E02A10.1 (mrps-5) MRPS5 RNAi [25]
F09G8.3 (mrps-9) MRPS9 RNAi [4]
Y37D8A.18 (mrps-10) MRPS10 RNAi [4]
F21D5.8 (mrps-33) MRPS33 RNAi [4]
F43E2.7 (mtch-1) MTCH1 RNAi [5]
F10D11.1 (sod-2) SOD2 (MnSOD) genetic [26]
C08A9.1 (sod-3) SOD2 (MnSOD) no effect genetic [26]
ZK637.9 (tpk-1) TPK1 genetic [4]
K08F11.4 (yars-1) YARS2 RNAi [4]
F13G3.7 SLC25A44 RNAi [14]
K01C8.7 SLC25A32 RNAi [14]
*

Blank space indicates nothing has been reported to date.

±

List is not exhaustive.

**

Numbers refer to references listed below.

FUdR used.

1.

Hartman, P.S., et al., Mitochondrial mutations differentially affect aging, mutability and anesthetic sensitivity in Caenorhabditis elegans. Mech Ageing Dev, 2001. 122(11): p. 1187–201.

2.

Pujol, C., et al., Succinate dehydrogenase upregulation destabilize complex I and limits the lifespan of gas-1 mutant. PLoS One, 2013. 8(3): p. e59493.

3.

Van Raamsdonk, J.M. and S. Hekimi, FUdR causes a twofold increase in the lifespan of the mitochondrial mutant gas-1. Mech Ageing Dev, 2011. 132(10): p. 519–21.

4.

Kim, Y. and H. Sun, Functional genomic approach to identify novel genes involved in the regulation of oxidative stress resistance and animal lifespan. Aging Cell, 2007. 6(4): p. 489–503.

5.

Curran, S.P. and G. Ruvkun, Lifespan regulation by evolutionarily conserved genes essential for viability. PLoS Genet, 2007. 3(4): p. e56.

6.

Tsang, W.Y., et al., Mitochondrial respiratory chain deficiency in Caenorhabditis elegans results in developmental arrest and increased life span. J Biol Chem, 2001. 276(34): p. 32240–6.

7.

Zuryn, S., et al., Mitochondrial dysfunction in Caenorhabditis elegans causes metabolic restructuring, but this is not linked to longevity. Mech Ageing Dev, 2010. 131(9): p. 554–61.

8.

Grad, L.I. and B.D. Lemire, Mitochondrial complex I mutations in Caenorhabditis elegans produce cytochrome c oxidase deficiency, oxidative stress and vitamin-responsive lactic acidosis. Hum Mol Genet, 2004. 13(3): p. 303–14.

9.

Dillin, A., et al., Rates of behavior and aging specified by mitochondrial function during development. Science, 2002. 298(5602): p. 2398–401.

10.

Hansen, M., et al., New genes tied to endocrine, metabolic, and dietary regulation of lifespan from a Caenorhabditis elegans genomic RNAi screen. PLoS Genet, 2005. 1(1): p. 119–28.

11.

Rea, S.L., N. Ventura, and T.E. Johnson, Relationship between mitochondrial electron transport chain dysfunction, development, and life extension in Caenorhabditis elegans. PLoS Biol, 2007. 5(10): p. e259.

12.

Hamilton, B., et al., A systematic RNAi screen for longevity genes in C. elegans. Genes Dev, 2005. 19(13): p. 1544–55.

13.

Yang, W. and S. Hekimi, Two modes of mitochondrial dysfunction lead independently to lifespan extension in Caenorhabditis elegans. Aging Cell, 2010. 9(3): p. 433–47.

14.

Lee, S.S., et al., A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity. Nat Genet, 2003. 33(1): p. 40–8.

15.

Kuang, J. and P.R. Ebert, The failure to extend lifespan via disruption of complex II is linked to preservation of dynamic control of energy metabolism. Mitochondrion, 2012. 12(2): p. 280–7.

16.

Ishii, N., et al., A methyl viologen-sensitive mutant of the nematode Caenorhabditis elegans. Mutat Res, 1990. 237(3–4): p. 165–71.

17.

Feng, J., F. Bussiere, and S. Hekimi, Mitochondrial electron transport is a key determinant of life span in Caenorhabditis elegans. Dev Cell, 2001. 1(5): p. 633–44.

18.

Butler, J.A., et al., Long-lived mitochondrial (Mit) mutants of Caenorhabditis elegans utilize a novel metabolism. FASEB J, 2010. 24(12): p. 4977–88.

19.

Suthammarak, W., et al., Complex I function is defective in complex IV-deficient Caenorhabditis elegans. J Biol Chem, 2009. 284(10): p. 6425–35.

20.

Wong, A., P. Boutis, and S. Hekimi, Mutations in the clk-1 gene of Caenorhabditis elegans affect developmental and behavioral timing. Genetics, 1995. 139(3): p. 1247–59.

21.

Ventura, N., et al., Reduced expression of frataxin extends the lifespan of Caenorhabditis elegans. Aging Cell, 2005. 4(2): p. 109–12.

22.

Ventura, N. and S.L. Rea, Caenorhabditis elegans mitochondrial mutants as an investigative tool to study human neurodegenerative diseases associated with mitochondrial dysfunction. Biotechnol J, 2007. 2(5): p. 584–95.

23.

Lakowski, B. and S. Hekimi, Determination of life-span in Caenorhabditis elegans by four clock genes. Science, 1996. 272(5264): p. 1010–3.

24.

Hoffmann, M., et al., MICS-1 interacts with mitochondrial ATAD-3 and modulates lifespan in C. elegans. Exp Gerontol, 2012. 47(3): p. 270–5.

25.

Houtkooper, R.H., et al., Mitonuclear protein imbalance as a conserved longevity mechanism. Nature, 2013. 497(7450): p. 451–7.

26.

Van Raamsdonk, J.M. and S. Hekimi, Deletion of the mitochondrial superoxide dismutase sod-2 extends lifespan in Caenorhabditis elegans. PLoS Genet, 2009. 5(2): p. e1000361.