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Abstract

In this article, we couple the geographic variation in 127 single-nucleotide polymorphism (SNP) frequencies in genes of 46
enzymes of central metabolism with their associated cis-expression variation to predict latitudinal or climatic-driven gene
expression changes in the metabolic architecture of Drosophila melanogaster. Forty-two percent of the SNPs in 65% of the
genes show statistically significant clines in frequency with latitude across the 20 local population samples collected from
southern Florida to Ontario. A number of SNPs in the screened genes are also associated with significant expression
variation within the Raleigh population from North Carolina. A principal component analysis of the full variance–
covariance matrix of latitudinal changes in SNP-associated standardized gene expression allows us to identify those
major genes in the pathway and its associated branches that are likely targets of natural selection. When embedded in a
central metabolic context, we show that these apparent targets are concentrated in the genes of the upper glycolytic
pathway and pentose shunt, those controlling glycerol shuttle activity, and finally those enzymes associated with the
utilization of glutamate and pyruvate. These metabolites possess high connectivity and thus may be the points where flux
balance can be best shifted. We also propose that these points are conserved points associated with coupling energy
homeostasis and energy sensing in mammals. We speculate that the modulation of gene expression at specific points in
central metabolism that are associated with shifting flux balance or possibly energy-state sensing plays a role in adap-
tation to climatic variation.
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Introduction
A goal of modern evolutionary genetics should be to integrate
our understanding of the causes of genetic and molecular
variation among genes into larger functional contexts. The
promise of exploring adaptive natural selection on all genes in
the genome (Clark et al. 2007; Greenberg et al. 2008; Andres
et al. 2009; Liti et al. 2009) has led to the expectation that we
can predict how the inherent roles, properties, network, and
pathway context of enzymes determine their relative partic-
ipation in adaptive evolution (Lu and Rausher 2003; Cork and
Purugganan 2004; Flowers et al. 2007, 2009; Alvarez-Ponce
et al. 2009, 2012; Obbard et al. 2009; Ramsay et al. 2009;
Jumbo-Lucioni et al. 2010; Eanes 2011; Clark et al. 2012).
Using interspecific and intraspecific contrasts, it is claimed
that a significant portion of the amino acid replacements
among Drosophila species are mutations involved in adaptive
change (Smith and Eyre-Walker 2002; Shapiro et al. 2007), but
little progress has been made in defining those context-de-
pendent properties that determine the likelihood that a given
gene participates in adaptive response. Although much of the
focus has been on amino acid mutations, where functional
effect is ambiguous in most cases, only a handful of studies

have focused on geographic variation in expression polymor-
phism (Whitehead and Crawford 2006; Fraser et al. 2010;
Fraser 2013).

Drosophila melanogaster is one of the best models with
which to explore natural selection in a geographic and eco-
logical context. In temperate regions, the population is envi-
sioned as a seasonal metapopulation, where populations die
back during the winter followed by local reestablishment of
populations in the spring that are seeded through survivors in
basements, barns, and compost piles, and thus contributing
to a local genetic continuity through time (Ives 1945, 1954;
Reaume and Sokolowski 2006; Shpak et al. 2010; Garrigan
et al. 2010). This local survival of populations has led to the
expectation that there are adaptations that are associated
with the colonization of cosmopolitan populations that
span a wide range of environments from subtropical to tem-
perate and that often are associated with seasonal variation in
seasonal nutrient availability. Many adaptations must involve
changes in metabolic architecture, as energy tradeoffs are
known to shift along the climatic gradient. The presence of
latitudinal clines in the frequencies of alleles in many meta-
bolic genes (Sezgin et al. 2004) suggests this spatial-seasonal
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model is plausible for studying genetic response in a defined
context, namely the pathways of central metabolism. There
has been considerable progress in describing variation at the
full genome level in D. melanogaster (Clark et al. 2007;
Kolaczkowski et al. 2011; Vishnoi et al. 2011; Fabian et al.
2012). These studies have explored genome-wide patterns
of differentiation at very low resolution across the entire
genome at geographic range extremes and matched them
to coarse functional classes but have not examined patterns
of variation in finer geographical detail in well-defined func-
tional contexts.

The goal of this study is to evaluate clinal variation in
single-nucleotide polymorphisms (SNPs) associated with
cis-expression variation in central metabolic genes across
D. melanogaster populations spanning a seasonal climate
gradient in the eastern US and use this knowledge to pre-
dict geographic changes in central metabolic pathway ar-
chitecture. It is expected that this can be used to identify
gene targets and mechanisms of adaptation. The pathway
represents the central flow and partitioning of energy as
nutrient levels change (Gershman et al. 2007), and it is
likely that this partitioning varies geographically with
those life history challenges associated with somatic main-
tenance and reproduction. Moreover, aside from simple
energy partitioning, it is well known that particular me-
tabolites of central metabolism play key signaling roles in
energy-state sensing. It follows that variation in expression
of associated enzymes in close pathway proximity to these
metabolites may respond to changing selection pressures
to reset signal levels that couple nutritional state to overall
downstream metabolic and stress responses (Moore et al.
2003; Kim and Dang 2005; Kim et al. 2008; Rathmell and
Newgard 2009; Wellen et al. 2009).

Results

General Summary of Clines and Expression
Quantitative Trait Nucleotides

We used bulk pyrosequencing to examine allele frequencies
for 127 SNPs in 46 genes of central metabolism across 20 local
populations spanning a latitudinal gradient from southern
Florida to Ontario. SNP selection was not intended to be
exhaustive but to use the bulk pyrosequencing approach to
screen several SNPs per gene. The number of SNPs screened
per gene depended partly on the resident variation, which
varies considerably among loci. For example, six genes possess
a single screened SNP, and several have as many as seven
screened SNPs; the average number per gene is 2.6 SNPs.
Each SNP was tested for clinal variation by a linear regression
of allele frequency against latitude. We find that 53 of 127
SNPs are significantly clinal in 30 of 46 genes at �< 0.05. We
might have expected six to seven significant SNPs at this type
I error rate, so the prevalence of clines in these genes is clear.
Our tests of SNPs within genes are not statistically indepen-
dent, and the possibility of reporting a gene with a significant
cline simply because of type 1 error obviously increases with
the number of SNPs sampled per gene. We are unable to test
for a gene-wise error by controlling for the linkage correlation

because the bulk pyrosequencing produces only a mean fre-
quency estimate for each population. Overall, using a value
cutoff of q< 0.04 (Storey and Tibshirani 2003) that takes into
account our multiple tests of clinal significance (but ignores
within gene linkage disequilibrium), we still predict a signifi-
cant cline in one or more SNPs in 30 of 46 genes (supplemen-
tary table S1, Supplementary Material online).

Among genes, there is evidence for cis-expression effects
for many of these SNPs. Our SNPs were selected for pyrose-
quencing focusing on amino acid changes and those SNPs
acting best as proxies for haplotype structure. They were not
preselected for cis-expression association. Many potential
SNPs cannot be screened because they possess closely
linked polymorphisms that overlap pyrosequencing primers
or are in close proximity and interfere with the pyrosequen-
cing estimate. Finally, a small proportion fails for unknown
reasons.

For each screened SNP, we tested association with expres-
sion variation using a nested analysis of variance (ANOVA) of
the Affymetrix Drosophila 2.0 array expression data reported
in Ayroles et al. (2009) and the original 37 sequences of the
Drosophila melanogaster Genetic Reference Panel (DGRP)
first released in 2009 (Mackay et al. 2012). We observe cases
of significant expression quantitative trait nucleotides
(eQTNs) in 21 genes if we ignore nonindependence and mul-
tiple tests. Using multiple test criteria within each gene to
control for a gene-wise error rate (Stranger et al. 2007), we
find that 12 of 46 genes possess at least one significant eQTN
in the coding region of one or both sexes using the FDR of
10%. Ten of these 12 genes possess a significant cline in the
most significant eQTN (supplementary table S1, Supplemen-
tary Material online). We should note that the relative allelic
expression variation for several genes is not subtle. For exam-
ple, in the DGRP, the relative differences in expression asso-
ciated with the SNP alleles in Raleigh, NC, at Gpdh and Got2
are 47% and 29%, whereas those associated with the alleles at
Idh-�, Hex-A, and Pgd are 18%.

For each gene, the SNP with the largest cis-acting effect was
used with the SNP allele frequency to predict, assuming ad-
ditivity, the mean gene expression expected for each gene and
each collection locality (see Materials and Methods). This
matrix of population-by-gene mean expression was used in
the principal component analysis (PCA).

PCA

The PCA of the full geographic-expression data of 45 genes
(Adh was removed) allows us to identify the major patterns of
across population gene expression variation and covariation
along the eastern US climatic gradient. We have carried out
the PCA on the variance–covariance matrix of standardized
eQTN expression. High gene loadings on the first principal
component will reflect those genes with both strong allele
frequency variation and the large average allelic effects on
expression. The percent variances associated with the first
three PCs were 50%, 12%, and 8%, respectively. Table 1
shows the individual gene expression loadings associated
with the first three principal components, as ranked by

2033

Metabolic Adaptation in D. melanogaster . doi:10.1093/molbev/msu146 MBE

,
,
eQTNs
,
7 
6
-
7
supplemental 
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu146/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu146/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu146/-/DC1
.
Supplemental 
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu146/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu146/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu146/-/DC1
while 
Methods 
Materials
rincipal 
omponent 
nalysis
principal component analysis
-


gene loadings on the first component. SNPs with significant
allele effects on expression are footnoted. They show, by sign
respectively, decreasing and increasing mean expression with
increasing latitude. The population scores for the first PC axis
shows a strong correlation with latitude (fig. 1; r = 0.833,

P< 0.0001). This is because the most of the variance–covari-
ance among genes in mean population expression is associ-
ated with the latitudinal distribution of population allele
frequencies. The six genes with the highest positive loadings
and significant eQTNs are Men-b, Gpdh, Got-2, Gdh, Pdk, and
Acon. The five genes with the most negative loadings and
significant eQTNs are Idh-�, Pgd, Tpi, UGPase, and Hex-A.

To show overall patterns of increased and decreased
expression, these gene loadings are placed into a central–
peripheral metabolic pathway context in figure 2. The sup-
port associated with each step is scaled by the format of the
arrow and the direction of expression change with latitude is
indicated by color (see fig. 2).

Discussion
The goal of this study is to identify steps or nodes in the
central and peripheral metabolic pathway of glycolysis
where SNP-associated expression variation is an apparent
target of natural selection in response to environmental cor-
relates of latitude. In the apparent absence of isolating struc-
tures, geographic clines have frequently been interpreted as
evidence of selection and adaptation to climate and associ-
ated variables. Our question is whether adaptation associated
with the clines involves the modulation of gene expression in
this pathway, and whether this modulation is focused on
particular nodes, networks, or genes. In this study, we use a
two-step approach where both latitudinal patterns and ob-
served SNP effects on expression are integrated and then
evaluated in the context of the central metabolic pathway
to identify those steps that are most likely to be involved in
climatic adaptation and suggest a mechanism.

Several steps within this well-described pathway predict
interesting shifts in metabolic architecture (highlighted in
fig. 2) that we propose could reflect selection on either of
two related phenotypes. The first phenotype is a shift in flux
balance or the partitioning of flux. The genes most strongly
associated with clinal climatic change are those linked with
metabolites with the highest connectivity in the overall met-
abolic network. Wagner and Fell (2001) in assessing the net-
work architecture of central metabolism in Escherichia coli

Table 1. Gene Loadings on the First Three Principal Components of
the SNP Interpopulation Expression Variance–Covariance Matrix.

Gene I II III

Idh-b �0.628a 0.083a 0.131a

Pgd �0.244a 0.364a
�0.176a

Tpi �0.113a
�0.101a

�0.044a

UGPase �0.106a
�0.022a

�0.083a

Hex-A �0.102a 0.102a 0.051a

Idh-W �0.075b 0.113b
�0.067b

G6pd �0.062b 0.092b 0.040b

kdn �0.061b 0.053b
�0.029b

Pepck �0.041a 0.065a
�0.003a

Pglym78 �0.038 �0.085 �0.028

Gapdh1 �0.035b 0.016b
�0.041b

Pyk �0.032c 0.028c
�0.015c

Pgi �0.030 0.028 �0.035

Pgm �0.025b 0.018b 0.023b

fbp �0.025a
�0.008a 0.028a

SdhD �0.013 �0.032 0.007

Pfrx �0.013 �0.003 �0.039

Gpt �0.013 0.000 0.020

Idh-a �0.009 �0.003 0.009

Hex-C �0.009b
�0.103b

�0.008b

TA �0.006c
�0.016c 0.006c

Got-1 �0.002 �0.001 �0.018

Idh 0.003b 0.050b
�0.164b

Pgk 0.004c
�0.001c 0.004c

Men 0.008a
�0.063a 0.116a

Pgls 0.009 �0.008 0.001

Treh 0.009 0.001 0.002

Gpo-1 0.020a 0.014a
�0.034a

Pfk 0.024 0.006 0.043

Eno 0.032 �0.040 0.002

Pdp 0.037c 0.008c 0.020c

Tps1 0.039c 0.072c 0.006c

Aralar 0.043b
�0.035b 0.039b

KgdE1 0.046b
�0.101b 0.082b

Mdh2 0.066c 0.034c 0.058c

ACC 0.076b 0.148b 0.025b

Irp-1B 0.087a
�0.049a 0.073a

Pdh 0.087b
�0.225b 0.031b

Acon 0.096a
�0.003a 0.125a

PC 0.131a 0.050a
�0.034a

Pdk 0.175a 0.040a
�0.095a

Gdh 0.219a
�0.128a 0.644a

Got-2 0.302a 0.413a
�0.427a

Gpdh 0.337a 0.599a 0.365a

Men-b 0.382a
�0.372a

�0.328a

aBoth significant cline and allelic effect.
bSignificant allelic effect only.
cSignificant cline in gene only.

FIG. 1. Relationship of population projections on the first axis and
latitude.
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(similar in metazoans) placed glutamate and pyruvate first
and second in their connectivity rank, followed by CoA,
2-oxglutarate, glutamine, and aspartate (see fig. 2). Gdh,
Got2, and Idh-� directly affect glutamate and 2-oxglutarate,
and Got2 also affects aspartate well. Pdk, PC, and Men-b all
impact the metabolism of pyruvate. Wagner and Fell (2001)
did not address the energy cofactors, NAD/NADH, NADP/
NADPH, and ATP/ADP because those possess even greater
connectivity. However, Hex-A, Pgd, Gdh, Gpdh, and Gpo-1 use
these cofactors that reflect energy state. This observation
raises the speculation that expression selection for genes at
the nodes with the highest connectedness is central to chang-
ing metabolic flux balance, and it is expression variation in

these genes that is responding to selection along the cline to
shift this balance.

A second phenotype could be the cellular levels of the
highly connected metabolites themselves and their effect
on energy-state sensing in response to changing nutrient
levels. The nutrient response networks are early features of
evolution and appear widely conserved. In these networks,
metabolite levels trigger downstream transcriptional changes
to shifting nutrient input. The detection of nutrient state and
its response generally acts through the levels of metabolites
that are most reactive to nutrient input. For example, in
plants where light, temperature, and CO2 affect photosynthe-
sis, it is the sugars that signal energy levels and initiate
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FIG. 2. The central metabolic pathway and its immediate branches. The color reflects the direction of expression change with increasing latitude (green
increasing, red decreasing). Thick arrows are genes with both significant clines and significant expression effects. They possess high PCA1 loadings. Thin
colored lines have significant expression effects but no significant clines. Dotted lines have nonsignificant expression effects but may or may not have
significant clines. The latter two groups are simply suggestive of change and direction. Black solid lines (ATPCL) are not available. The red and yellow
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highest connectivity are boxed. The results for Men, Gpt, and Pfrx are not included to prevent undue complexity.
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downstream gene transcription that determines plastic
growth responses (e.g., Heisel et al. 2013; Xiong et al. 2013).
Many studies in mammals have shown that perturbation of
the enzymes of the central metabolic pathway sets energy
state and determine insulin secretion especially through mi-
tochondrial function (e.g., Guay et al. 2007). In D. melanoga-
ster, there are comparable pancreatic models of energy- or
nutrient sensing that involve neurosecretory cells (Toivonen
and Partridge 2008; Nassel and Winther 2010).

This introduces the hypothesis that natural genetic varia-
tion in key metabolic enzymes may play a role not only in
shifting flux balance but also in setting homoeostatic limits,
acting as “energy-stats” that determine the nutritional
set points that trigger downstream responses of the well-
established sensing pathways in Drosophila (Baker and
Thummel 2007; Savraj 2009). If the sensing mechanisms are
universally conserved around the same common metabolites,
then we should have in Drosophila the same interest in the
enzymes associated with cofactor shuttles (see Eto et al.
[1999], as well as certain branches that share metabolites
with high connectivity [e.g., glutamate and pyruvate]). As
discussed in more individual detail below, these shifts
should involve the hexokinases, those enzymes of the NAD/
NADH cofactor or redox shuttles, and those enzymes at the
glutamate node. Moreover, enzymes with function in
the mitochondria also hold special interest because of well-
established signaling responses to nutrient levels associated
with mitochondrial function (Wiederkehr and Wollheim
2006; Baltzer et al. 2010; Cho et al. 2011). Therefore, we
might propose that expression variation observed in genes
encoding these enzymes may respond to the climatic varia-
tion along a latitudinal tropical-temperate gradient that varies
seasonal and locally in the availability of nutrients. The un-
paralleled biochemical and physiological knowledge of many
steps in the central metabolic pathway allows a functional
interpretation of the consequences of expression variation.

Overall, in the upper glycolytic pathway and its branches,
there appears to be coordinated decreases in expression with
latitude. Both of the principal hexokinase genes, Hex-A and
Hex-C (Duvernell and Eanes 2000), show lower SNP-associated
expression with increasing latitude, as do the enzymes of the
pentose shunt (G6pd, Pgd, TA), Tpi, fbp, Gapdh1, and UGPase.
These reductions along with reduced Pepck suggest an overall
decrease in gluco- and glyconeogenesis with latitude with an
increase in fatty acid synthesis. The hexokinases have singly
emerged as having jack-of-all-trade function in both animals
and plants (Cho and Yoo 2011) and especially in the roles of
nutrient signaling associated with glucose and glucose-
6-phosphate (Moore et al. 2003; Cho and Yoo 2011). The
role of glucokinase mutations in the misreading of glucose
sensing in humans is very well established; many regulatory
mutations in glucokinase reset the blood glucose levels where
insulin in secreted, creating hypo- and hyperglycemia
(Matschinsky 2005; Matschinsky et al. 2006).

Here, the two major genes (Gdh and Got2) for enzymes
coupled to glutamate metabolism in the mitochondria both
show increases in population-level expression with latitude.
Glutamate is important because it stands at the intersection

of carbohydrate and amino acid metabolism and will clearly
reflect nutrition status (Brosnan 2000). Both enzymes control
the entry of amino acids into carbohydrate and energy me-
tabolism. It is well established that glutamate is an important
signaling molecule for energy state (Karaca et al. 2011).
Moreover, regulatory mutations in human GDH are also as-
sociated with hyperinsulinism; they reset energy-state signal-
ing associated with amino acid levels (Stanley 2004). Given
GDH’s regulatory sensitivity to redox state, the parallel and
elevated level of expression with the glycerol shuttle genes
(Gpdh and Gpo1) is particularly intriguing.

The third general observation is the increasing expression
of Gpdh and Gpo-1 with latitude. Both enzymes are associated
with the essential glycerol shuttle that transfers NAD/NADH
equivalents into the mitochondria for subsequent use in ox-
idative phosphorylation. This is the major cofactor shuttle in
insects (O’Brien and MacIntyre 1972; MacIntyre and Davis
1987; Carmon and MacIntyre 2010) and should control the
redox balance in the mitochondria. The essential role of the
NAD/NADH shuttles in nutrient sensing in mammals has
been noted repeatedly (Eto et al. 1999), and it is well estab-
lished that starvation in Drosophila significantly changes the
redox ratio upward (Zhu and Rand 2012). Furthermore, by
setting NAD/NADH ratio, this shuttle should couple meta-
bolic status with transcriptional control through the sirtuins,
the NAD-dependent histone deacetylases (Imai et al. 2000)
shown to affect chromatin silencing and impact life span in
number of organisms (Imai 2011). Both members, Gpdh
and Gpo-1, show enhanced activity, but this does not predict
direction, just an increase in shuttle function in the north.

Although a number of robust and novel connections
emerge from our analysis, we note several caveats. The
whole body measures of adult expression make it difficult
to predict functional responses for genes whose enzyme
products possesses roles in many tissues and often are func-
tionally and physiologically reversible, possessing both energy
producing and energy consuming roles (e.g., PGI). Other
genes are more specialized (e.g., PEPCK in the fat body) and
are effectively irreversible in those tissues, so the predicted
response is less equivocal. Nevertheless, as first entries into
these questions, we believe that we have recovered informa-
tive signal from the expression that is averaged across many
tissues.

In some genes, there are undoubtedly SNPs with stronger
expression effects that we have not screened. Although
relatively comprehensive, the SNPs we evaluated with bulk
pyrosequencing are not random. We emphasized coding re-
gions, SNPs that are amino acid replacement polymorphisms,
and those that are associated with haplotype structure. They
were not initially targeted for expression effects. It is possible
that although coding regions can have significant effects on
gene expression (Kudla et al. 2009), we may have found better
candidates for cis-expression SNPs in 50-noncoding regions
(Massouras et al. 2012). Furthermore, the availability of suit-
able polymorphisms varies gene-by-gene, and we cannot
screen every SNP with possible expression effects. In some
cases, we have not screened the SNP with the greatest
expression effect in a gene but a linked SNP that is in
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disequilibrium. In this case, our SNP is a weaker proxy for a
SNP of greater effect. Therefore, we may underestimate the
latitudinal change in cis-expression at some genes. Finally, we
assume that the allelic effects estimated in the Raleigh DGRP
do not significantly change across the cline. This is impossible
to assess without independent studies as Ayroles et al. (2009)
in other populations.

Many of the SNPs are amino acid polymorphisms or are in
linkage disequilibrium with amino acid polymorphisms. Some
amino acid changes are associated with transcript expression,
but others have no expression effects. These may have func-
tional catalytic influence and are clinal because of these cat-
alytic differences. For example, there are no cis-expression
variable sites in the Pdp gene, but there are three prominent
amino acid polymorphisms (all in linkage disequilibrium) that
are strongly clinal. These residues in PDP might play a role in
the regulation and activation of PDH. Without a detailed
functional study, this cannot be determined and in many
cases the required functional characterizations would be
challenging.

It is important to recognize that the absence of either cis-
expression variation or clines in many genes is expected. This
is because the control of flux in pathways and networks is
likely to be distributed unevenly and concentrated at different
steps as consequence of pathway architecture or the unique
regulation of the enzymatic steps and pathway (Fell 1997;
Olson-Manning et al. 2013). If extant expression variation
reflects functional responses under selection, then the ab-
sence of cis-effect variation could simply reflect the lack of
potential for step control at that point. Thus, the absence of
effects, if real and not an artifact, is just as informative to
understand the metabolic architecture as the presence. For
example, Pyk and Idh, and the lower elements of the glycolytic
pathway are possibly ineffective as targets of selection because
they possess low control. Alternatively, some genes may pos-
sess pleiotropic constraints or tissue-specific tradeoffs or are
poor mutagenic targets for cis-based expression variation.
Without the independent, and albeit difficult, experimental
assessment of metabolic control at each step (Eanes 2011), it
is impossible to address this hypothesis. It is also unclear how
increased or reduced activity in the near-equilibrium bidirec-
tional enzymes with wide tissue specificity, such as the central
glycolytic core (e.g., Tpi, Pgi, and Eno), affects bias in glycolytic,
gluconeogenic, or glycogenic flux. It is proposed theoretically
(Wright and Rausher 2010) and shown empirically (Olson-
Manning et al. 2013) that flux control localizes at the top of
one-way pathways. However, the central pathway is not easily
interpreted in that top–bottom context.

The goal of our report is to integrate the population ge-
netics of geographic variation of SNPs with gene expression
effects and then interpret this integration in the functional
context of the central metabolic pathway. From this integra-
tion, interesting associations emerge that suggest hypotheses
about selection on the pathway that requires further con-
sideration. We have not proven flux balance nor energy
sensing as the phenotypes that has come under selection
for these genes: Rather, we have introduced them as hypoth-
eses that emphasize different roles of expression selection on

metabolic genes. For example, this is in contrast to the often
advanced hypothesis that genetic variation is maintained
through temperature-dependent kinetic tradeoffs that
maintain constant flux and performance along a thermal
cline (Place and Powers 1979; DiMichele and Powers 1982;
Hall and Koehn 1983). Our hypothesis, that energy sensing
and resource utilization represent the functional basis for
selection on metabolic enzymes across environmental gra-
dients, generates predictions that can be tested experimen-
tally. Driven by the need to understand diet-associated
ageing and causes of metabolic syndrome, huge progress
has been made in unraveling the downstream components
of energy sensing in D. melanogaster and other models
(Taguchi and White 2008; Toivonen and Partridge 2008;
Fontana et al. 2010), but the initial sensing mechanism is
unknown. In Drosophila, experimental manipulation of gene
expression is tractable using both P-element-associated
knockouts of whole-body expression (Merritt et al. 2005;
Eanes et al. 2006, 2008), as well as tissue-specific RNAi knock-
down (Dietzl et al. 2007; Schnorrer et al. 2010). This should
allow the targeted suppression and overexpression of genes
of interest in the neurosecretory cells (Giannakou et al. 2004;
Lee and Park 2004) and the evaluation of sensing. The effects
of these manipulations on energy sensing and associated life
history phenotypes can then be evaluated. The study of ge-
netic variation in central metabolism and adaptation is a
long running and multidimensional problem generally asso-
ciated with energy production (Zera 2011). However, the
expanding participation of metabolic enzymes in roles out-
side the theme of simple energy production is increasingly
being recognized (Kim and Dang 2005; Marden 2013), and
this model advances a new role for expression and catalytic-
based genetic variation in metabolic genes in adaptation to
changing environments.

Materials and Methods

Data Sources—Pathway Genes Identified

To assemble the 46 candidate genes presenting enzymes of
the core pathways, we used FLYBase. Some genes possess
multiple orthologs; one is the somatic member involved in
core metabolism. We have used several criteria to determine
the most relevant member of each gene set. First is high
homology to vertebrate members. Second, core enzymes
have high somatic expression that is not specific to testis or
ovaries. Central metabolic genes have exceptionally high
codon biases. Third, mitochondrial proteins have high pIs
(Hartmann et al. 1991; Dinur-Mills et al. 2008). In the case
of genes with only a candidate gene CG definition, we have
introduced abbreviations that are similar or identical with
those used in mammalian names.

As our database for SNP identification, we used the 37
D. melanogaster genome sequences released in August 2010
by the DGRP (Mackay et al. 2012). These sequences had al-
ready been assembled and annotated to the FlyBase reference
sequence (version 5.12). Nevertheless, final choice of useful
SNPs was carried out gene-by-gene by further manual inspec-
tion. The coding regions of each gene were extracted and the
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quality score for each base assessed. SNPs where the minority
allele quality score was less than 30 were reset to the majority
allele. Most of these cases appear as singletons. Finally, focal
SNPs for the cline were selected where the minority allele was
more than 0.10 in the DGRP.

Selection of SNPs

Many SNPs could not be screened by pyrosequencing be-
cause flanking polymorphisms bias amplification in the bulk
preparation or the pyrosequencing step failed. Many SNPs
were also selected before the Ayroles et al. (2009) expression
data were available. Amino acid polymorphisms were favored.
We also favored SNPs that were diagnostic of important hap-
lotypes seen in the DGRP collection. We only used sites with a
minority allele that was more than 10% in the Raleigh data,
and attempts were made to minimize LD among sites by
spacing SNPs at distance of more than 500 bp when possible.

Population Collections

In 2009 and 2010, we collected samples from 18 local popu-
lations across the eastern United States. Adults were collected
by sweep net and immediately separated by sex. Males were
preserved in 95% ethanol and stored at�70 �C. Females were
allowed to oviposit, preserved, and stored. We also included
the 2005 population data from Raleigh, NC (Mackay et al.
2012); we obtained 34 inbred DGRP lines from the
Bloomington Stock Center. We included two collections
(pooled) from 2007 and 2008 from Sudbury, ON. In each
isofemale line, the progeny from the F1 generation was pre-
served in EtOH for bulk DNA preparation. Two female pro-
genies were collected from each preserved line and pooled
with the collected males in the bulk sample for pyrosequen-
cing. By sampling two progenies per line in the F1 generation,
we are sampling two to four independent chromosomes from
the population per line, with an average of 3. The expected
number of chromosomes per bulked sample is therefore
three times the number of female lines plus twice the
number of wild-collected males. The average number of in-
dependent genomes pooled per population sample was
n = 114.7. The entire data base thus consisted of 2,524 ge-
nomes. The sources and sample sizes of the 20 population
samples are provided in supplementary table S2, Supplemen-
tary Material online.

Pyrosequencing

Bulk DNA purification was performed with Puregene Core Kit
A (Qiagen) using 42–100 flies per population (sample sizes in
supplementary table S2, Supplementary Material online). We
used pyrosequencing in the bulk DNA preps to estimate SNP
frequency (Lavebratt and Sengul 2006; Doostzadeh et al.
2008). We checked the precision of the method by comparing
the estimated frequency of each SNP to the expected fre-
quency for the DGRP population based on the genome se-
quences (r = 0.99). Pyrosequencing was carried out using the
PyroMark MD machine and peak heights scored to estimate
SNP. Primers were designed using the PyroMark Assay Design
software. A universal biotinylated primer was used in

combination with two locus-specific primers (Guo and
Milewicz 2003). In a few cases, performance of universal
primer was poor, and direct-biotinylated locus-specific pri-
mers were used.

Clines

Allele frequency estimates were arc-sine transformed (Sokal
and Rohlf 1981) and tested by linear regression against lati-
tude. Individual probabilities for single tests are determined
by random permutation of latitudes 10,000 times. We might
expect a proportion of these cline discoveries to be false pos-
itives. The within-gene SNP tests are not independent, but we
cannot capture the within population SNP correlation struc-
ture because the pyrosequencing provides mean estimates
without individual genotypes. The entire set was tested for
set-wide significance using q values (Storey and Tibshirani
2003), and a q value of 4% was assigned as a cutoff as support
of a cline in each SNP.

Expression Variation and eQTNs

We downloaded the whole-adult Affymetrix Drosophila 2.0
array expression data (accession number E-MEXP-1594) re-
ported in Ayroles et al. (2009) and the original 37 sequences of
the DGRP first released in 2009 (Mackay et al. 2012). Probes
with underlying SNPs were removed or masked (Benovoy
et al. 2008; Chen et al. 2009). The sex effect for each gene
was removed and the residuals rescaled to standardized de-
viates using the total sample variance. A nested ANOVA is
carried out on standardized residuals to estimate SNP allele,
nested line in SNP, and nested vial within line effects
(Yijkl =� + Ai + Bij + Cijk + "ijkl, where Yijkl is an individual
expression measure, Ai is the effect of the ith allele, Bij is the
effect of line j within the ith SNP allele, and Cijk is the effect of
kth vial within line j and the ith SNP allele and "ijkl is the error
term within vials) using the JMP program (JMP-SAS). We used
the parameter, ai specifying the genotypic effect for each pair
of alleles, to estimate population mean expression (see
below).

Some of the within-gene SNP-specific expression effects
are not independent. To test for gene-wide significance, we
incorporate linkage disequilibrium among sites within each
gene and carried out random permutations of expression
across lines, keeping the haplotype structure intact. Sexes
were treated separately (Massouras et al. 2012). For each
10,000 perturbation set, the highest F value was taken
among the SNPs and the 5% tail of the distribution for the
10,000 permutations set as the FDR.

Population Mean Expression and PCA

For each gene, the SNP with the largest cis-acting effect (irre-
spective of significance) was used. The scaled allelic effect of
the ith SNP was used with the SNP allele frequency, qi, to
predict, assuming additivity, the mean expression, yi, expected
for each collection locality by the simple equation yi = a(1 �
2qi). Thus, the variance in gene expression across populations
depends on the cis-acting effect estimate, a, and the variation
in allele frequencies, qi. We subjected the variance–covariance
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matrix for all the genes and populations to a PCA and ex-
tracted the major components. The gene loadings on these
factors can then be used to summarize the major sources of
overall variance–covariance structure of changes in expres-
sion for different pathways.

Supplementary Material
Supplementary tables S1 and S2 are available at Molecular
Biology and Evolution online (http://www.mbe.oxfordjour
nals.org/).
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