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ABSTRACT A hierarchy of enzyme-catalyzed positive feed-
back loops is examined by mathematical and numerical analysis.
Four systems are described, from the simplest, in which an
enzyme catalyzes its own formation from an inactive precursor,
to the most complex, in which two sequential feedback loops act
in a cascade. In the latter we also examine the function of a
long-range feedback, in which the final enzyme produced in the
second loop activates the initial step in the first loop. When the
enzymes generated are subject to inhibition or inactivation, all
four systems exhibit threshold properties akin to excitable sys-
tems like neuron firing. For those that are amenable to mathe-
matical analysis, expressions are derived that relate the excita-
tion threshold to the kinetics ofenzyme generation and inhibition
and the initial conditions. For the most complex system, it was
expedient to employ numerical simulation to demonstrate
threshold behavior, and in this case long-range feedbackwas seen
to have two distinct effects. At sufficiently high catalytic rates,
this feedback is capable of exciting an otherwise subthreshold
system. At lower catalytic rates, where the long-range feedback
does not significantly affect the threshold, it nonetheless has a
major effect in potentiating the response above the threshold. In
particular, oscillatory behavior observed in simulations of se-
quential feedback loops is abolished when a long-range feedback
is present.

Homeostatic systems of higher animals often involve complex
systems that center on proteolytic enzymes. Examples include
blood coagulation, inflammation, blood pressure regulation,
fibrinolysis, and complement. The majority involve enzyme
cascades, in which an enzyme (a protease in these systems)
produced in one step generates another enzyme in the next
step and then on to subsequent steps, and all require complex
controls to moderate the response.
Although this report centers on proteolytic systems, enzyme

cascades exist in other systems. An example is the cascade of
kinases that is initiated by the stimulation of G-protein-linked
hormone receptors. The controls in these cases, however, are
rather different, in that many enzyme-transformation steps in
metabolism are reversible; e.g., phosphorylation by kinases is
reversible by the action of phosphatases. In contrast, the key
property of proteases is that their formation from an inactive
precursor (the zymogen) is an irreversible step. Because of
this, protease inhibitors are usually required to inactivate the
enzymes that have been formed. Major examples of inhibitors
include antithrombin III (blood coagulation), a2-plasmin in-
hibitor (fibrinolysis), and Cl inhibitor (complement). The
importance of antithrombin III in controlling clotting, for
instance, is clearly demonstrated by the high incidence of
thrombosis in people who are partially deficient in this inhib-

itor (for a review of the coagulation system and its major
controls, see ref. 1). Another interesting area in which a
protease cascade and protease inhibitors are likely involved is
the dorsal-ventral patterning system in embryogenesis (2).

In addition to inhibitory control, proteolytic systems are
often controlled by negative feedbacks, in which product(s) of
a system inactivate something required in an earlier step. In
blood coagulation the major example is the system in which
thrombin is responsible for generating a protease called acti-
vated protein C, which then inactivates two cofactors that are
required for thrombin generation (factors Va and Vllla, see
below). Like antithrombin III deficiency, defects in this system
cause thrombosis.
The third major family of controls, which are the focus of this

report, are particularly common in blood coagulation but are
also known in other systems. They are the positive feedbacks,
in which an enzyme generated later in a cascade acts to
enhance or accelerate its own formation. Fig. 1 shows a
selected portion of the clotting system in simplified form,
starting with the generation of factor IXa, a protease formed
early in coagulation, and leading to the formation of thrombin,
the final protease of coagulation. Thrombin is responsible for
formation of the fibrin clot. Although there are just two
enzymes formed in this section of the clotting cascade-factor
Xa and thrombin-three positive feedbacks are involved in
regulating their formation.
A Protease Cascade. Let us examine the cascade sequence

in Fig. 1 more closely. The first stage is the generation of the
factor IXa-VIIIa complex. This involves the conversion of a
cofactor protein, factor VIII, to its active form, factor VIIIa,
and then the binding of factor VIlla to factor IXa, forming the
enzymically active complex. In the simplified model, these are
collapsed into a single activation step. Until factor VIII is
activated, factor IXa, although technically already a protease,
is essentially inactive. The factor IXa-VIIIa complex is the
active proteolytic enzyme that acts on factor X, a protein that
has no enzyme activity, to generate the enzyme factor Xa. The
generation of factor VIIIa from factor VIII can be catalyzed
by either the immediate product enzyme, factor Xa, or by the
distant product enzyme, thrombin.

In the second stage of Fig. 1, factor Xa is the enzyme that
acts on prothrombin to generate thrombin, but this too re-
quires a positive feedback on a cofactor protein, factor V. Not
until factor V is converted to its active form, factor Va, do we
form the factor Xa-Va complex, which is the active enzyme
complex. The major enzyme that activates factor V is throm-
bin, the immediate product of this reaction. Just as in the
previous loop, the generation of the factor Xa-Va complex is
collapsed into one step in the model.

If the enzymes of a positive feedback loop are not inacti-
vated, the loop will always eventually go to completion, and all
zymogens or precursors will finally be converted to their
enzyme products. The lag phases will vary according to the
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FIG. 1. Example of sequential feedback loops in blood coagulation.
The main reactions involved between the initial appearance of the
enzyme factor IXa and the generation of thrombin, the final enzyme,
are shown. Arrows: open, the action of an enzyme in catalyzing the
reaction pointed to; solid, the enzyme-catalyzed generation of an
active enzyme product; cross-hatched, the inhibition or inactivation of
an active enzyme. The long-range feedback action of thrombin is
shown by the open arrow exiting at the bottom and entering at the top.

conditions and kinetic parameters but not the final enzyme
yields (3). This behavior has recently been confirmed in both
experimental observations and numerical simulation of coag-
ulation in the absence of enzyme inhibitors (4, 5).

Normally, however, every active enzyme species-in Fig. 1, the
IXa-VIIIa complex, factor Xa, the Xa-Va complex, and throm-
bin-is subject to irreversible inactivation of one type or another.
The major mechanisms are (i) the action of inhibitors (e.g.,
antithrombin III), which irreversibly inhibit both factor Xa and
thrombin; (ii) the spontaneous decay of factor VIIIa (6, 7); and
(iii) the inactivation of the IXa-VIIIa and Xa-Va complexes by
activated protein C, which we mentioned above. In this situation,
analysis of the dynamic balance of enzyme generation and
inactivation predicts a major property of feedback loops that
include enzyme inhibition-threshold behavior (3).

Positive Feedback Systems. The coagulation example shown
is but one of a hierarchy of positive-feedback systems, as shown
in Fig. 2. In each of them, the activation or excitation of the
system depends on the size of the stimulus exceeding a
threshold value, and the response is nearly a step function of
the size of the stimulus supplied. It is useful throughout to
consider Zi, the initial zymogen or substrate species, as the
initial stimulus. To get the system going, a trace of enzyme El
must also be supplied.

Fig. 2, scheme A, shows the simplest feedback loop, where
a product enzyme directly activates its own precursor. Al-
though it is not included in Fig. 1, such "autolytic" feedback
occurs in coagulation in the activation of the initiating complex
of clotting, the tissue factor-factor VII complex, by its product
enzyme, tissue factor-factor VIIa (8). It also exists in inflam-
mation and in vitro coagulation, where the "contact" system
involves the activation of factor XII (Hageman factor) by its
direct product enzyme, factor XIIa (9).

Fig. 2, scheme B, shows a more complex situation in which
two enzymes are generated by each other. As can be seen in
Fig. 1, such loops exist in at least two places in coagulation.
Analysis and numerical simulation of such a loop has been
reported (3); it is included here to clarify the hierarchy.
The properties that arise when two feedback loops occur in

sequence are considered next. In Fig. 2, scheme C, two loops
are coupled by the product of the first loop (E2) catalyzing the
initial step in the second loop (E3 formation). Although we are
not aware that such a system exists in nature, this configuration
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FIG. 2. Hierarchy of feedback-loop systems. Schemes A-D are
illustrated. The coding of arrows is as described for Fig. 1. Zymogens
(inactive precursors of enzymes) are shown as Z, active enzymes are
shown as E, and inactivated (or "dead") enzymes are shown as D.
Catalytic rate constants are ,u = kcat/(Km + Z). Inhibition or inacti-
vation rates are defined by first-order rate constants, k. Thus, in
scheme A, El' = uEl-Zl - klEl. To maintain the correspondence
between schemes C and D, scheme D includes no Z3 species.

of reactions is amenable to exact mathematical analysis, as we
discuss below. It also serves to introduce a slightly different
situation, which does not yield well to conventional mathe-
matical treatment but closely approximates a scheme that does
exist in nature, presented in Fig. 2, scheme D. In this we see
that E2, the enzyme product of the first loop, serves two very
different functions: (i) an enzyme catalyzing the feedback
activation of Zi in the first loop and (ii) a substrate or
pseudozymogen in the second loop, being the precursor of the
active enzyme E3. The general form of this coupled-loop
system is based on the section of the coagulation cascade
illustrated in Fig. 1.

In addition to the properties of systems involving sequential
positive feedbacks, we also investigate, mathematically and by
numerical analysis, the role of long-range feedbacks and their
effect on the response. The prime long-range feedback in
clotting is the activation of factor VIII by thrombin (10). This
feedback spans two stages in the clotting cascade (Fig. 1) and
is shown diagrammatically as the long-range action of E4 in
activating Zi (schemes C and D).
Although we focus in this paper on feedbacks in proteolytic

cascades, threshold behavior is by no means unique to positive
feedbacks nor even to enzyme systems. The key feature is the
kinetic balance of response generation and its decay or inhi-
bition. For example, the density-dependent growth of algae is
inhibited by grazers, but if the cell division rate exceeds a
certain threshold, cell counts will suddenly surge before de-
clining again (11). For neuron firing, if a threshold voltage is
exceeded in an otherwise quiescent system, an action potential
is initiated that manifests itself as a large excursion in mem-
brane potential (12). In infectious diseases, the population of
infectives is inhibited by death and recovery, but there is a
threshold density that initiates an epidemic that is dependent
on the intrinsic infection rate (13). Although the details
obviously differ, there are nonetheless clear parallels between
the general kinetic architecture of such systems and the
positive feedbacks of enzyme cascades.

In the section below,Analysis, we analyze threshold conditions
for activation of the systems illustrated in schemes A-C. In
particular, we will see the significance of a long-range feedback
in activating an otherwise subthreshold system. After this, in
Numerical Simulations, scheme D is subjected to a range of
computational trials in an attempt to assess the validity of the
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mathematical results obtained for the more artificial model in
scheme C. It will be seen that the general conclusions about
long-range feedback are confirmed, with some additional and
surprising insights into a possible additional role in proteolytic
cascades.

Analysis

Reaction Kinetics. In a simple enzyme-catalyzed reaction,
the rate of conversion of a substrate species Z by an enzyme
E is generally a hyperbolic function of the concentration of Z.
Let prime (') denote differentiation with respect to time, Z' =
-kcatEZ/(Km + Z), where kcat is the catalytic rate constant for
the reaction, Km is the Michaelis constant, and the concen-
trations of enzyme and substrate are shown by italic type. (We
use Z because the precursors of proteolytic enzymes, the
substrates in these models, are known as zymogens.) It should
be pointed out that this Michaelis-Menten formulation is
violated in a feedback system in which a feedback-activating
enzyme exceeds the concentration of its substrate. We em-
phasize, however, that our focus is on the threshold conditions
that lead to the initial onset of activation, rather than the
subsequent dynamics of bulk enzyme generation.
We assume that the various active enzyme species, E, are

inactivated or decay in first-order fashion, E' = -k-E. The
products of enzyme inactivation or decay are denoted by D
(mnemonic for "dead", or inactive, enzyme). In natural sys-
tems, first-order kinetics are commonly found when an irre-
versible inhibitor is responsible, and examples have already
been mentioned.

Concentrations and Units. Although much of the analysis is
valid for any system, models have been set up to correspond
approximately with known physiological cascades, in which the
concentrations of the precursor (substrate) species increase
from top to bottom, and stimulus amplification is a key feature.
The units of concentration and time in both analysis and
numerical simulations are arbitrary; although a very rough
approximation to the coagulation system may be obtained if
the concentration unit is assumed to be nanomolar, and the
time unit is a minute.

Autolytic Feedback: Scheme A. The simplest feedback loop
is an enzyme El that catalyzes its own formation from a
substrate Zl, with inhibition of El leading to Dl. In accor-
dance with the assumptions made above, the differential
equations that model this are

El' = kcatElhZl/(Km + Zl) - kjEl
Zl'=-kcatElZl/(Km + Z4) [1]

We may linearize Eq. 1 about the equilibrium El = 0, Zl =
Z1o, where Zlo is the initial concentration of Zi. This reduces
to the single equation

El ' = ,jxZl oEl - kEl, [2]

in which pul is the constant kcat/(Km + Zlo). As long as an initial
trace of El is provided to initiate the loop, El is evidently
generated-the system fires, or ignites-if the following
threshold condition is met:

0 = ptiZlo/k, > 1. [3]

Otherwise El decays to zero without first increasing. A similar
approach will be utilized below as we extend this simple
prototype to more complicated feedback loops.
Scheme B. The reactions in scheme B can be similarly

expressed by the following differential equations:

El' = kcat,1E2-Zl/(Km,1 + Zl) - kjEl,

E2' = kcat,2ElZ2/(Km,2 + Z2) - k2E2,

Z' = -kcat,lE2ZlJ/(Km,l + ZJ),

Z2' = -kcat,2ElkZ2/(Km,2 + Z2).

These equations are linearized about the equilibrium state
defined by Zl = ZJo, Z2 = Z20 (the initial values of Zl and
Z2) and El = E2 = 0, to obtain the equations

El ' = LZlOE2 - kjEl
E2' = x2Z2oEl - k2E2. [4]

As in the previous scheme A, the constants pki are kcat,i/(Km,
+ Zio) for i = 1,2. The eigenvalues of this linear system are

A1,2
(ki + k2) + _k k2)_ + l2ZloZ20_ [5]

A2 is always negative but the first eigenvalue A, is positive
whenever the threshold condition

0 = (Altk2ZloZ2o)/(k1k2) > 1 [6]

is satisfied. Indeed, the product of the eigenvalues is negative
if and only if Eq. 6 holds, and in this case the origin of theEJ,E2
plane is an unstable equilibrium. This condition is the analogue
of the corresponding excitation criterion for scheme A.
A glance at the actual solutions, for initial valuesEl0> 0 and

E20 = 0, would show that El quickly decays to zero when Eq.
6 is violated, whereas a small amount of E2 is initially
generated (by the initial trace of El) before it too goes to zero.
On the other hand, when Eq. 6 is satisfied, there is an initial
small dip in El, caused by the lag in E2 formation before
feedback formation of El. By analyzing this model further, one
can obtain expressions for the total yields of El and E2-
namely, the amount of substrate that is converted (3).
Scheme C. Next we consider the extended reaction system in

scheme C. This begins to approach the actual feedback cascade
seen in scheme D. Included here is the possibility of long-range
activation in which E4 feeds back to generate El from Zi.
The linearized equations that correspond to scheme C are

obtained in the same manner as in the previous models by
perturbing about the equilibrium state in which Ei = 0 and Zi
are at their initial values for i = 1, . . . 4. This leads to

El' = A1Zl0E2 - k1El + p5Z1lE4,

E2' = /jt2Z20El - k2E2,

E3' = 23Z3042 - k3E3 + A3Z3oE4,
E4' = A4Z40E3 - k4E4. [7]

The Jacobian of the linearized system (Eq. 7) is

-ki IL&Z0o 0 I.L5Zo7
2Z20 -k2 0 0

J= °0 L23Z30 -k3 I¾Z30 '

O 0 L4-7Z40 -k4
[8]

and the characteristic equation for J is a quartic polynomial,

f(A) = [(A2 + A(k1 + k2) + (k1k2 - t1,u2ZlOZ20)]
x [(A2 + A(k3 + I4) + (k3k4 - p,394Z3OZ40)] - C = 0, [9]

where C is the constant ,&2tL23tL495ZloZ2OZ3OZ40.
Consider first the case of no long-range feedback, when C =

0. It is readily seen that all eigenvalues are real and that the
only possibility for a positive eigenvalue hinges on the two
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factors in Eq. 9, the first of which is the characteristic poly-
nomial for the single-loop model treated earlier. Thus the
double-loop system is activated if the threshold condition (Eq.
6) is valid or if a similar condition is valid for the second loop:

= >12Zlo_2o > 1 or 02 = A3tk4k3° ° > 1.
k1k2 > oO= k3k-4 [10]

To exhibit the impact of long-range feedback, we now assume that
all the eigenvalues are negative when C = 0 or, to put it another
way, that 01, 2 < 1. When C > 0, the polynomial is shifted
downward, and ultimately, when C is large enough, there will be
a positive root, which demonstrates that activation is possible
through long-range feedback (the system is rendered unstable)
even if the system is stable (i.e., subthreshold) without feedback.
A necessary and sufficient condition that C be just large

enough is that f(A) have one positive and three negative real
eigenvalues, or one positive and one negative real with two
complex eigenvalues. This requires the constant term inf(A) to
be negative and it leads to the threshold condition

0= ILi23I4I5Z1oZoZ3oZ40 > 1 [11](klk2 - lAI2Z10Z20)(k3k4 - 347Z30Z40)

Note that Eq. 11 is satisfied when tL5 is large enough even if
neither threshold condition separately (Eq. 10) is met. If only
one of the conditions in Eq. 10 is true, then the inequality in
Eq. 11 is reversed. Incidentally, the denominator in Eq. 11 can
be simplified by observing that it is simply the product of the
eigenvalues in the case when p5 is zero.
By computing the appropriate eigenvectors corresponding

to Eq. 9, the solution to Eq. 7 is exhibited in vector notation
as Au where A is a matrix of the form

all a12 0 0

A= a21 a22 0 0
a3l a32 a33 a34
a41 a42 a43 a44

with all aij nonzero, and u is a vector whose components are
exponentials in Ait. This shows that the activation threshold, 02
> 1, for the second loop is always met whenever 01 > 1, but
the reverse is not necessarily true. Thus, the first loop will
always ignite the second loop, but not always vice versa.

Similar conclusions can be reached regarding the double
loop in scheme D. However, linearization for this more
complex model, in which E2 plays the role of an active enzyme
in the first feedback loop but is the inactive precursor-or
pseudozymogen-of E3 in the second, obscures the role of a
long-range feedback. To circumvent this difficulty, we utilized
a numerical simulation of the corresponding differential equa-
tions for model D and showed that here too an otherwise stable
double loop can be excited in the presence of long-range
feedback. This is taken up in the next section.
To infer something of the possible behavior of E3 when E2

assumes the surrogate role of zymogen, we isolated out the
second loop, allowing E2 now to be a time varying coefficient
in a model that only generates E3 and E4. An initial phase of
the reaction is considered during which E2 is still in a growth
mode as a result of activation in the first loop, with a roughly
linear rise in concentration, and by assuming Z4 to be in excess
over E2 in this early phase so that it can be considered initially
a constant Z40. This provides the equations

E3' = p3E2*E4 - k3E3,

E4' = tkZ4oE3 - k4E4,

E2' = s - 3E2*E4,[

where s is the rate of E2 input from the first loop. This system
has equilibria E3 = s/k3, E4 = S/,U3C, and E2 = c, where c =
k3k4/,u31i4Z40 and the characteristic equation for the Jacobian
of the linearized equations about this equilibrium is the cubic

A3 + A2(k3 + k4 + s/c) + As(k3 + k4)/c + k3k4s/c = 0.

All the coefficients of the polynomial are positive and an
examination of the discriminant reveals a range of s values for
which there are one real and two complex roots in the left-half
plane. In this case, the solutions decay in an oscillatory fashion.
The numerical simulations of the next section verify this kind
of response can occur in the absence of a long-range feedback.

Numerical Simulations

To this point the analysis has centered on the determination of
the threshold conditions for each of the systems considered,
i.e., the question of whether a system will initially fire. Nu-
merical simulation allows us not only to examine the threshold
question but also to go further and examine the later time
courses of enzyme generation. For the purposes of this theo-
retical study, we simplify simulation by assuming that each
enzyme-catalyzed reaction is described by simple second-
order, rather than Michaelis-Menten, kinetics; i.e., E' =
,uZE, where ,u = kcat/Km (cf. Eq. 1 et seq.). This is valid for
Km >> Z,E.

Schemes C and D were solved numerically by using Gear's
method for stiff systems (DIFSUB; ref. 14), with a per-step
tolerance, E < 10-6, and double precision throughout.
Scheme C. The differential equations for scheme C are as

follows:

ZJ' =-(,L1E2 + p5E4)Z1, El' = (pI,E2 + p5E4)Z1 - k1El,

Z2' = -pu2El Z2, E2' = g2ElZ2 - k2E2,

Z3' = -(p2E2 + A3E4)Z3, E3' = (23E2 + A3E4)Z3 - k3E3,
Z4' = -p4E3-Z4, E4'= A4E3-Z4 - k4E4.

The long-range feedback of E4 on Zi is defined by the g5E4
term in the expressions for Zl' and El'. The two feedback
loops of this model are linked at the activation of Z3 by E2,
which is defined by the I.23E2 term in the expressions for Z3'
and E3'. Initiation of the system requires that either El or E2
is initially supplied. In all simulations, a trace of El is provided
(Elo > 0), so that Elo/(El0 + Zlo) = 0.001. It is pertinent to
note that at least in blood coagulation, it has been clearly
shown that trace, or idling, levels of clotting enzymes are
always present in the blood plasma (15).
Scheme D. Just as in scheme C, an initial trace level of El

is provided so that Elo/(Elo + Zlo) = 0.001. To initiate the
second feedback loop of scheme D, some E3 must similarly be
either initially provided or generated directly (not by feed-
back). Of various possible means available, we have specified
that El, in addition to catalyzing the formation of E2, also
generates E3, albeit at a much lower rate. The ratio of these
rates of E3 and E2 generation by El is defined below by the
constant C, which in all our simulations equaled 0.001. In
physiological terms, this is equivalent to saying that E2, when
generated, possesses a trace level (0.1%) of E3 activity.
The differential equations for scheme D are then

ZJ' = -(pL1E2 + A_sE4)Zl,
El' = (y1E2 + pjE4)ZI - kEl1,

Z2' = -12(l + C)EIZ2,

E2' = p2ElZ2 - g3E4-E2 - k2E2,
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E3' = 12C-El*Z2 + g3E4-E2 - k3E3,

Z4' = -pgE3Z4,

E4' = 4E3-Z4 - k4E4.

Results. Analysis of scheme C predicted that under certain
parameter conditions, the long-range reaction (g5 > 0) may
permit the excitation of an otherwise subthreshold system (Eq.
11), and this has been confirmed by numerical simulation for
stimulus sizes close to the threshold (Fig. 3). In this section, we
wished to determine whether the same behavior holds for the
more complex scheme D.

Numerical simulation of scheme D confirms that, just as in
scheme C (Eq. 11), the threshold for the first loop controls the
threshold of the system. Under the particular combination of
parameter values and initial conditions we have studied,
excitation of the first loop (E2 formation) always leads to
excitation of the second (E4 formation), just as in scheme C
(data not shown). Numerical solution also shows that, as in
scheme C, large /J5 values in scheme D can enable activation
of the system, but only when the stimulus, ZJ, is close to the
threshold. For more feasible lower values of /A5, the existence
of a long-range feedback does not significantly lower the
threshold of a system.
A more interesting consequence of long-range feedback

action as seen in Fig. 4A shows the generation of E4 at various
levels of the initial stimulus Zl in the absence of any long-range
action of E4 on Zl (w5 = 0). At and below the threshold, no
significant E4 is generated. However, above the threshold, a
cycle of oscillation occurs in E4 before the response finally
decays. In contrast, when there is a long-range feedback (,U5 >
0; Fig. 4B), only one sharp spike of E4 generation is observed;
and this significant change in the form of the response is
observed even at low pW values, where the threshold itself is
essentially unaffected. While other mechanisms may be in-
volved, the shift from oscillatory to nonoscillatory behavior
may be a result of the increased rate of E2 generation that
occurs when ,U5 > 0, as was suggested by the theoretical
analysis of scheme D.
Although we have not attempted quantitative simulation of

the corresponding section of the clotting system (Fig. 1), it is
useful to relate the present studies of model systems to
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coagulation. It has been known for some time that factor Xa
can activate factor VIII, and in both pure experimental systems
and numerical simulations, this enables the firing of the first
loop in Fig. 1 (3, 16-18). Experiments in whole blood plasma
systems, however, have shown that significant generation of
thrombin by the second loop is almost entirely dependent on
the activation of factor VIII by thrombin (19). In Fig. 4, we see
that such a result is feasible, since even when both feedback
loops are excited, peak E4 generation in the absence of
long-range feedback may be relatively small and diffuse in
time. In contrast the peak yield of E4 is strongly potentiated
by the long-range feedback. To the extent that scheme D
mimics an actual cascade (Fig. 1), we know that as long as the
threshold of the first loop is exceeded, long-range feedback will
ensure that activation takes place rapidly and decisively.
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